Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.197
Filter
1.
Zhonghua Xue Ye Xue Za Zhi ; 45(4): 391-395, 2024 Apr 14.
Article in Chinese | MEDLINE | ID: mdl-38951069

ABSTRACT

The aim of this study was to investigate the effects of polyphyllin Ⅶ (PP Ⅶ) on proliferation, apoptosis, and cell cycle of diffuse large B-cell lymphoma (PLBCL) cell lines U2932 and SUDHL-4. The DLBCL cell lines were divided into a control group and a PPⅦ group, and experiments were conducted using MTT assay, flow cytometry, and Western blotting.Results showed that compared with the control group, PPⅦ significantly inhibited the proliferation of U2932 and SUDHL-4 cells (P<0.05). Apoptosis assays demonstrated that treatment with 0.50 and 1.00 µmol/L PP Ⅶ significantly increased the apoptosis rates of both cell lines (P<0.05), upregulated apoptosis-related proteins, and downregulated Bcl-2 protein level (P<0.05). Cell cycle analysis revealed that PPⅦ treatment led to an increase in G0/G1-phase cells (P<0.05) and a decrease in G2/M-phase cells (P<0.05), significantly downregulated cyclin D1, CDK4, CDK6, and survivin protein expression (P<0.05). In conclusion, PPⅦ exerted anti-lymphoma effects by inhibiting proliferation, promoting apoptosis, and inducing G0/G1 phase arrest in DLBCL cells.


Subject(s)
Apoptosis , Cell Cycle , Cell Proliferation , Lymphoma, Large B-Cell, Diffuse , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Cycle/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Cyclin D1/metabolism , Cyclin-Dependent Kinase 4/metabolism
2.
Int J Nanomedicine ; 19: 5193-5211, 2024.
Article in English | MEDLINE | ID: mdl-38859958

ABSTRACT

Purpose: Ovarian cancer is a fatal gynecologic malignancy with a high rate of abdominal metastasis. Chemotherapy still has a poor clinical prognosis for ovarian cancer patients, with cell proliferation and angiogenesis leading to invasion, migration, and recurrence. To overcome these obstacles, we constructed a novel HA-modified paclitaxel and diosgenin liposome (PEG-TK-HA-PDLPs) using two novel functional materials, DSPE-PEG2000-HA and DSPE-PEG2000-TK-PEG5000, to specifically deliver the drugs to the tumor site in order to reduce OC cell proliferation and anti-angiogenic generation, thereby inhibiting invasion and migration. Methods and Results: PEG-TK-HA-PDLPs were prepared by film dispersion, with ideal physicochemical properties and exhibits active targeting for enhanced cellular uptake. The ZIP synergy score for PTX and Dios was calculated using the online SynergyFinder software to be 3.15, indicating synergy. In vitro results showed that PEG-TK-HA-PDLPs were highly cytotoxic to ID8 cells, induced ID8 cell apoptosis, and inhibited ID8 cell migration and invasion. In vivo studies showed that PEG-TK-HA-PDLPs could prolong the circulation time in the blood, accumulate significantly in the tumor site, and effectively fight against angiogenesis with significant anti-tumor effects. Conclusion: The production of PEG-TK-HA-PDLPs is an effective strategy for the treatment of OC.


Subject(s)
Apoptosis , Diosgenin , Hyaluronic Acid , Liposomes , Ovarian Neoplasms , Paclitaxel , Polyethylene Glycols , Reactive Oxygen Species , Female , Liposomes/chemistry , Liposomes/pharmacokinetics , Paclitaxel/pharmacology , Paclitaxel/chemistry , Paclitaxel/pharmacokinetics , Paclitaxel/administration & dosage , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Diosgenin/pharmacology , Diosgenin/chemistry , Diosgenin/pharmacokinetics , Diosgenin/administration & dosage , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Cell Line, Tumor , Polyethylene Glycols/chemistry , Animals , Reactive Oxygen Species/metabolism , Humans , Apoptosis/drug effects , Drug Synergism , Cell Proliferation/drug effects , Cell Movement/drug effects , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphatidylethanolamines
3.
BMC Plant Biol ; 24(1): 540, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872080

ABSTRACT

BACKGROUND: Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). RESULTS: The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. CONCLUSIONS: This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.


