Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.524
Filter
1.
Int J Biol Macromol ; 272(Pt 2): 132932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38862319

ABSTRACT

In this study, a green and efficient enrichment method for the four majors active diterpenoid components: pimelotide C, pimelotide A, simplexin, and 6α,7α-epoxy-5ß-hydroxy-12-deoxyphorbol-13-decanoate in the buds of Wikstroemia chamaedaphne was established using macroporous resin chromatography. The adsorption and desorption rates of seven macroporous resins were compared using static tests. The D101 macroporous resin exhibited the best performance. Static and dynamic adsorption tests were performed to determine the enrichment and purification of important bioactive diterpenoids in the buds of W. chamaedaphne. Diterpenoid extracts were obtained by using D101 macroporous resin from the crude extracts of W. chamaedaphne. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated that most of the diterpenoids were enriched in diterpenoid extracts. These results confirmed that diterpenoids in the buds of W. chamaedaphne could be enriched using macroporous resin technology, and the enriched diterpenoid extracts showed more efficient activation of the latent human immunodeficiency virus. This study provides a novel strategy for discovering efficient and low-toxicity latency-reversing agents and a potential basis for the comprehensive development and clinical application of the buds of W. chamaedaphne.


Subject(s)
Diterpenes , Wikstroemia , Diterpenes/chemistry , Diterpenes/isolation & purification , Wikstroemia/chemistry , Humans , Tandem Mass Spectrometry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Chromatography, Liquid/methods , Porosity , Green Chemistry Technology , HIV-1/drug effects , Adsorption , HIV/drug effects
2.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893370

ABSTRACT

Kallopterolides A-I (1-9), a family of nine diterpenoids possessing either a cleaved pseudopterane or a severed cembrane skeleton, along with several known compounds were isolated from the Caribbean Sea plume Antillogorgia kallos. The structures and relative configurations of 1-9 were characterized by analysis of HR-MS, IR, UV, and NMR spectroscopic data in addition to computational methods and side-by-side comparisons with published NMR data of related congeners. An investigation was conducted as to the potential of the kallopterolides as plausible in vitro anti-inflammatory, antiprotozoal, and antituberculosis agents.


Subject(s)
Anthozoa , Diterpenes , Diterpenes/chemistry , Diterpenes/isolation & purification , Diterpenes/pharmacology , Animals , Anthozoa/chemistry , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/isolation & purification , Caribbean Region , Molecular Structure , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Magnetic Resonance Spectroscopy , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Antitubercular Agents/isolation & purification
3.
Sci Rep ; 14(1): 13967, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886585

ABSTRACT

Twelve polyoxygenated cyclohex(a/e)ne diterpene esters, named albiflorenes A-L (1-12), were isolated from the whole plants of Kaempferia albiflora, known as "Prao Mang Mum." Their structures and relative stereochemistry were determined by extensive spectroscopic analysis. Furthermore, the comparison of experimental electronic circular dichroism (ECD) curves with the curves predicted by TDDFT was used to determine the absolute configurations. Albiflorenes contain polyoxygenated cyclohexane (or cyclohexene) derivatives, which are linked to either isopimarane or abietane diterpene acid units. The discovery marks the first occurrence of a conjugate between polyoxygenated cyclohexane (or cyclohexene) rings and diterpenoids. Among the isolates, albiflorene C specifically exhibited antibacterial activity against Bacillus cereus with MIC and MBC values of 3.13 and 6.25 µg/mL, respectively.


Subject(s)
Anti-Bacterial Agents , Diterpenes , Esters , Microbial Sensitivity Tests , Zingiberaceae , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Esters/chemistry , Esters/pharmacology , Zingiberaceae/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Bacillus cereus/drug effects , Molecular Structure , Circular Dichroism
4.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928398

ABSTRACT

Five new diterpenes including four diterpenes with 1,2,3,4,4a,5,6,8a-octalin skeleton talaroacids A-D (1-4) and an isopimarane diterpenoid talaromarane A (5) were isolated from the mangrove endophytic fungus Talaromyces sp. JNQQJ-4. Their structures and absolute configurations were determined by analysis of high-resolution electrospray ionization mass spectroscopy (HRESIMS), 1D/2D Nuclear Magnetic Resonance (NMR) spectra, single-crystal X-ray diffraction, quantum chemical calculation, and electronic circular dichroism (ECD). Talaromarane A (5) contains a rare 2-oxabicyclo [3.2.1] octan moiety in isopimarane diterpenoids. In bioassays, compounds 1, 2, 4, and 5 displayed significant anti-inflammatory activities with the IC50 value from 4.59 to 21.60 µM.


