Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.471
Filter
1.
Nat Commun ; 15(1): 6506, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39090079

ABSTRACT

The lack of an appropriate preclinical model of metabolic dysfunction-associated steatotic liver disease (MASLD) that recapitulates the whole disease spectrum impedes exploration of disease pathophysiology and the development of effective treatment strategies. Here, we develop a mouse model (Streptozotocin with high-fat diet, STZ + HFD) that gradually develops fatty liver, metabolic dysfunction-associated steatohepatitis (MASH), hepatic fibrosis, and hepatocellular carcinoma (HCC) in the context of metabolic dysfunction. The hepatic transcriptomic features of STZ + HFD mice closely reflect those of patients with obesity accompanying type 2 diabetes mellitus, MASH, and MASLD-related HCC. Dietary changes and tirzepatide administration alleviate MASH, hepatic fibrosis, and hepatic tumorigenesis in STZ + HFD mice. In conclusion, a murine model recapitulating the main histopathologic, transcriptomic, and metabolic alterations observed in MASLD patients is successfully established.


Subject(s)
Carcinoma, Hepatocellular , Diet, High-Fat , Disease Models, Animal , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Male , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Mice , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Humans , Liver/metabolism , Liver/pathology , Fatty Liver/metabolism , Fatty Liver/pathology , Streptozocin , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Transcriptome , Obesity/metabolism , Obesity/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/complications
2.
J Biochem Mol Toxicol ; 38(9): e23809, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39148263

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is an alarming ailment that leads to severe liver damage and increases the risk of serious health conditions. The prevalence of NAFLD due to oxidative stress could be mitigated by plant-derived antioxidants. This study aims to investigate the effects of syringic acid (SA) on NAFLD in a high-fat diet (HFD) rat model. Twenty-four rats were randomly divided into four groups (n = 6): normal control, HFD, SA-administered HFD, and positive control SA on a normal diet. Rats in the normal control and positive control groups received a normal diet, and the remaining groups received an HFD for 8 weeks. SA (20 mg/kg b.w.) was orally (gavage) administered for 8 weeks. Lipid profiles were controlled by SA against HFD-fed rats (p < 0.05). SA reduced the serum aspartate aminotransferase and alanine aminotransferase levels by 70%-190%. SA also suppressed pro-inflammatory cytokines and attenuated histopathological and immunohistochemical changes against HFD-fed rats. SA reversed oxidative stress by suppressing the malondialdehyde formation by 82% and replenished the nonenzymatic and enzymatic antioxidant activities (p < 0.05). Gene expressions of nuclear factor-erythroid 2-related factor/heme oxygenase 1 (Nrf2/HO-1) were elevated in SA-treated rats. Ameliorative effects of SA on NAFLD induced by an HFD in rats were prominent through the reversal of oxidative stress and inflammation, regulated by an intrinsic mechanism of defense against oxidative stress, the Nrf2/HO-1 pathway.


Subject(s)
Gallic Acid , Heme Oxygenase (Decyclizing) , NF-E2-Related Factor 2 , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Rats , Male , Signal Transduction/drug effects , Gallic Acid/analogs & derivatives , Gallic Acid/pharmacology , Heme Oxygenase (Decyclizing)/metabolism , Oxidative Stress/drug effects , Heme Oxygenase-1/metabolism , Diet, High-Fat/adverse effects , Rats, Sprague-Dawley , Antioxidants/pharmacology , Liver/metabolism , Liver/drug effects , Liver/pathology
3.
Lipids Health Dis ; 23(1): 250, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39154177

ABSTRACT

INTRODUCTION: Hypercholesterolemia is associated with increased inflammation and impaired serotonin neurotransmission, potentially contributing to depressive symptoms. However, the role of statins, particularly pitavastatin, in modulating serotonin transporter (SERT) function within this context remains underexplored. This study aimed to investigate whether pitavastatin counteracts the neurobiological effects of hypercholesterolemia. METHODS: Low-density lipoprotein receptor knockout (LDLR-/-) mice on a C57BL/6 background were assigned to three groups: a control group fed a standard chow diet, a group fed a high-fat diet (HFD), and a third group fed a high-fat diet supplemented with pitavastatin (HFD + Pita). We evaluated the effects of HFD with or without pitavastatin on lipid profiles, inflammatory markers, and SERT availability using small-animal positron emission tomography (PET) scans with the radioligand 4-[18F]-ADAM over a 20-week period. RESULTS: Pitavastatin treatment in HFD-fed mice significantly reduced both total cholesterol and LDL cholesterol levels in HFD-fed mice compared to those on HFD alone. Elevated inflammatory markers such as IL-1α, MCP-1/CCL2, and TNF-α in HFD mice were notably decreased in the HFD + Pita group. PET scans showed reduced SERT availability in the brains of HFD mice; however, pitavastatin improved this in brain regions associated with mood regulation, suggesting enhanced serotonin neurotransmission. Additionally, the sucrose preference test showed a trend towards increased preference in the HFD + Pita group compared to the HFD group, indicating a potential reduction in depressive-like behavior. CONCLUSION: Our findings demonstrate that pitavastatin not only lowers cholesterol and reduces inflammation but also enhances SERT availability, suggesting a potential role in alleviating depressive symptoms associated with hypercholesterolemia. These results highlight the multifaceted benefits of pitavastatin, extending beyond its lipid-lowering effects to potentially improving mood regulation and neurotransmitter function.