Subject(s)
Dioscorea , Diosgenin , Genome-Wide Association Study , Plant Tubers , Polymorphism, Single Nucleotide , Diosgenin/metabolism , Dioscorea/genetics , Dioscorea/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Genetic Variation
4.
Eur J Pharmacol ; 977: 176737, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38866362

ABSTRACT

The prevalence of nonalcoholic fatty liver disease (NAFLD) has been increasing worldwide in recent years, causing severe economic and social burdens. Therefore, the lack of currently approved drugs for anti-NAFLD has gradually gained attention. SIRT1, as a member of the sirtuins family, is now the most widely studied in the pathophysiology of many metabolic diseases, and has great potential for preventing and treating NAFLD. Natural products such as Diosgenin (DG) have the potential to be developed as clinical drugs for the treatment of NAFLD due to their excellent multi-target therapeutic effects. In this study, we found that DG can activate the SIRT1/PGC-1α pathway and upregulate the expression of its downstream targets nuclear respiratory factor 1 (NRF1), complex IV (COX IV), mitofusin-2 (MFN2), and PPARα (perox-isome proliferator-activated receptor α) in SD rats induced by high-fat diet (HFD) and HepG2 cells caused by free fatty acids (FFAs, sodium oleate: sodium palmitate = 2:1). Conversely, the levels of dynamin-related protein 1 (DRP1) and inflammatory factors, including NF-κB p65, IL6, and TNFα, were downregulated both in vitro and in vivo. This improved mitochondrial dysfunction, fatty acid oxidation (FAO), lipid accumulation, steatosis, oxidative stress, and hepatocyte inflammation. Subsequently, we applied SIRT1 inhibitor EX527 and SIRT1 agonist SRT1720 to confirm further the necessity of activating SIRT1 for DG to exert therapeutic effects on NAFLD. In summary, these results further demonstrate the potential therapeutic role of DG as a SIRT1 natural agonist for NAFLD. (Graphical Abstracts).


Subject(s)
Diosgenin , Liver , Non-alcoholic Fatty Liver Disease , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Sirtuin 1 , Animals , Humans , Male , Rats , Diet, High-Fat/adverse effects , Diosgenin/pharmacology , Diosgenin/therapeutic use , Diosgenin/analogs & derivatives , Hep G2 Cells , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Sirtuin 1/metabolism
5.
Nutr Cancer ; 76(7): 656-665, 2024.
Article in English | MEDLINE | ID: mdl-38733116

ABSTRACT

Cervical cancer (CC) is a common gynecological malignancy, and improving cisplatin sensitivity has become a hot topic in CC chemotherapy research. Polyphyllin I (PPI), a potent bioactive compound found in Rhizoma Paridis, known for its anticancer properties, remains underexplored in CC resistance. In this study, we evaluated PPI's impact on cisplatin-resistant CC cells and elucidated its underlying mechanism. Our findings reveal that PPI enhances the sensitivity of cisplatin-resistant CC cells to the drug, promotes apoptosis, and inhibits cell migration. Mechanistically, PPI was found to regulate p53 expression and its target genes, and suppressing p53 expression reverses PPI's sensitizing effect in drug-resistant CC cells. In conclusion, PPI showed promise in sensitizing cisplatin-resistant human CC cells to cisplatin treatment, suggesting that it could serve as a potent adjunct therapy for cervical cancer, particularly for cases that have developed resistance to cisplatin, thereby providing a promising basis for further clinical investigation into PPI for enhancing the efficacy of existing chemotherapy regimens in resistant cervical cancer.


Subject(s)
Apoptosis , Cisplatin , Diosgenin , Drug Resistance, Neoplasm , Uterine Cervical Neoplasms , Humans , Cisplatin/pharmacology , Female , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Drug Resistance, Neoplasm/drug effects , Apoptosis/drug effects , Cell Line, Tumor , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Drug Synergism
6.
Brain Res ; 1838: 148963, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38705555