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Talaromyces , Talaromyces/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Animals , Mice , Molecular Structure , RAW 264.7 Cells , Magnetic Resonance Spectroscopy
5.
Molecules ; 29(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930799

ABSTRACT

Four new diterpenoids, isodosins A-D (1-4), together with nine known compounds (5-13) were isolated and identified from the aerial parts of Isodon serra (Maxim.) Hara. The structures of the new diterpenoids were elucidated based on the analysis of HR-ESI-MS data, 1D/2D-NMR-spectroscopic data, and electronic circular dichroism (ECD) calculations. Cytotoxicities of compounds 2, 3, 5, 6, and 9 against the HepG2 and H1975 cell lines were evaluated with the MTT assay. As a result, compounds 2, 3, and 6 revealed higher levels of cytotoxicity against HepG2 cells than against H1975 cells. Moreover, compund 6 demonstrated the most efficacy in inhibiting the proliferation of HepG2 cells, with an IC50 value of 41.13 ± 3.49 µM. This effect was achieved by inducing apoptosis in a dose-dependent manner. Furthermore, the relationships between the structures and activities of these compounds are briefly discussed.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis , Diterpenes , Isodon , Plant Components, Aerial , Humans , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Isodon/chemistry , Plant Components, Aerial/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis/drug effects , Hep G2 Cells , Molecular Structure , Cell Line, Tumor , Cell Proliferation/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Structure-Activity Relationship , Cell Survival/drug effects , Drug Screening Assays, Antitumor
6.
J Nat Prod ; 87(6): 1574-1581, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38789921

ABSTRACT

Natural products represent a rich source of bioactive compounds, covering a large chemical space. Even if challenging, this diversity can be extended by applying chemical modifications. However, these studies generally require multigram amounts of isolated natural products and face frequent testing failures. To overcome this limitation, we propose a rapid and efficient approach that uses molecular networking (MN) to visualize the new chemical diversity generated by simple chemical modifications of natural extracts. Moreover, the strategy deployed enables the most appropriate reagents to be defined quickly upstream of a reaction on a pure compound, in order to maximize chemical diversity. This methodology was applied to the latex extract of Euphorbia dendroides to follow the reactivity toward a series of Brønsted and Lewis acids of three class of diterpene esters identified in this species: jatrophane, terracinolide, and phorbol. Through the molecular networking interpretation, with the aim to illustrate our approach, BF3·OEt2 was selected for chemical modification on isolated jatrophane esters. Three rearranged compounds (3-5) were obtained, showing that the most appropriate reagents can be selected by MN interpretation.


Subject(s)
Biological Products , Diterpenes , Esters , Euphorbia , Plant Extracts , Euphorbia/chemistry , Diterpenes/chemistry , Diterpenes/isolation & purification , Biological Products/chemistry , Plant Extracts/chemistry , Esters/chemistry , Molecular Structure
7.
Exp Parasitol ; 262: 108771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723847

ABSTRACT

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Subject(s)
Diterpenes , Fabaceae , Plant Extracts , Toxoplasma , HeLa Cells , Humans , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Fabaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation
8.
Ultrason Sonochem ; 107: 106906, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776867