Subject(s)
Diet, High-Fat , Hypercholesterolemia , Mice, Inbred C57BL , Quinolines , Serotonin Plasma Membrane Transport Proteins , Animals , Quinolines/pharmacology , Quinolines/therapeutic use , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Mice , Diet, High-Fat/adverse effects , Male , Mice, Knockout , Receptors, LDL/metabolism , Receptors, LDL/genetics , Positron-Emission Tomography , Cholesterol, LDL/blood , Brain/metabolism , Brain/drug effects , Brain/diagnostic imaging , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
4.
Am J Reprod Immunol ; 92(2): e13918, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39158962

ABSTRACT

BACKGROUND: Zishen Qingre Lishi Huayu recipe (ZQLHR) has shown significant therapeutic effects in treating sex hormone levels and follicular developmental disorders in patients with polycystic ovary syndrome (PCOS). However, little is known about the potential mechanisms of its treatment. METHODS: Dehydroepiandrosterone and a high-fat diet induced the PCOS model rat. The serum of rats was collected to detect the levels of sex hormones and inflammatory cytokines by enzyme-linked immunosorbent assay, and the ovaries were collected for ovarian histopathology and qPCR assay to detect the levels of inflammatory cytokines in ovarian tissues. Granulosa cells (GCs) were collected for western blot assay to detect of IL-1ß, IL-6R, and LOX protein expression levels. RESULTS: ZQLHR could reduce body weight, regulate estrous cycles, and improve serum sex hormone levels, follicular development, and insulin resistance (IR) in PCOS model rats. In addition, ZQLHR treatment improved the levels of inflammatory cytokines in serum and ovary, and regulated the protein expression of IL-6R, IL-1ß, and LOX in GCs of PCOS model rats. The results showed that the HOMA-IR index increased with the increasing levels of IL-6, IL-1ß, and CRP, and decreased with the increased IL-10. CONCLUSION: This study reveals that the treatment of endocrine disorders and ovulation disorders in PCOS with ZQLHR may be closely related to the improvement of systemic and ovarian inflammation in PCOS patients, as well as the inhibition of IL-6R, IL-1ß, and LOX expression in GCs, which reemphasizes the role of reducing chronic inflammatory states in the treatment of PCOS. Moreover, this study reemphasizes the correlation between multiple inflammatory mediators and IR.


Subject(s)
Disease Models, Animal , Drugs, Chinese Herbal , Inflammation , Ovary , Polycystic Ovary Syndrome , Animals , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/metabolism , Rats , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Inflammation/drug therapy , Ovary/pathology , Ovary/drug effects , Ovary/metabolism , Rats, Sprague-Dawley , Cytokines/metabolism , Humans , Diet, High-Fat , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Insulin Resistance , Interleukin-1beta/metabolism , Interleukin-1beta/blood
5.
Gen Physiol Biophys ; 43(5): 411-421, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39140684

ABSTRACT

S-adenosylmethionine (SAM) is the main methyl group donor and has antioxidant potential. In this study, preventive and regressive potential of SAM were investigated in high fat/high cholesterol (HFHC) diet-induced non-alcoholic fatty liver disease (NAFLD) in guinea pigs. They were injected with SAM (50 mg/kg, i.p.) for 6 weeks along with HFHC diet or 4 weeks after HFHC diet. Serum transaminase activities, total cholesterol (TC), triglyceride (TG), cytochrome p450-2E1 (CYP2E1) and hydroxyproline (Hyp) levels, prooxidative and antioxidative parameters, protein expressions of α-smooth muscle actin (α-SMA) and transforming growth factor-ß1 (TGF-ß1) together with histopathological changes were examined in the liver. SAM treatment diminished HFHC diet-induced increases in serum transaminase activities and hepatic TC, TG, CYP2E1, Hyp, α-SMA and TGF-ß1 expressions and ameliorated prooxidant-antioxidant balance. Histopathological scores for hepatic steatosis, inflammation, and fibrosis were decreased by SAM treatment. Increases in TC, diene conjugate levels, and lipid vacuoles within the tunica media of the aorta were reduced in HFHC-fed animals treated with SAM. These protective effects were also detected in the regression period of HFHC-guinea pigs due to SAM. In conclusion, SAM treatment was found to be effective in prevention and regression of HFHC-induced hepatic and aortic lesions together with decreases in oxidative stress in guinea pigs with NAFLD.