ABSTRACT

BACKGROUND AND AIM: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with two core behavioral symptoms restricted/repetitive behavior and social-communication deficit. The unknown etiology of ASD makes it difficult to identify potential treatments. Valproic acid (VPA) is an anticonvulsant drug with teratogenic effects during pregnancy in humans and rodents. Prenatal exposure to VPA induces autism-like behavior in both humans and rodents. This study aimed to investigate the protective effects of Diosgenin in prenatal Valproic acid-induced autism in rats. METHOD: pregnant Wister female rats were given a single intraperitoneal injection of VPA (600 mg/kg, i.p.) on gestational day 12.5. The male offspring were given oral Dios (40 mg/kg, p.o.) or Carboxymethyl cellulose (5 mg/kg, p.o.) for 30 days starting from postnatal day 23. On postnatal day 52, behavioral tests were done. Additionally, biochemical assessments for oxidative stress markers were carried out on postnatal day 60. Further, histological evaluations were performed on the prefrontal tissue by Nissl staining and Immunohistofluorescence. RESULTS: The VPA-exposed rats showed increased anxiety-like behavior in the elevated plus maze (EPM). They also demonstrated repetitive and grooming behaviors in the marble burying test (MBT) and self-grooming test. Social interaction was reduced, and they had difficulty detecting the novel object in the novel object recognition (NOR) test. Also, VPA-treated rats have shown higher levels of oxidative stress malondialdehyde (MDA) and lower GPX, TAC, and superoxide dismutase (SOD) levels. Furthermore, the number of neurons decreased and the ERK signaling pathway upregulated in the prefrontal cortex (PFC). On the other hand, treatment with Dios restored the behavioral consequences, lowered oxidative stress, and death of neurons, and rescued the overly activated ERK1/2 signaling in the prefrontal cortex. CONCLUSION: Chronic treatment with Dios restored the behavioral, biochemical, and histological abnormalities caused by prenatal VPA exposure.


Subject(s)
Autistic Disorder , Diosgenin , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Prenatal Exposure Delayed Effects , Rats, Wistar , Valproic Acid , Animals , Valproic Acid/pharmacology , Female , Pregnancy , Neuroprotective Agents/pharmacology , Rats , Oxidative Stress/drug effects , Male , Diosgenin/pharmacology , Autistic Disorder/chemically induced , Autistic Disorder/metabolism , Autistic Disorder/drug therapy , Prenatal Exposure Delayed Effects/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Behavior, Animal/drug effects , Anticonvulsants/pharmacology , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Anxiety/drug therapy , Anxiety/chemically induced , Social Behavior
7.
Ecotoxicol Environ Saf ; 279: 116483, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38788565

ABSTRACT

Oxidative stress and inflammation play a fundamental role in the beginning and advancement of silicosis. Hence, questing active phytocompounds (APCs) with anti-oxidative and anti-inflammatory properties such as diosgenin (DG) and emodin (ED) can be a therapeutic intervention targeting silica-induced pulmonary inflammation and fibrosis. Hydrophobicity and low bioavailability are the barriers that restrict the therapeutic efficacy of DG and ED against pulmonary defects. Encapsulating these APCs in polymeric nanoparticles can overcome this limitation. The present study has thus explored the anti-inflammatory and anti-fibrotic effects of polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) individually loaded with DG (DGn) or ED (EDn) and in combine DG+ED [(DG+ED)n] in respirable silica dust (RSD)-induced pulmonary fibrosis silicosis rat model. Our study found that individual and combined NPs revealed physiochemical characteristics appropriate for IV administration with sustained-drug release purposes. Physiological evaluations of RSD-induced silicosis rats suggested that no treatment could improve the body weight. Still, they reduced the lung coefficient by maintaining lung moisture. Only (DG+ED)n significantly cleared free lung silica. All interventions were found to attribute the increased per cent cell viability in BALF, reduce cytotoxicity via minimizing LDH levels, and balance the oxidant-antioxidant status in silicotic rats. The expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, MCP-1, and TGF-ß1) were efficiently down-regulated with NPs interventions compared to pure (DG+ED) treatment. All drug treatments significantly declined, the 8-HdG and HYP productions indicate that RSD-induced oxidative DNA damage and collagen deposition were successfully repaired. Moreover, histopathological investigations proposed that individual or combined drugs NPs interventions could decrease the fibrosis and alveolitis grades in RSD-induced silicosis rats. However, (DG+ED)n intervention significantly inhibited pulmonary fibrosis and alveolitis compared to pure (DG+ED) treatment. In conclusion, the RSD can induce oxidative stress and inflammation in rats, producing reactive oxygen species (ROS)-mediated cytotoxicity to pulmonary cells and leading to silicosis development. The IV administration of combined NP suppressed lung inflammation and collagen formation by maintaining oxidant-antioxidant status and effectively interrupting the fibrosis-silicosis progression. These results may be attributed to the improved bioavailability of DG and ED through their combined nano-encapsulation-mediated targeted drug delivery.