ABSTRACT

The interest in natural colorants derived from sustainable processes has prompted research into obtaining bixin from defatted annatto (Bixa orellana L.) seeds. Bixin is a compound that imparts yellow-orange-red coloration, known for its high biodegradability, low toxicity, and wide industrial applicability. Meanwhile, high-intensity ultrasound (HIUS) technology has emerged as a promising method for extracting natural colorants, offering higher yields through shorter processes and minimizing thermal degradation. Although some studies have demonstrated the efficiency of HIUS technology in bixin extraction, research on the effects of acoustic cavitation on the properties of the colorant remains limited. Therefore, this study aimed to investigate the influence of HIUS-specific energy levels (0.02, 0.04, 0.12, and 0.20 kJ/g) on the chemical, physical, and morphological characteristics of annatto extracts containing bixin and geranylgeraniol. Single-step extractions of bixin using ethanol as a solvent were evaluated at various acoustic powers (4.6, 8.5, 14.5, and 20 W) and extraction times (0.5, 1, 3, and 5 min) to determine their impact on the yield of natural colorant extraction. Increasing the acoustic power from 4.6 to 20 W and extending the extraction time from 0.5 to 5 min resulted in higher yields of natural colorant, likely due to the effects of acoustic cavitation and increased heat under more intense conditions. However, elevated levels of mechanical and thermal energy did not affect the chemical properties of the colorant, as indicated by UV-Vis and FTIR spectra. Conversely, higher specific energies yielded colorants with a more intense red hue, consistent with increased bixin content, and altered the microstructure and physical state, as observed in X-ray diffractograms. Nevertheless, these alterations did not impact the solubility of the colorant. Therefore, employing a cleaner extraction procedure aided by one-step ultrasound facilitated the recovery of natural colorants and contributed to the biorefining of annatto seeds, enabling the production of a rich geranylgeraniol colorant through a sustainable approach.


Subject(s)
Bixaceae , Carotenoids , Seeds , Ultrasonic Waves , Seeds/chemistry , Bixaceae/chemistry , Carotenoids/chemistry , Carotenoids/isolation & purification , Chemical Fractionation/methods , Diterpenes/chemistry , Diterpenes/isolation & purification , Color , Plant Extracts
9.
Fitoterapia ; 176: 105987, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703916

ABSTRACT

In Brazil, latex from Euphorbia umbellata (African milk tree) has been increasingly used in folk medicine to treat several types of cancer, including melanoma. The effect of lyophilized latex (LL), its hydroethanolic extract (E80), triterpene (F-TRI)- and diterpene (F-DIT)-enriched fractions, along with six isolated phorbol esters from LL and phorbol 12-myristate 13-acetate (PMA) on J774A.1, THP-1, SK-MEL-28, and B16-F10 cell line viability were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. The compounds were identified by 2D-NMR and HRESIMS. The effect of the LL, extract and fractions on cell viability was also assessed through a resazurin reduction assay. At 100 µg/ml, LL, and its fractions moderately inhibited J774A.1 (37.5-59.5%) and THP-1 (12.6-43.6%) metabolism. LL (IC50 70 µg/ml) and F-TRI (IC50 68 µg/ml) were barely more effective against B16-F10 cells, and only F-TRI exerted an inhibitory effect on SK-MEL-28 cells (IC50 66-75 µg/ml). The samples did not effectively inhibit THP-1 growth (IC50 69-87 µg/ml, assessed by MTT). B16-F10 was susceptible to PMA (IC50 53 µM) and two 12-phenylacetate esters (IC50 56-60 µM), while SK-MEL-28 growth was inhibited (IC50 58 µM) by one of these kinds of esters with an additional 4ß-deoxy structure. Synagrantol A (IC50 39 µM) was as effective as PMA (IC50 47 µM) in inhibiting J774A.1 growth in a dose-dependent manner. Furthermore, an in silico study with target receptors indicated a high interaction of the compounds with the PKC proteins. These results provide useful knowledge on the effect of tigliane-type diterpenes on tumor cell from the perspective of medicinal chemistry.


Subject(s)
Euphorbia , Latex , Phorbol Esters , Euphorbia/chemistry , Latex/chemistry , Phorbol Esters/pharmacology , Humans , Mice , Animals , Cell Line, Tumor , Molecular Structure , Plant Extracts/pharmacology , Plant Extracts/chemistry , Brazil , Monocytes/drug effects , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Survival/drug effects , Diterpenes/pharmacology , Diterpenes/isolation & purification , Terpenes/pharmacology , Terpenes/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Tetradecanoylphorbol Acetate , Melanoma/drug therapy
10.
Fitoterapia ; 176: 106000, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729248

ABSTRACT

Five new characteristic cembrane-type diterpenoids (olibacartiols A-E, 1-5) were acquired from the gum resin of Boswellia carterii. The structures of these diterpenoids were characterized by detailed spectroscopic analysis, and compounds 1-3 were unambiguously confirmed by single-crystal X-ray diffraction experiments. The anti-inflammatory activities of the isolated compounds were evaluated using LPS-induced BV2 cell model and compounds 2-5 showed moderate NO inhibitory effects with IC50 values of 8.84 ± 1.02, 9.82 ± 1.95, 9.75 ± 2.24, and 7.39 ± 1.24 µM, respectively.