Subject(s)
Diet, High-Fat , Liver , Oxidative Stress , S-Adenosylmethionine , Animals , Guinea Pigs , Oxidative Stress/drug effects , Diet, High-Fat/adverse effects , Male , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Liver/drug effects , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Aortic Diseases/prevention & control , Aortic Diseases/pathology , Aortic Diseases/metabolism , Aortic Diseases/etiology , Aorta/drug effects , Aorta/pathology , Aorta/metabolism
6.
PLoS One ; 19(8): e0308445, 2024.
Article in English | MEDLINE | ID: mdl-39110747

ABSTRACT

The LBX1 gene is located near a single nucleotide polymorphism that is highly associated with susceptibility to adolescent idiopathic scoliosis and is considered one of the strongest candidate genes involved in the pathogenesis of this condition. We have previously found that loss of LBX1 from skeletal muscle results not only in spinal deformity but also in lean body mass, suggesting a potential role for LBX1 in energy metabolism. The purpose of the present study was to test this hypothesis by analyzing the phenotype of mice lacking LBX1 in skeletal muscle with a focus on energy metabolism. We found that loss of LBX1 rendered mice more resistant to high-fat diet-induced obesity, despite comparable food intake between mutant and control mice. Notably, the mutant mice exhibited improved glucose tolerance, increased maximal aerobic capacity, and higher core body temperature compared to control mice. In addition, we found that overexpression of LBX1 decreased glucose uptake in cultured cells. Taken together, our data show that LBX1 functions as a negative regulator of energy metabolism and that loss of LBX1 from skeletal muscle increases systemic energy expenditure resulting in lean body mass. The present study thus suggests a potential association between LBX1 dysfunction and lean body mass in patients with adolescent idiopathic scoliosis.


Subject(s)
Energy Metabolism , Muscle, Skeletal , Animals , Mice , Muscle, Skeletal/metabolism , Obesity/metabolism , Obesity/genetics , Diet, High-Fat/adverse effects , Glucose/metabolism , Male , Humans , Mice, Knockout , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Scoliosis/genetics , Scoliosis/metabolism , Mice, Inbred C57BL
7.
Front Endocrinol (Lausanne) ; 15: 1432928, 2024.
Article in English | MEDLINE | ID: mdl-39104812

ABSTRACT

We recently reported that a novel chimeric peptide (GEP44) targeting both the glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y1- and Y2 receptor (Y1R and Y2R) reduced energy intake and body weight (BW) in diet-induced obese (DIO) rats. We hypothesized that GEP44 reduces energy intake and BW primarily through a GLP-1R dependent mechanism. To test this hypothesis, GLP-1R+/+ mice and GLP-1R null (GLP-1R-/-) mice were fed a high fat diet for 4 months to elicit diet-induced obesity prior to undergoing a sequential 3-day vehicle period, 3-day drug treatment (5, 10, 20 or 50 nmol/kg; GEP44 vs the selective GLP-1R agonist, exendin-4) and a 3-day washout. Energy intake, BW, core temperature and activity were measured daily. GEP44 (10, 20 and 50 nmol/kg) reduced BW after 3-day treatment in DIO male GLP-1R+/+ mice by -1.5 ± 0.6, -1.3 ± 0.4 and -1.9 ± 0.4 grams, respectively (P<0.05), with similar effects being observed in female GLP-1R+/+ mice. These effects were absent in male and female DIO GLP-1R-/- mice suggesting that GLP-1R signaling contributes to GEP44-elicited reduction of BW. Further, GEP44 decreased energy intake in both male and female DIO GLP-1R+/+ mice, but GEP44 appeared to produce more consistent effects across multiple doses in males. In GLP-1R-/- mice, the effects of GEP44 on energy intake were only observed in males and not females, suggesting that GEP44 may reduce energy intake, in part, through a GLP-1R independent mechanism in males. In addition, GEP44 reduced core temperature and activity in both male and female GLP-1R+/+ mice suggesting that it may also reduce energy expenditure. Lastly, we show that GEP44 reduced fasting blood glucose in DIO male and female mice through GLP-1R. Together, these findings support the hypothesis that the chimeric peptide, GEP44, reduces energy intake, BW, core temperature, and glucose levels in male and female DIO mice primarily through a GLP-1R dependent mechanism.


Subject(s)
Body Weight , Diet, High-Fat , Energy Intake , Glucagon-Like Peptide-1 Receptor , Mice, Obese , Obesity , Animals , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Female , Male , Mice , Obesity/drug therapy , Obesity/metabolism , Diet, High-Fat/adverse effects , Energy Intake/drug effects , Body Weight/drug effects , Mice, Knockout , Mice, Inbred C57BL
8.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125617