Subject(s)
Diosgenin , Emodin , Nanoparticles , Pulmonary Fibrosis , Silicon Dioxide , Silicosis , Animals , Diosgenin/pharmacology , Silicosis/drug therapy , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , Rats , Emodin/pharmacology , Male , Dust , Oxidative Stress/drug effects , Anti-Inflammatory Agents , Rats, Wistar , Lung/drug effects , Lung/pathology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
8.
Phytomedicine ; 129: 155690, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761523

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been administered as the first-line therapy for patients with EGFR mutations in LUAD, but it is almost inevitable that resistance to EGFR-TKIs therapy eventually arises. Polyphyllin I (PPI), derived from Paris polyphylla rhizomes, has been shown to have potent anti-cancer properties in a range of human cancer types including LUAD. However, the role of PPI in gefitinib resistance and the underlying mechanism remain elusive. PURPOSE: To evaluate the antitumor impacts of PPI on gefitinib resistance cells and investigate its molecular mechanism. METHODS: CCK-8, wound healing, transwell assay, and xenograft model were performed to determine the anti-cancer effects of PPI as well as its ability to overcome gefitinib resistance. Immunoblotting, co-immunoprecipitation, phospho-RTK antibody array, qRT-PCR, and immunofluorescence were utilized to explore the mechanism by which PPI overrides gefitinib resistance. RESULTS: PPI inhibited cell survival, growth, and migration/invasion in both gefitinib-sensitive (PC9) and -resistant (PC9/GR) LUAD cells (IC50 at 2.0 µM). Significantly, treatment with PPI at 1.0 µM resensitized the resistant cells to gefitinib. Moreover, cell-derived xenograft experiments revealed that the combination of PPI and gefitinib overcame gefitinib resistance. The phospho-RTK array and immunoblotting analyses showed PPI significant inhibition of the VEGFR2/p38 pathway. In addition, molecular docking suggested the interaction between PPI and HIF-1α. Mechanistically, PPI reduced the protein expression of HIF-1α in both normoxia and hypoxia conditions by triggering HIF-1α degradation. Moreover, HIF-1α protein but not mRNA level was elevated in gefitinib-resistant LUAD. We further demonstrated that PPI considerably facilitated the binding of HIF-1α to VHL. CONCLUSIONS: We present a novel discovery demonstrating that PPI effectively counteracts gefitinib resistance in LUAD by modulating the VEGF/VEGFR2/p38 pathway. Mechanistic investigations unveil that PPI facilitates the formation of the HIF-1α /VHL complex, leading to the degradation of HIF-1α and subsequent inhibition of angiogenesis. These findings uncover a previously unidentified mechanism governing HIF-1α expression in reaction to PPI, providing a promising method for therapeutic interventions targeting EGFR-TKI resistance in LUAD.


Subject(s)
Adenocarcinoma of Lung , Diosgenin , Drug Resistance, Neoplasm , Gefitinib , Hypoxia-Inducible Factor 1, alpha Subunit , Lung Neoplasms , Mice, Nude , Vascular Endothelial Growth Factor A , Vascular Endothelial Growth Factor Receptor-2 , Gefitinib/pharmacology , Humans , Drug Resistance, Neoplasm/drug effects , Vascular Endothelial Growth Factor Receptor-2/metabolism , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Lung Neoplasms/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Cell Line, Tumor , Adenocarcinoma of Lung/drug therapy , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Mice , Mice, Inbred BALB C , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Female
9.
Mol Med ; 30(1): 59, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745316

ABSTRACT

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Subject(s)
Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
10.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article in English | MEDLINE | ID: mdl-38725854

ABSTRACT

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Subject(s)
Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
11.
Immun Inflamm Dis ; 12(5): e1229, 2024 May.
Article in English | MEDLINE | ID: mdl-38775678

ABSTRACT

BACKGROUND: Dioscin has many pharmacological effects; however, its role in sepsis-induced cardiomyopathy (SIC) is unknown. Accordingly, we concentrate on elucidating the mechanism of Dioscin in SIC rat model. METHODS: The SIC rat and H9c2 cell models were established by lipopolysaccharide (LPS) induction. The heart rate (HR), left ventricle ejection fraction (LVEF), mean arterial blood pressure (MAP), and heart weight index (HWI) of rats were evaluated. The myocardial tissue was observed by hematoxylin and eosin staining. 4-Hydroxy-2-nonenal (4-HNE) level in myocardial tissue was detected by immunohistochemistry. Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) activities in serum samples of rats and H9c2 cells were determined by colorimetric assay. Bax, B-cell lymphoma-2 (Bcl-2), toll-like receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), phosphorylated-p65 (p-p65), and p65 levels in myocardial tissues of rats and treated H9c2 cells were measured by quantitative real-time PCR and Western blot. Viability and reactive oxygen species (ROS) accumulation of treated H9c2 cells were assayed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and dihydroethidium staining assays. RESULTS: Dioscin decreased HR and HWI, increased LVEF and MAP, alleviated the myocardial tissue damage, and reduced 4-HNE level in SIC rats. Dioscin reversed LPS-induced reduction on SOD, CAT, GSH, and Bcl-2 levels, and increment on Bax and TLR4 levels in rats and H9c2 cells. Overexpressed TLR4 attenuated the effects of Dioscin on promoting viability, as well as dwindling TLR4, ROS and MyD88 levels, and p-p65/p65 value in LPS-induced H9c2 cells. CONCLUSION: Protective effects of Dioscin against LPS-induced SIC are achieved via regulation of TLR4/MyD88/p65 signal pathway.