Subject(s)
Anti-Inflammatory Agents , Boswellia , Diterpenes , Nitric Oxide , Phytochemicals , Resins, Plant , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Boswellia/chemistry , Nitric Oxide/metabolism , Molecular Structure , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Resins, Plant/chemistry , Mice , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cell Line , China , Plant Gums/chemistry , Plant Gums/pharmacology
11.
Fitoterapia ; 176: 106019, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744380

ABSTRACT

Diterpenoids occupy an important slot of the natural products diversity space with wide ranges of bioactivities and complex structures, providing potential applications for the development of therapeutics. In this study, we reported four new abietane-type diterpenoids viroxocin B-E (1-4), a new totarane-type diterpenoid viroxocin F (5), and a new sempervirane-type diterpenoid viroxocin G (6) along with four known compounds (7-10), isolated and identified from a widely used Traditional Chinese Medicine, Isodon serra (I. serra). Their structures were established by spectroscopic data analysis, experimental and calculated electronic circular dichroism (ECD) data, as well as X-ray diffraction analysis. Compounds 2, 5, 7, 8 and 10 exhibited promising anti-inflammatory activities in lipopolysaccharide (LPS)-induced RAW 267.4 cells, and their inhibition rates on NO production were more than 60% at 10 µM. Compound 7 showed cytotoxicity against human renal cell carcinoma 769P at 20 µM, the inhibition rate was 52.66%.


Subject(s)
Anti-Inflammatory Agents , Antineoplastic Agents, Phytogenic , Diterpenes , Isodon , Phytochemicals , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Humans , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Molecular Structure , Mice , Isodon/chemistry , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , China , RAW 264.7 Cells , Nitric Oxide/metabolism
12.
Fitoterapia ; 176: 106007, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38744384

ABSTRACT

Three p-terphenyl metabolites (1-3), three indole-diterpenoids (4-6), an herbicide sesquiterpene (7), a flavonoid (8), and five other small molecules containing nitrogen (9-13) were isolated from the medicinal insect (Periplaneta americana)-derived endophytic Aspergillus taichungensis SMU01. Their chemical structures were elucidated on the basis of spectroscopic data and quantum chemical computational methods. Biological activity of these isolates in the differentiation of mouse CD4+ T cell subsets was evaluated. Importantly, metabolites 2 targeting JAK-STAT signaling pathway could hold potential benefits in maintaining peripheral immune homeostasis and alleviating the progression of autoimmune diseases.


Subject(s)
Aspergillus , Immunosuppressive Agents , Periplaneta , Animals , Mice , Molecular Structure , Aspergillus/chemistry , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/isolation & purification , Periplaneta/microbiology , CD4-Positive T-Lymphocytes , Endophytes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Flavonoids/pharmacology , Flavonoids/isolation & purification , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Signal Transduction , Mice, Inbred C57BL , Female
13.
Fitoterapia ; 176: 106021, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762074

ABSTRACT

Acanthopanacis Cortex (A.-C) with a long history of more than1000 years, has been used to treat rheumatism effectively. Nineteen diterpenoids have been isolated from A.-C, including six new compounds (1-6). Among them, compounds 7, 9-11, 13, and 17 were discovered from A.-C for the first time. The structures of 1-6 were determined by analyzing their NMR data and comparing their experimental and calculated electronic circular dichroism spectra. Moreover, the single-crystal X-ray diffraction data of 1, 2, 8, and 14 were provided. The anti-inflammatory activity of 1-5 and 7-18 on neutrophil elastase, cyclooxygenase-1 (COX-1), and cyclooxygenase-2 (COX-2) has been studied in vitro, and the results showed that 15 had almost no inhibitory effects on COX-1 at 200 µM but a significant activity against COX-2 with an IC50 of 0.73 ± 0.006 µΜ. It indicated that compound 15 can provide valuable information for the design of selective COX-2 inhibitors.