ABSTRACT

Progression of metabolic dysfunction-associated steatites liver disease (MASLD) to steatohepatitis (MASH) is driven by stress-inducing lipids that promote liver inflammation and fibrosis, and MASH can lead to cirrhosis and hepatocellular carcinoma. Previously, we showed coordinated defenses regulated by transcription factors, nuclear factor erythroid 2-related factor-1 (Nrf1) and -2 (Nrf2), protect against hepatic lipid stress. Here, we investigated protective effects of hepatocyte Nrf1 and Nrf2 against MASH-linked liver fibrosis and tumorigenesis. Male and female mice with flox alleles for genes encoding Nrf1 (Nfe2l1), Nrf2 (Nfe2l2), or both were fed a MASH-inducing diet enriched with high fat, fructose, and cholesterol (HFFC) or a control diet for 24-52 weeks. During this period, hepatocyte Nrf1, Nrf2, or combined deficiency for ~7 days, ~7 weeks, and ~35 weeks was induced by administering mice hepatocyte-targeting adeno-associated virus (AAV) expressing Cre recombinase. The effects on MASH, markers of liver fibrosis and proliferation, and liver tumorigenesis were compared to control mice receiving AAV-expressing green fluorescent protein. Also, to assess the impact of Nrf1 and Nrf2 induction on liver fibrosis, HFFC diet-fed C57bl/6J mice received weekly injections of carbon tetrachloride, and from week 16 to 24, mice were treated with the Nrf2-activating drug bardoxolone, hepatocyte overexpression of human NRF1 (hNRF1), or both, and these groups were compared to control. Compared to the control diet, 24-week feeding with the HFFC diet increased bodyweight as well as liver weight, steatosis, and inflammation. It also increased hepatocyte proliferation and a marker of liver damage, p62. Hepatocyte Nrf1 and combined deficiency increased liver steatosis in control diet-fed but not HFFC diet-fed mice, and increased liver inflammation under both diet conditions. Hepatocyte Nrf1 deficiency also increased hepatocyte proliferation, whereas combined deficiency did not, and this also occurred for p62 level in control diet-fed conditions. In 52-week HFFC diet-fed mice, 35 weeks of hepatocyte Nrf1 deficiency, but not combined deficiency, resulted in more liver tumors in male mice, but not in female mice. In contrast, hepatocyte Nrf2 deficiency had no effect on any of these parameters. However, in the 15-week CCL4-exposed and 24-week HFFC diet-fed mice, Nrf2 induction with bardoxolone reduced liver steatosis, inflammation, fibrosis, and proliferation. Induction of hepatic Nrf1 activity with hNRF1 enhanced the effect of bardoxolone on steatosis and may have stimulated liver progenitor cells. Physiologic Nrf1 delays MASLD progression, Nrf2 induction alleviates MASH, and combined enhancement synergistically protects against steatosis and may facilitate liver repair.


Subject(s)
Hepatocytes , NF-E2-Related Factor 2 , Animals , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Mice , Hepatocytes/metabolism , Male , Female , Disease Progression , Mice, Inbred C57BL , Fatty Liver/metabolism , Fatty Liver/pathology , Fatty Liver/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/genetics , Nuclear Respiratory Factor 1/metabolism , Nuclear Respiratory Factor 1/genetics , Diet, High-Fat/adverse effects , Liver/metabolism , Liver/pathology , Humans
9.
Mol Med ; 30(1): 124, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138413

ABSTRACT

BACKGROUND: Obesity is well-established as a significant contributor to the development of insulin resistance (IR) and diabetes, partially due to elevated plasma saturated free fatty acids like palmitic acid (PA). Grb10-interacting GYF Protein 2 (GIGYF2), an RNA-binding protein, is widely expressed in various tissues including the liver, and has been implicated in diabetes-induced cognitive impairment. Whereas, its role in obesity-related IR remains uninvestigated. METHODS: In this study, we employed palmitic acid (PA) exposure to establish an in vitro IR model in the human liver cancer cell line HepG2 with high-dose chronic PA treatment. The cells were stained with fluorescent dye 2-NBDG to evaluate cell glucose uptake. The mRNA expression levels of genes were determined by real-time qRT-PCR (RT-qPCR). Western blotting was employed to examine the protein expression levels. The RNA immunoprecipitation (RIP) was used to investigate the binding between protein and mRNA. Lentivirus-mediated gene knockdown and overexpression were employed for gene manipulation. In mice, an IR model induced by a high-fat diet (HFD) was established to validate the role and action mechanisms of GIGYF2 in the modulation of HFD-induced IR in vivo. RESULTS: In hepatocytes, high levels of PA exposure strongly trigger the occurrence of hepatic IR evidenced by reduced glucose uptake and elevated extracellular glucose content, which is remarkably accompanied by up-regulation of GIGYF2. Silencing GIGYF2 ameliorated PA-induced IR and enhanced glucose uptake. Conversely, GIGYF2 overexpression promoted IR, PTEN upregulation, and AKT inactivation. Additionally, PA-induced hepatic IR caused a notable increase in STAU1, which was prevented by depleting GIGYF2. Notably, silencing STAU1 prevented GIGYF2-induced PTEN upregulation, PI3K/AKT pathway inactivation, and IR. STAU1 was found to stabilize PTEN mRNA by binding to its 3'UTR. In liver cells, tocopherol treatment inhibits GIGYF2 expression and mitigates PA-induced IR. In the in vivo mice model, GIGYF2 knockdown and tocopherol administration alleviate high-fat diet (HFD)-induced glucose intolerance and IR, along with the suppression of STAU1/PTEN and restoration of PI3K/AKT signaling. CONCLUSIONS: Our study discloses that GIGYF2 mediates obesity-related IR by disrupting the PI3K/AKT signaling axis through the up-regulation of STAU1/PTEN. Targeting GIGYF2 may offer a potential strategy for treating obesity-related metabolic diseases, including type 2 diabetes.