Subject(s)
Cardiomyopathies , Diosgenin , Myeloid Differentiation Factor 88 , Sepsis , Signal Transduction , Toll-Like Receptor 4 , Animals , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Toll-Like Receptor 4/metabolism , Rats , Myeloid Differentiation Factor 88/metabolism , Sepsis/complications , Sepsis/drug therapy , Sepsis/metabolism , Signal Transduction/drug effects , Male , Cardiomyopathies/drug therapy , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/prevention & control , Cell Line , Rats, Sprague-Dawley , Transcription Factor RelA/metabolism , Oxidative Stress/drug effects , Lipopolysaccharides , Disease Models, Animal , Apoptosis/drug effects
12.
Biomolecules ; 14(4)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38672439

ABSTRACT

Recent evidence suggests that ferroptosis, an iron-facilitated cell death with excessive lipid peroxidation, is a critical mechanism underlying doxorubicin (DOX)-induced cardiotoxicity (DIC). Although dioscin has been reported to improve acute DIC, direct evidence is lacking to clarify the role of dioscin in chronic DIC and its potential mechanism in cardiac ferroptosis. In this study, we used chronic DIC rat models and H9c2 cells to investigate the potential of dioscin to mitigate DIC by inhibiting ferroptosis. Our results suggest that dioscin significantly improves chronic DIC-induced cardiac dysfunction. Meanwhile, it significantly inhibited DOX-induced ferroptosis by reducing Fe2+ and lipid peroxidation accumulation, maintaining mitochondrial integrity, increasing glutathione peroxidase 4 (GPX4) expression, and decreasing acyl-CoA synthetase long-chain family 4 (ACSL4) expression. Through transcriptomic analysis and subsequent validation, we found that the anti-ferroptotic effects of dioscin are achieved by regulating the nuclear factor-erythroid 2-related factor 2 (Nrf2)/GPX4 axis and Nrf2 downstream iron metabolism genes. Dioscin further downregulates nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) and upregulates expression of frataxin (FXN) and ATP-binding cassette B8 (ABCB8) to limit mitochondrial Fe2+ and lipid peroxide accumulation. However, Nrf2 inhibition diminishes the anti-ferroptotic effects of dioscin, leading to decreased GPX4 expression and increased lipid peroxidation. This study is a compelling demonstration that dioscin can effectively reduce DIC by inhibiting ferroptosis, which is dependent on the Nrf2/GPX4 pathway modulation.


Subject(s)
Cardiotoxicity , Diosgenin , Ferroptosis , NF-E2-Related Factor 2 , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Rats , Cardiotoxicity/metabolism , Cardiotoxicity/drug therapy , Cardiotoxicity/prevention & control , Cardiotoxicity/etiology , Cell Line , Coenzyme A Ligases/metabolism , Coenzyme A Ligases/genetics , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Doxorubicin/adverse effects , Doxorubicin/pharmacology , Ferroptosis/drug effects , Iron/metabolism , Lipid Peroxidation/drug effects , NF-E2-Related Factor 2/drug effects , NF-E2-Related Factor 2/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/drug effects , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Rats, Sprague-Dawley
13.
J Nat Med ; 78(3): 618-632, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38668832

ABSTRACT

Acute myeloid leukemia (AML) is a malignant disease that is difficult to completely cure. Polyphyllin I (PPI), a steroidal saponin isolated from Paris polyphylla, has exhibited multiple biological activities. Here, we discovered the superior cytotoxicity of PPI on AML cells MOLM-13 with an IC50 values of 0.44 ± 0.09 µM. Mechanically, PPI could cause ferroptosis via the accumulation of intracellular iron concentration and triggering lipid peroxidation. Interestingly, PPI could induced stronger ferroptosis in a short time of about 6 h compared to erastin. Furthermore, we demonstrate that PPI-induced rapid ferroptosis is due to the simultaneous targeting PI3K/SREBP-1/SCD1 axis and triggering lipid peroxidation, and PI3K inhibitor Alpelisib can enhance the activity of erastin-induced ferroptosis. Molecular docking simulations and kinase inhibition assays demonstrated that PPI is a PI3K inhibitor. In addition, PPI significantly inhibited tumor progression and prolonged mouse survival at 4 mg/kg with well tolerance. In summary, our study highlights the therapeutic potential of PPI for AML and shows its unique dual mechanism.