Subject(s)
Anti-Inflammatory Agents , Cyclooxygenase 2 , Diterpenes , Leukocyte Elastase , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/chemistry , Cyclooxygenase 2/metabolism , Leukocyte Elastase/antagonists & inhibitors , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Cyclooxygenase 1/metabolism , Acanthaceae/chemistry , Humans , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2 Inhibitors/isolation & purification , China
14.
Fitoterapia ; 176: 106034, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795853

ABSTRACT

Ten diterpenoids including six unreported abietane-type diterpenoids Glecholmenes A-F (1-6) and an undescribed labdane-type diterpenoid Glecholmene G (9), together with three known diterpenoids (7,8,10), were firstly isolated from the aerial part of G. longituba. Their structures were established mainly by nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) methods. Electronic circular dichroism (ECD) calculations and X-ray crystallographic analyses were used for the determination of their absolute configurations. The anti-inflammatory activity of all compounds was evaluated using the classical LPS-induced NO release model in RAW264.7 cells. Compound 2 displayed significant anti-inflammatory activities with IC50 values of 29.08 ± 1.40 µM (Aminoguanidine hydrochloride as the positive control, IC50 = 21.84 ± 0.48 µM).


Subject(s)
Anti-Inflammatory Agents , Diterpenes , Phytochemicals , Plant Components, Aerial , Animals , Mice , Plant Components, Aerial/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , RAW 264.7 Cells , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Nitric Oxide/metabolism , Abietanes/pharmacology , Abietanes/isolation & purification , Lamiaceae/chemistry , China
15.
Bioorg Chem ; 148: 107478, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788366

ABSTRACT

The current standard treatment for ovarian cancer consists of surgery to reduce the size of the tumor, followed by treatment with chemotherapeutic drugs, which have major side effects. Therefore, finding a new natural product drug with fewer side effects is a strategy. Delphinium brunonianum (D. brunonianum) is a traditional Tibetan medicine, mainly from southern Tibet, China, whereas the chemical constituents in this plant remain elusive. The major metabolites in the dichloromethane fraction of D. brunonianum were analyzed and purified by HPLC and various column chromatography techniques. Nine diterpenoid alkaloids (1-9) and one amide alkaloid (10) were isolated from D. brunonianum, including three novel C19-type diterpenoid alkaloids (Brunonianines D-F) (1-3). Their structures were elucidated by 1D/2D NMR, HR-ESI-MS and single-crystal X-ray diffraction analyses. All compounds were evaluated for toxicity in four tumor cell lines. Most of the compounds exhibited potent inhibitory effects on Skov-3 cell lines, with IC50 values ranging from 2.57 to 8.05 µM. The western blotting experiment was used to further analyze the expression levels of molecules in the Bax/Bcl-2/Caspase-3 signaling pathway for compound 1. Molecular docking was performed to predict the binding modes of Brunonianine D with target proteins. In vivo experiments were also performed and evaluated in real time by monitoring the size of the Skov-3 tumor. Additionally, tumor H&E staining and the TUNEL assay used to evaluate anti-tumor effects.


Subject(s)
Alkaloids , Antineoplastic Agents, Phytogenic , Apoptosis , Cell Proliferation , Delphinium , Diterpenes , Drug Screening Assays, Antitumor , Ovarian Neoplasms , Female , Humans , Delphinium/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Structure-Activity Relationship , Animals , Molecular Structure , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Cell Proliferation/drug effects , Apoptosis/drug effects , Mice , Dose-Response Relationship, Drug , Cell Line, Tumor , Molecular Docking Simulation
16.
Molecules ; 29(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731397

ABSTRACT

A chemical investigation of the arils of Torreya grandis led to the isolation of seven abietane-type diterpenoids (compounds 1-7) including three previously undescribed compounds, one unreported natural product, and three known analogs. The structures of these compounds were determined by means of spectroscopy, single-crystal X-ray diffraction, and ECD spectra. An antibacterial activity assay showed that compounds 5 and 6 had significant inhibitory effects on methicillin-resistant Staphylococcus aureus, with MIC values of 100 µM. Moreover, compounds 1, 3, 4, and 7 exhibited anti-neuroinflammatory activity in LPS-stimulated BV-2 microglia cells, with the IC50 values ranging from 38.4 to 67.9 µM.