Subject(s)
Carrier Proteins , Insulin Resistance , Liver , PTEN Phosphohydrolase , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA-Binding Proteins , Signal Transduction , Humans , Proto-Oncogene Proteins c-akt/metabolism , Animals , PTEN Phosphohydrolase/metabolism , PTEN Phosphohydrolase/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Mice , Liver/metabolism , Carrier Proteins/metabolism , Carrier Proteins/genetics , Hep G2 Cells , Palmitic Acid , Male , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Mice, Inbred C57BL , Diet, High-Fat/adverse effects
10.
Sci Rep ; 14(1): 18377, 2024 08 08.
Article in English | MEDLINE | ID: mdl-39112593

ABSTRACT

The effects of calcitonin gene-related peptide (CGRP) on atherosclerosis remain unclear. We used apolipoprotein E-deficient (ApoE-/-) mice to generate double-knockout ApoE-/-:CGRP-/- mice lacking alpha CGRP. ApoE-/-:CGRP-/- mice exhibited larger atherosclerotic plaque areas, peritoneal macrophages with enhanced migration functions, and elevated levels of the inflammatory cytokine tumor necrosis factor (TNF)-⍺. Thus, we also explored whether inhibiting TNF-⍺ could improve atherosclerosis in ApoE-/-:CGRP-/- mice by administering etanercept intraperitoneally once a week (5 mg/kg) alongside a high-fat diet for 2 weeks. This treatment led to significant reductions in aortic root lesion size, atherosclerotic plaque area and macrophage migration in ApoE-/-:CGRP-/- mice compared with mice treated with human IgG (5 mg/kg). We further examined whether results observed in ApoE-/-:CGRP-/- mice could similarly be obtained by administering a humanized monoclonal CGRP antibody, galcanezumab, to ApoE-/- mice. ApoE-/- mice were subcutaneously administered galcanezumab at an initial dose of 50 mg/kg, followed by a dose of 30 mg/kg in the second week. Galcanezumab administration did not affect systolic blood pressure, serum lipid levels, or macrophage migration but led to a significant increase in lipid deposition at the aortic root. These findings suggest that alpha CGRP plays a critical role in inhibiting the progression of atherosclerosis.


Subject(s)
Apolipoproteins E , Atherosclerosis , Calcitonin Gene-Related Peptide , Mice, Knockout , Plaque, Atherosclerotic , Animals , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Calcitonin Gene-Related Peptide/metabolism , Mice , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Plaque, Atherosclerotic/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/genetics , Diet, High-Fat/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Male , Mice, Knockout, ApoE , Disease Models, Animal , Humans , Antibodies, Monoclonal, Humanized/pharmacology , Etanercept/pharmacology , Mice, Inbred C57BL , Cell Movement/drug effects , Aorta/metabolism , Aorta/pathology , Aorta/drug effects
11.
Sci Rep ; 14(1): 18602, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127712

ABSTRACT

Consumption of high-caloric diets contributes to the alarming number of overweight and obese individuals worldwide, which in turn leads to several diseases and multiple organ dysfunction. Not only has the number of calories taken per day but also the type of fat in the diet has an important impact on health. Accordingly, the purpose of the current study was to examine the impact of different types of high-caloric fat diets on the metabolic status and the integrity of the liver and aorta in albino rats. Adult male albino rats were divided into 6 groups: Control group, long chain-saturated fat group (SFD), long chain-monounsaturated fat (MUFAs) group, long chain-polyunsaturated fat (PUFAs) group, medium-chain fat (MCFAs) group, and short-chain fat (SCFAs) group. Body mass index (BMI), Lee index, and visceral fat amount were reported. Serum levels of insulin, liver transaminases, lipid profile, and different oxidative stress and inflammatory markers were evaluated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and adiponectin/leptin ratio were also calculated. Histopathological examinations of liver and aorta with Masson's trichrome stain, and immune-staining for Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) were also done. SFD group showed significantly elevated liver transaminases, inflammatory markers, HOMA-IR, dyslipidemia, reduced adiponectin, and deficient anti-oxidative response compared to other groups together with disturbed hepatic and aortic architecture. Other treated groups showed an improvement. PUFAs group showed the highest level of improvement. Not all high-fat diets are hazardous. Diets rich in PUFAs, MUFAs, MCFAs, or SCFAs may protect against the hazards of high caloric diet.


Subject(s)
Aorta , Diet, High-Fat , Liver , Animals , Liver/metabolism , Liver/pathology , Rats , Male , Diet, High-Fat/adverse effects , Aorta/metabolism , Aorta/pathology , Oxidative Stress , Insulin Resistance , Insulin/blood , Insulin/metabolism , NF-E2-Related Factor 2/metabolism
12.
Sci Rep ; 14(1): 18641, 2024 08 11.
Article in English | MEDLINE | ID: mdl-39128931

ABSTRACT

There are genetic and environmental risk factors that contribute to the development of cognitive decline in Alzheimer's disease (AD). Some of these include the genetic predisposition of the apolipoprotein E4 genotype, consuming a high-fat diet (HFD), and the female sex. Brain insulin receptor resistance and deficiency have also been shown to be associated with AD and cognitive impairment. Intranasal (INL) insulin enhances cognition in AD, but the response varies due to genotype, diet, and sex. We investigated here the combination of these risk factors in a humanized mouse model, expressing E3 or E4, following a HFD in males and females on cognitive performance and the brain distribution of insulin following INL delivery. The HFD had a negative effect on survival in male mice only, requiring sex to be collapsed. We found many genotype, diet, and genotype x diet effects in anxiety-related tasks. We further found beneficial effects of INL insulin in our memory tests, with the most important findings showing a beneficial effect of INL insulin in mice on a HFD. We found insulin distribution throughout the brain after INL delivery was largely unaffected by diet and genotype, indicating these susceptible groups can still receive adequate levels of insulin following INL delivery. Our findings support the involvement of brain insulin signaling in cognition and highlight continuing efforts investigating mechanisms resulting from treatment with INL insulin.