Subject(s)
Diosgenin , Ferroptosis , Leukemia, Myeloid, Acute , Lipid Peroxidation , Phosphatidylinositol 3-Kinases , Ferroptosis/drug effects , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Animals , Humans , Lipid Peroxidation/drug effects , Mice , Phosphatidylinositol 3-Kinases/metabolism , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Diosgenin/therapeutic use , Cell Line, Tumor , Molecular Docking Simulation , Saponins/pharmacology , Saponins/chemistry
14.
Biochem Biophys Res Commun ; 712-713: 149941, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38643718

ABSTRACT

While diosgenin has been demonstrated effective in various cardiovascular diseases, its specific impact on treating heart attacks remains unclear. Our research revealed that diosgenin significantly improved cardiac function in a myocardial infarction (MI) mouse model, reducing cardiac fibrosis and cell apoptosis while promoting angiogenesis. Mechanistically, diosgenin upregulated the Hand2 expression, promoting the proliferation and migration of endothelial cells under hypoxic conditions. Acting as a transcription factor, HAND2 activated the angiogenesis-related gene Aggf1. Conversely, silencing Hand2 inhibited the diosgenin-induced migration of hypoxic endothelial cells and angiogenesis. In summary, these findings provide new insights into the protective role of diosgenin in MI, validating its effect on angiogenic activity and providing a theoretical basis for clinical treatment strategies.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Diosgenin , Mice, Inbred C57BL , Myocardial Infarction , Neovascularization, Physiologic , Animals , Diosgenin/pharmacology , Diosgenin/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Neovascularization, Physiologic/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Male , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Apoptosis/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Angiogenesis
15.
Plant Cell Rep ; 43(4): 95, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472393

ABSTRACT

KEY MESSAGE: Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin. Endophytes play crucial roles in shaping active metabolites within plants, significantly influencing both the quality and yield of host plants. Dioscorea nipponica Makino accumulates abundant steroidal saponins, which can be hydrolyzed to produce diosgenin. However, our understanding of the associated endophytes and their contributions to plant growth and diosgenin production is limited. The present study aimed to assess the PGP ability and potential of diosgenin biotransformation by endophytes isolates associated with D. nipponica for the efficient improvement of plant growth and development of a clean and effective approach for producing the valuable drug diosgenin. Eighteen bacterial endophytes were classified into six genera through sequencing and phylogenetic analysis of the 16S rDNA gene. Similarly, 12 fungal endophytes were categorized into 5 genera based on sequencing and phylogenetic analysis of the ITS rDNA gene. Pure culture experiments revealed that 30 isolated endophytic strains exhibited one or more PGP traits, such as nitrogen fixation, phosphate solubilization, siderophore synthesis, and IAA production. One strain of endophytic bacteria, P. peoriae SYbr421, effectively directly biotransformed the saponin components in D. nipponica. Moreover, a high yield of diosgenin (3.50%) was obtained at an inoculum size of 4% after 6 days of fermentation. Thus, SYbr421 could be used for a cleaner and more eco-friendly diosgenin production process. In addition, based on the assessment of growth-promoting isolates and seed germination results, the strains SYbr421, SYfr1321, and SYfl221 were selected for greenhouse experiments. The results revealed that the inoculation of these promising isolates significantly increased the plant height and fresh weight of the leaves and roots compared to the control plants. These findings underscore the importance of preparing PGP bioinoculants from selected isolates as an additional option for sustainable diosgenin production.