Subject(s)
Abietanes , Anti-Bacterial Agents , Abietanes/chemistry , Abietanes/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Microglia/drug effects , Microglia/metabolism , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Molecular Structure , Cell Line , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Lipopolysaccharides/pharmacology
17.
Phytochemistry ; 223: 114138, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762154

ABSTRACT

Croton laui (Euphorbiaceae) is a traditional medicinal plant used by the Li ethnic group in China to treat headaches, stomachaches, and diphtheria. To understand the pharmacological basis of its medicinal use, an extensive investigation of the ethanolic extract of the bark of C. laui was performed. After repeated chromatography, twenty-four undescribed labdane-type diterpenoids, lauinoids A-X (1-24), and five known analogs (25-29) were isolated. Their structures and absolute configurations were established using a combination of spectroscopic analyses, electronic circular dichroism, nuclear magnetic resonance calculations, and single-crystal X-ray diffraction. Among them, compounds 1-3 exhibited an 11(12 â†’ 13)-abeo-16-nor-labdane skeleton, which originated putatively from 9 through a plausible pathway that involves a semipinacol rearrangement process. Compounds 11 and 12 belong to the rare class of 14,15-dinor-labdane diterpenoids. Compounds 18 and 28 exhibited substantial inhibitory effects by suppressing lipopolysaccharide-induced NO production in RAW 264.7 macrophages, with IC50 values of 3.37 ± 0.23 and 5.82 ± 0.28 µM, respectively. This study has greatly expanded the chemical diversity of labdane diterpenoids from C. laui and will guide future research on this ethnomedicinal plant.


Subject(s)
Anti-Inflammatory Agents , Croton , Diterpenes , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Croton/chemistry , Mice , Animals , RAW 264.7 Cells , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Molecular Structure , Structure-Activity Relationship , Nitric Oxide/biosynthesis , Nitric Oxide/antagonists & inhibitors , Molecular Conformation , Dose-Response Relationship, Drug
18.
J Nat Prod ; 87(5): 1479-1486, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38728656

ABSTRACT

Bioinspired skeleton transformation of a tricyclic lathyrane-type Euphorbia diterpene was conducted to efficiently construct a tetracyclic tigliane diterpene on a gram scale via a key aldol condensation. The tigliane diterpene was then respectively converted into naturally rare ingenane and rhamnofolane diterpenes through a semipinacol rearrangement and a visible-light-promoted regioselective cyclopropane ring-opening reaction. This work provides a concise strategy for high-efficiency access to diverse polycyclic Euphorbia diterpene skeletons from abundant lathyrane-type natural products and paves the way for biological activity investigation of naturally rare molecules.


Subject(s)
Diterpenes , Euphorbia , Diterpenes/chemistry , Diterpenes/isolation & purification , Euphorbia/chemistry , Molecular Structure , Biomimetics , Biological Products/chemistry
19.
Phytochemistry ; 223: 114113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697241

ABSTRACT

Eleven undescribed cembrane-type diterpenoids, named litoamentenes A-K (1-11), were isolated from the soft coral Litophyton amentaceum collected from the South China Sea. Their structures were elucidated by extensive analysis of spectroscopic data, comparison with the literature data, single crystal X-ray diffraction, quantum chemical calculations and TDDFT-ECD calculations. This is the first systematic investigation of L. amentaceum. In particular, compounds 1-3 are cembrane-type norditerpenoids that lack isopropyl side chains. Compound 6 is a cembrane-type norditerpenoid without a methyl group at C-4, the first natural product identified with this carbon skeleton. Compounds 6, 9 and 10 showed modest cytotoxicity against several human cancer cell lines with IC50 values ranging from 3.99 to 14.56 µM.


Subject(s)
Anthozoa , Diterpenes , Drug Screening Assays, Antitumor , Anthozoa/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Animals , Humans , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , China , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Models, Molecular
20.
Phytochemistry ; 223: 114109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697239

ABSTRACT

A previously undescribed open-loop decarbonizing cembranolide, sarcocinerenolide A, and eight undescribed cembranolides, sarcocinerenolides B-I, characterized by poly-membered oxygen ring fragments were isolated from the soft coral Sarcophyton cinereum collected from the South China Sea. The structures and absolute configurations of these previously undescribed compounds were precisely determined by analysis of NMR data, DP4+ and ECD spectra. The bioactivities of the compounds were evaluated using zebrafish models and sarcocinerenolides C and H exhibited anti-thrombotic activity.


Subject(s)
Anthozoa , Diterpenes , Animals , Anthozoa/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Molecular Structure , Zebrafish , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , China , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...