Subject(s)
Administration, Intranasal , Brain , Cognition , Diet, High-Fat , Insulin , Animals , Female , Male , Insulin/metabolism , Diet, High-Fat/adverse effects , Brain/metabolism , Brain/drug effects , Cognition/drug effects , Mice , Humans , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Mice, Transgenic , Alzheimer Disease/metabolism , Disease Models, Animal
13.
Cells ; 13(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39120278

ABSTRACT

Sex differences may play a role in the etiopathogenesis and severity of metabolic dysfunction-associated steatotic liver disease (MASLD), a disorder characterized by excessive fat accumulation associated with increased inflammation and oxidative stress. We previously observed the development of steatosis specifically in female rats fed a high-fat diet enriched with liquid fructose (HFHFr) for 12 weeks. The aim of this study was to better characterize the observed sex differences by focusing on the antioxidant and cytoprotective pathways related to the KEAP1/NRF2 axis. The KEAP1/NRF2 signaling pathway, autophagy process (LC3B and LAMP2), and endoplasmic reticulum stress response (XBP1) were analyzed in liver homogenates in male and female rats that were fed a 12-week HFHFr diet. In females, the HFHFr diet resulted in the initial activation of the KEAP1/NRF2 pathway, which was not followed by the modulation of downstream molecular targets; this was possibly due to the increase in KEAP1 levels preventing the nuclear translocation of NRF2 despite its cytosolic increase. Interestingly, while in both sexes the HFHFr diet resulted in an increase in the levels of LC3BII/LC3BI, a marker of autophagosome formation, only males showed a significant upregulation of LAMP2 and XBP1s; this did not occur in females, suggesting impaired autophagic flux in this sex. Overall, our results suggest that males are characterized by a greater ability to cope with an HFHFr metabolic stimulus mainly through an autophagic-mediated proteostatic process while in females, this is impaired. This might depend at least in part upon the fine modulation of the cytoprotective and antioxidant KEAP1/NRF2 pathway resulting in sex differences in the occurrence and severity of MASLD. These results should be considered to design effective therapeutics for MASLD.


Subject(s)
Diet, High-Fat , Fructose , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Sex Characteristics , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Female , Male , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Rats , Kelch-Like ECH-Associated Protein 1/metabolism , Autophagy/drug effects , X-Box Binding Protein 1/metabolism , X-Box Binding Protein 1/genetics , Disease Models, Animal , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Rats, Wistar , Oxidative Stress/drug effects , Microtubule-Associated Proteins
14.
Nat Commun ; 15(1): 6622, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103342

ABSTRACT

Sex steroids modulate the distribution of mammalian white adipose tissues. Moreover, WAT remodeling requires adipocyte progenitor cells. Nevertheless, the sex-dependent mechanisms regulating adipocyte progenitors remain undetermined. Here, we uncover Cxcr4 acting in a sexually dimorphic manner to affect a pool of proliferating cells leading to restriction of female fat mass. We find that deletion of Cxcr4 in Pparγ-expressing cells results in female, not male, lipodystrophy, which cannot be restored by high-fat diet consumption. Additionally, Cxcr4 deletion is associated with a loss of a pool of proliferating adipocyte progenitors. Cxcr4 loss is accompanied by the upregulation of estrogen receptor alpha in adipose-derived PPARγ-labelled cells related to estradiol hypersensitivity and stalled adipogenesis. Estrogen removal or administration of antiestrogens restores WAT accumulation and dynamics of adipose-derived cells in Cxcr4-deficient mice. These findings implicate Cxcr4 as a female adipogenic rheostat, which may inform strategies to target female adiposity.


Subject(s)
Adipocytes , Adipogenesis , Adiposity , PPAR gamma , Receptors, CXCR4 , Stem Cells , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Female , Male , Mice , Adipocytes/metabolism , Adipocytes/cytology , Stem Cells/metabolism , Stem Cells/cytology , PPAR gamma/metabolism , PPAR gamma/genetics , Mice, Knockout , Adipose Tissue, White/metabolism , Adipose Tissue, White/cytology , Diet, High-Fat/adverse effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Mice, Inbred C57BL , Estradiol/pharmacology , Estradiol/metabolism , Cell Proliferation , Sex Factors , Sex Characteristics
15.
Metabolomics ; 20(5): 96, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39110263