Subject(s)
Dioscorea , Diosgenin , Endophytes/genetics , Endophytes/metabolism , Dioscorea/genetics , Dioscorea/microbiology , Diosgenin/metabolism , Phylogeny , Plant Roots , DNA, Ribosomal/metabolism
16.
Steroids ; 205: 109393, 2024 May.
Article in English | MEDLINE | ID: mdl-38458369

ABSTRACT

Diosgenin can inhibit the proliferation and cause apoptosis of various tumor cells, and its inhibitory effect on oral squamous cell carcinoma (OSCC) and its mechanism are still unclear. In this study, we predicted the targets of diosgenin for the treatment of OSCC through the database, then performed bioinformatics analysis of the targets, and further verified the effect of diosgenin on the activity of OSCC cell line HSC-3, the transcriptional profile of the targets and the molecular docking of the targets with diosgenin. The results revealed that there were 146 potential targets of diosgenin for OSCC treatment, which involved signaling pathways such as Ras, TNF, PI3K-AKT, HIF, NF-κB, and could regulate cellular activity through apoptosis, autophagy, proliferation and differentiation, inflammatory response, DNA repair, etc. Diosgenin significantly inhibited HSC-3 cell activity. The genes such as AKT1, MET1, SRC1, APP1, CCND1, MYC, PTGS2, AR, NFKB1, BIRC2, MDM2, BCL2L1, MMP2, may be important targets of its action, not only their expression was regulated by diosgenin but also their proteins had a high binding energy with diosgenin. These results suggest that diosgenin may have a therapeutic effect on OSCC through AKT1, MMP2 and other targets and multiple signaling pathways, which is of potential clinical value.


Subject(s)
Carcinoma, Squamous Cell , Diosgenin , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Squamous Cell Carcinoma of Head and Neck , Matrix Metalloproteinase 2/pharmacology , Diosgenin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Mouth Neoplasms/drug therapy , Mouth Neoplasms/genetics , Mouth Neoplasms/metabolism , Apoptosis , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/metabolism
17.
Int J Biol Macromol ; 266(Pt 1): 131108, 2024 May.
Article in English | MEDLINE | ID: mdl-38531523

ABSTRACT

Protein aggregation is a multifaceted phenomenon prevalent in the progression of neurodegenerative diseases, yielding aggregates of diverse sizes. Recently, increased attention has been directed towards early protein aggregates due to their pronounced toxicity, largely stemming from inflammation mediated by reactive oxygen species (ROS). This study advocates for a therapeutic approach focusing on inflammation control rather than mere ROS inhibition in the context of neurodegenerative disorders. Here, we introduced Camellia sinensis cellulose nanoonion (CS-CNO) as an innovative, biocompatible nanocarrier for encapsulating the phytosteroid diosgenin (DGN@CS-CNO). The resulting nano-assembly, manifesting as spherical entities with dimensions averaging ~180-220 nm, exhibits a remarkable capacity for the gradual and sustained release of approximately 39-44 % of DGN over a 60-hour time frame. DGN@CS-CNO displays a striking ability to inhibit or disassemble various phases of hen egg white lysozyme (HEWL) protein aggregates, including the early (HEWLEA) and late (HEWLLA) stages. In vitro experiments employing HEK293 cells underscore the potential of DGN@CS-CNO in mitigating cell death provoked by protein aggregation. This effect is achieved by ameliorating ROS-mediated inflammation and countering mitochondrial dysfunction, as evidenced by alterations in TNFα, TLR4, and MT-CO1 protein expression. Western blot analyses reveal that the gradual and sustained release of DGN from DGN@CS-CNO induces autophagy, a pivotal process in dismantling intracellular amyloid deposits. In summary, this study not only illuminates a path forward but also presents a compelling case for the utilization of phytosteroid as a formidable strategy against neuroinflammation incited by protein aggregation.


Subject(s)
Autophagy , Cellulose , Diosgenin , Mitochondria , Protein Aggregates , Humans , Autophagy/drug effects , Cellulose/chemistry , Cellulose/pharmacology , Cellulose/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/chemistry , Mitochondria/drug effects , Mitochondria/metabolism , Protein Aggregates/drug effects , Reactive Oxygen Species/metabolism , HEK293 Cells , Cell Death/drug effects , Muramidase/metabolism , Muramidase/chemistry , Animals , Nanoparticles/chemistry , Drug Carriers/chemistry , Up-Regulation/drug effects
18.
Toxicon ; 242: 107692, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38513828

ABSTRACT

The aim was to report cases and risk factors for hepatogenous photosensitization in lambs kept on Brachiaria spp. pastures and supplemented with levels of extruded urea (EU). The herd consisted of 69 Texel crossbred lambs with known parentage (fathers and mothers adapted to the consumption of forage of the genus Brachiaria), randomly divided into 5 groups and distributed in individual paddocks for each group. The animals were supplemented with increasing levels of EU (Amireia® 200S): 0, 6, 12, 18, and 24 g of EU per 100 kg-1 of body weight (BW). The concentration of protodioscin was estimated in the mixed pastures of Brachiaria spp. (cv. Marandu and cv. Basilisk), structural components (leaf, stem, and dead material), samples of each cultivar, and in the months of December (2018), February, and April (2019). The animals were examined daily, and when behavioral changes were identified, they underwent clinical examinations and anamnesis. Weighing was performed every 14 days, followed by necropsy and serum biochemical analysis, including gamma-glutamyltransferase (GGT). The highest concentrations of protodioscin (p < 0.0001) were found in the pastures used by animals supplemented without extruded urea (7.07 ± 0.56), in the Basilisk cultivar (11.35 ± 0.06), in the leaf blade components (2.08 ± 0.05), and thatch (2.20 ± 0.00), and in the month of April (7.34 ± 0.29) (the month with the lowest rainfall), respectively. Fourteen (20.29%) cases of photosensitization were observed in lambs, of which six recovered, and eight died. Serum GGT levels ranged from 42.2 to 225 IU/L; however, in animals that died, values ranged from 209.4 to 225 IU/L. The use of levels 12 g and 18 g per 100 kg-1 of body weight of extruded urea may contribute to the lower occurrence of photosensitization, as the animals selected pastures with lower protodioscin content, presenting a smaller number of cases.


Subject(s)
Brachiaria , Diosgenin , Urea , Animals , Male , Animal Feed/analysis , Brazil , Dietary Supplements , Diosgenin/analogs & derivatives , gamma-Glutamyltransferase/blood , Photosensitivity Disorders/veterinary , Saponins , Sheep , Sheep Diseases , Urea/blood , Female
19.
Phytomedicine ; 128: 155417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518642

ABSTRACT

BACKGROUND: The role of the glioblastoma (GBM) microenvironment is pivotal in the development of gliomas. Discovering drugs that can traverse the blood-brain barrier and modulate the tumor microenvironment is crucial for the treatment of GBM. Dioscin, a steroidal saponin derived from various kinds of plants and herbs known to penetrate the blood-brain barrier, has shown its powerful anti-tumor activity. However, little is known about its effects on GBM microenvironment. METHODS: Bioinformatics analysis was conducted to assess the link between GBM patients and their prognosis. Multiple techniques, including RNA sequencing, immunofluorescence staining, Western blot analysis, RNA-immunoprecipitation (RIP) assays, and Chromatin immunoprecipitation (CHIP) analysis were employed to elucidate the mechanism through which Dioscin modulates the immune microenvironment. RESULTS: Dioscin significantly impaired the polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages in vitro and in vivo. A strong correlation between high expression of RBM47 in GBM and a detrimental prognosis for patients was demonstrated. RNA-sequencing analysis revealed an association between RBM47 and the immune response. The inhibition of RBM47 significantly impaired the recruitment and polarization of macrophages into the M2 phenotype and enhanced the phagocytic ability of macrophages. Moreover, RBM47 could stabilize the mRNA of inflammatory genes and enhance the expression of these genes by activating the NF-κB pathway. In addition, NF-κB acts as a transcription factor that enhances the transcriptional activity of RBM47. Notably, we found that Dioscin could significantly inhibit the activation of NF-κB and then downregulate the expression of RBM47 and inflammatory genes protein. CONCLUSION: Our study reveals that the positive feedback loop between RBM47 and NF-κB could promote immunosuppressive microenvironment in GBM. Dioscin effectively inhibits M2 polarization in GBM by disrupting the positive feedback loop between RBM47 and NF-κB, indicating its potential therapeutic effects in GBM treatment.


Subject(s)
Diosgenin , Glioma , NF-kappa B , Animals , Humans , Mice , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Diosgenin/pharmacology , Diosgenin/analogs & derivatives , Feedback, Physiological/drug effects , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioma/drug therapy , Glioma/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , RNA-Binding Proteins/metabolism , Tumor Microenvironment/drug effects
20.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504531

ABSTRACT

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Subject(s)
Bone Neoplasms , Diosgenin/analogs & derivatives , Osteosarcoma , Humans , Wnt Signaling Pathway , beta Catenin/genetics , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Ligands , Cell Line, Tumor , Cell Proliferation , Osteosarcoma/drug therapy , Osteosarcoma/genetics , Osteosarcoma/metabolism , Cell Cycle , Apoptosis , Tumor Necrosis Factor-alpha/pharmacology , Bone Neoplasms/drug therapy , Bone Neoplasms/genetics , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...