ABSTRACT

INTRODUCTION: Ginseng berry (GB) has previously been demonstrated to improve systemic insulin resistance and regulate hepatic glucose metabolism and steatosis in mice with diet-induced obesity (DIO). OBJECTIVES: In this study, the role of GB in metabolism was assessed using metabolomics analysis on the total liver metabolites of DIO mice. METHODS: Metabolomic profiling was performed using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) of liver tissue from mice on a 12-wk normal chow diet (NC), high-fat diet (HFD), and HFD supplemented with 0.1% GB (HFD + GB). The detected metabolites, its pathways, and functions were analyzed through partial least square discriminant analysis (PLS-DA), the small molecular pathway database (SMPDB), and MetaboAnalyst 5.0. RESULTS: The liver metabolite profiles of NC, HFD, and GB-fed mice (HFD + GB) were highly compartmentalized. Metabolites involved in major liver functions, such as mitochondrial function, gluconeogenesis/glycolysis, fatty acid metabolism, and primary bile acid biosynthesis, showed differences after GB intake. The metabolites that showed significant correlations with fasting blood glucose (FBG), insulin, and homeostatic model assessment for insulin resistance (HOMA-IR) were highly associated with mitochondrial membrane function, energy homeostasis, and glucose metabolism. Ginseng berry intake increased the levels of metabolites involved in mitochondrial membrane function, decreased the levels of metabolites related to glucose metabolism, and was highly correlated with metabolic phenotypes. CONCLUSION: This study demonstrated that long-term intake of GB changed the metabolite of hepatosteatotic livers in DIO mice, normalizing global liver metabolites involved in mitochondrial function and glucose metabolism and indicating the potential mechanism of GB in ameliorating hyperglycemia in DIO mice.


Subject(s)
Diet, High-Fat , Glucose , Liver , Metabolomics , Obesity , Panax , Animals , Panax/metabolism , Panax/chemistry , Mice , Metabolomics/methods , Liver/metabolism , Glucose/metabolism , Male , Obesity/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Mice, Obese , Insulin Resistance , Fruit/metabolism , Fruit/chemistry , Metabolome/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects
16.
Sci Prog ; 107(3): 368504241269431, 2024.
Article in English | MEDLINE | ID: mdl-39090965

ABSTRACT

Pork is one type of the most frequently consumed meat with about 30% globally. Thus, the questions regarding to the health effects of diet with high fat content from lard are raised. Here, we developed a model of mice fed with high fat (HF) from lard to investigate and have more insights on the effects of long-time feeding with HF on health. The results showed that 66 days on HF induced a significant gain in the body weight of mice, and this weight gain was associated to the deposits in the white fat, but not brown fat. The glucose tolerance, not insulin resistance, in mice was decreased by the HF diet, and this was accompanied with significantly higher blood levels of total cholesterol and triglycerides. Furthermore, the weight gains in mice fed with HF seemed to link to increased mRNA levels of adipose biomarkers in lipogenesis, including Acly and Acaca genes, in white fat tissues. Thus, our study shows that a diet with high fat from lard induced the increase in body weight, white fat depots' expansion, disruption of glucose tolerance, blood dyslipidemia, and seemed to start affecting the mRNA expression of some adipose biomarkers in a murine model.


Subject(s)
Biomarkers , Diet, High-Fat , Dietary Fats , RNA, Messenger , Animals , Mice , Diet, High-Fat/adverse effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Biomarkers/metabolism , Biomarkers/blood , Male , Dietary Fats/metabolism , Insulin Resistance , Adipose Tissue/metabolism , Body Weight , Mice, Inbred C57BL , Weight Gain , Adipose Tissue, White/metabolism , Triglycerides/blood , Triglycerides/metabolism
17.
J Neuroinflammation ; 21(1): 191, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095788

ABSTRACT

OBJECTIVE: Obesity represents a significant global health challenge characterized by chronic low-grade inflammation and metabolic dysregulation. The hypothalamus, a key regulator of energy homeostasis, is particularly susceptible to obesity's deleterious effects. This study investigated the role of the immunoproteasome, a specialized proteasomal complex implicated in inflammation and cellular homeostasis, during metabolic diseases. METHODS: The levels of the immunoproteasome ß5i subunit were analyzed by immunostaining, western blotting, and proteasome activity assay in mice fed with either a high-fat diet (HFD) or a regular diet (CHOW). We also characterized the impact of autophagy inhibition on the levels of the immunoproteasome ß5i subunit and the activation of the AKT pathway. Finally, through confocal microscopy, we analyzed the contribution of ß5i subunit inhibition on mitochondrial function by flow cytometry and mitophagy assay. RESULTS: Using an HFD-fed obese mouse model, we found increased immunoproteasome levels in hypothalamic POMC neurons. Furthermore, we observed that palmitic acid (PA), a major component of saturated fats found in HFD, increased the levels of the ß5i subunit of the immunoproteasome in hypothalamic neuronal cells. Notably, the increase in immunoproteasome expression was associated with decreased autophagy, a critical cellular process in maintaining homeostasis and suppressing inflammation. Functionally, PA disrupted the insulin-glucose axis, leading to reduced AKT phosphorylation and increased intracellular glucose levels in response to insulin due to the upregulation of the immunoproteasome. Mechanistically, we identified that the protein PTEN, a key regulator of insulin signaling, was reduced in an immunoproteasome-dependent manner. To further investigate the potential therapeutic implications of these findings, we used ONX-0914, a specific immunoproteasome inhibitor. We demonstrated that this inhibitor prevents PA-induced insulin-glucose axis imbalance. Given the interplay between mitochondrial dysfunction and metabolic disturbances, we explored the impact of ONX-0914 on mitochondrial function. Notably, ONX-0914 preserved mitochondrial membrane potential and attenuated mitochondrial ROS production in the presence of PA. Moreover, we found that ONX-0914 reduced mitophagy in the presence of PA. CONCLUSIONS: Our findings strongly support the pathogenic involvement of the immunoproteasome in hypothalamic neurons in the context of HFD-induced obesity and metabolic disturbances. Targeting the immunoproteasome highlights a promising therapeutic strategy to mitigate the detrimental effects of obesity on the insulin-glucose axis and cellular homeostasis. This study provides valuable insights into the mechanisms driving obesity-related metabolic diseases and offers potential avenues for developing novel therapeutic interventions.


Subject(s)
Diet, High-Fat , Hypothalamus , Mice, Inbred C57BL , Neurons , Obesity , Proteasome Endopeptidase Complex , Animals , Diet, High-Fat/adverse effects , Mice , Hypothalamus/metabolism , Obesity/metabolism , Neurons/metabolism , Neurons/drug effects , Proteasome Endopeptidase Complex/metabolism , Male , Metabolic Diseases/metabolism , Metabolic Diseases/etiology , Oligopeptides
18.
Nat Commun ; 15(1): 6585, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097566

ABSTRACT

In type 1 diabetes, high-fat meals require more insulin to prevent hyperglycemia while meals followed by aerobic exercises require less insulin to prevent hypoglycemia, but the adjustments needed vary between individuals. We propose a decision support system with reinforcement learning to personalize insulin doses for high-fat meals and postprandial aerobic exercises. We test this system in a single-arm 16-week study in 15 adults on multiple daily injections therapy (NCT05041621). The primary objective of this study is to assess the feasibility of the novel learning algorithm. This study looks at glucose outcomes and patient reported outcomes. The postprandial incremental area under the glucose curve is improved from the baseline to the evaluation period for high-fat meals (378 ± 222 vs 38 ± 223 mmol/L/min, p = 0.03) and meals followed by exercises (-395 ± 192 vs 132 ± 181 mmol/L/min, p = 0.007). The postprandial time spent below 3.9 mmol/L is reduced after high-fat meals (5.3 ± 1.6 vs 1.8 ± 1.5%, p = 0.003) and meals followed by exercises (5.3 ± 1.2 vs 1.4 ± 1.1%, p = 0.003). Our study shows the feasibility of automatically personalizing insulin doses for high-fat meals and postprandial exercises. Randomized controlled trials are warranted.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Exercise , Insulin , Meals , Postprandial Period , Humans , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/blood , Insulin/administration & dosage , Male , Female , Adult , Exercise/physiology , Blood Glucose/metabolism , Proof of Concept Study , Middle Aged , Hypoglycemic Agents/administration & dosage , Diet, High-Fat/adverse effects , Reinforcement, Psychology , Precision Medicine/methods , Hypoglycemia/prevention & control , Algorithms , Young Adult
19.
Lipids Health Dis ; 23(1): 242, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123208

ABSTRACT

It had been observed that homozygous albumin knockout mice (Alb-/-) exhibit low plasma free fatty acid (FFA) concentration and improved blood glucose regulation. However, it was not yet known to what extent heterozygous albumin knockout (Alb+/-) mice would display a similar phenotype. Alb-/-, Alb+/-, and wild-type (WT) female mice were studied on a low-fat diet (LFD) or high-fat diet (HFD). On both diets, decreased plasma FFA concentration, and improved glucose tolerance test were observed in Alb-/-, but not in Alb+/-, compared to WT. Plasma adiponectin concentration showed greater elevation in Alb-/- than Alb+/-. Consistent with that, adiponectin gene expression was significantly higher in Alb-/- mice than in Alb+/- and WT mice. A dose-dependent response was observed for hepatic Acadl gene expression showing higher Acadl gene expression in Alb-/- mice than in Alb+/- and WT mice. In conclusion, although female Alb+/- mice exhibited some slight differences from WT mice (e.g., increased plasma adiponectin and hepatic Acadl gene expression), Alb+/- mice did not exhibit improved glucoregulation in comparison to WT mice, indicating that a minor suppression of albumin expression is not sufficient to improve glucoregulation. Furthermore, it is now clear that although the response of female mice to HFD might be unique from how males generally respond, still the complete albumin deficiency in Alb-/- mice and the associated FFA reduction is capable of improving glucoregulation in females on this diet. The present results have implications for the role of albumin and FFA in the regulation of metabolism.


Subject(s)
Adiponectin , Albumins , Blood Glucose , Diet, High-Fat , Fatty Acids, Nonesterified , Mice, Knockout , Animals , Female , Adiponectin/genetics , Adiponectin/metabolism , Adiponectin/blood , Mice , Fatty Acids, Nonesterified/blood , Fatty Acids, Nonesterified/metabolism , Diet, High-Fat/adverse effects , Albumins/metabolism , Albumins/genetics , Blood Glucose/metabolism , Liver/metabolism , Diet, Fat-Restricted , Glucose Tolerance Test , Serum Albumin/metabolism , Serum Albumin/genetics , Gene Expression Regulation , Mice, Inbred C57BL
20.
Nutrients ; 16(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39125288

ABSTRACT

Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/ß-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.


Subject(s)
Carcinogenesis , Diet, High-Fat , Dietary Supplements , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Female , Mice , Male , Diet, High-Fat/adverse effects , Carcinogenesis/drug effects , Polyporales , Mice, Inbred C57BL , Wnt Signaling Pathway/drug effects , Insulin-Like Growth Factor I/metabolism , Colorectal Neoplasms/prevention & control , Disease Models, Animal , Adenomatous Polyposis Coli Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL