Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.436
Filter
1.
Mol Cell ; 84(17): 3209-3222.e5, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39191261

ABSTRACT

RNA polymerases must initiate and pause within a complex chromatin environment, surrounded by nucleosomes and other transcriptional machinery. This environment creates a spatial arrangement along individual chromatin fibers ripe for both competition and coordination, yet these relationships remain largely unknown owing to the inherent limitations of traditional structural and sequencing methodologies. To address this, we employed long-read chromatin fiber sequencing (Fiber-seq) in Drosophila to visualize RNA polymerase (Pol) within its native chromatin context with single-molecule precision along up to 30 kb fibers. We demonstrate that Fiber-seq enables the identification of individual Pol II, nucleosome, and transcription factor footprints, revealing Pol II pausing-driven destabilization of downstream nucleosomes. Furthermore, we demonstrate pervasive direct distance-dependent transcriptional coupling between nearby Pol II genes, Pol III genes, and transcribed enhancers, modulated by local chromatin architecture. Overall, transcription initiation reshapes surrounding nucleosome architecture and couples nearby transcriptional machinery along individual chromatin fibers.


Subject(s)
Chromatin , Drosophila melanogaster , Nucleosomes , Transcription, Genetic , Animals , Nucleosomes/metabolism , Nucleosomes/genetics , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/enzymology , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Chromatin Assembly and Disassembly , RNA Polymerase III/metabolism , RNA Polymerase III/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Directed RNA Polymerases/metabolism , DNA-Directed RNA Polymerases/genetics
2.
Molecules ; 29(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39202847

ABSTRACT

Nucleosides, nucleotides, and their analogues are an important class of molecules that are used as substrates in research of enzymes and nucleic acid, or as antiviral and antineoplastic agents. Nucleoside phosphorylation is usually achieved with chemical methods; however, enzymatic phosphorylation is a viable alternative. Here, we present a chemoenzymatic synthesis of modified cytidine monophosphates, where a chemical synthesis of novel N4-modified cytidines is followed by an enzymatic phosphorylation of the nucleosides by nucleoside kinases. To enlarge the substrate scope, multiple mutant variants of Drosophila melanogaster deoxynucleoside kinase (DmdNK) (EC:2.7.1.145) and Bacillus subtilis deoxycytidine kinase (BsdCK) (EC:2.7.1.74) have been created and tested. It has been determined that certain point mutations in the active sites of the kinases alter their substrate specificities noticeably and allow phosphorylation of compounds that had been otherwise not phosphorylated by the wild-type DmdNK or BsdCK.


Subject(s)
Cytidine Monophosphate , Drosophila melanogaster , Animals , Phosphorylation , Substrate Specificity , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Cytidine Monophosphate/analogs & derivatives , Cytidine Monophosphate/metabolism , Cytidine Monophosphate/chemistry , Phosphotransferases/genetics , Phosphotransferases/metabolism , Phosphotransferases/chemistry , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Mutation , Deoxycytidine Kinase/genetics , Deoxycytidine Kinase/metabolism , Deoxycytidine Kinase/chemistry
3.
Biomolecules ; 14(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39062473

ABSTRACT

Glutathione transferase (GST) is a superfamily of ubiquitous enzymes, multigenic in numerous organisms and which generally present homodimeric structures. GSTs are involved in numerous biological functions such as chemical detoxification as well as chemoperception in mammals and insects. GSTs catalyze the conjugation of their cofactor, reduced glutathione (GSH), to xenobiotic electrophilic centers. To achieve this catalytic function, GSTs are comprised of a ligand binding site and a GSH binding site per subunit, which is very specific and highly conserved; the hydrophobic substrate binding site enables the binding of diverse substrates. In this work, we focus our interest in a model organism, the fruit fly Drosophila melanogaster (D. mel), which comprises 42 GST sequences distributed in six classes and composing its GSTome. The goal of this study is to describe the complete structural GSTome of D. mel to determine how changes in the amino acid sequence modify the structural characteristics of GST, particularly in the GSH binding sites and in the dimerization interface. First, we predicted the 3D atomic structures of each GST using the AlphaFold (AF) program and compared them with X-ray crystallography structures, when they exist. We also characterized and compared their global and local folds. Second, we used multiple sequence alignment coupled with AF-predicted structures to characterize the relationship between the conservation of amino acids in the sequence and their structural features. Finally, we applied normal mode analysis to estimate thermal B-factors of all GST structures of D. mel. Particularly, we extracted flexibility profiles of GST and identify key residues and motifs that are systematically involved in the ligand binding/dimerization processes and thus playing a crucial role in the catalytic function. This methodology will be extended to guide the in silico design of synthetic GST with new/optimal catalytic properties for detoxification applications.


Subject(s)
Drosophila melanogaster , Glutathione Transferase , Animals , Drosophila melanogaster/enzymology , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Binding Sites , Amino Acid Sequence , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Models, Molecular , Crystallography, X-Ray , Glutathione/metabolism , Glutathione/chemistry , Protein Multimerization
4.
Biomolecules ; 14(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39062472

ABSTRACT

This study presents a comprehensive analysis of the dimerization interfaces of fly GSTs through sequence alignment. Our investigation revealed GSTE1 as a particularly intriguing target, providing valuable insights into the variations within Delta and Epsilon GST interfaces. The X-ray structure of GSTE1 was determined, unveiling remarkable thermal stability and a distinctive dimerization interface. Utilizing circular dichroism, we assessed the thermal stability of GSTE1 and other Drosophila GSTs with resolved X-ray structures. The subsequent examination of GST dimer stability correlated with the dimerization interface supported by findings from X-ray structural analysis and thermal stability measurements. Our discussion extends to the broader context of GST dimer interfaces, offering a generalized perspective on their stability. This research enhances our understanding of the structural and thermodynamic aspects of GST dimerization, contributing valuable insights to the field.


Subject(s)
Glutathione Transferase , Protein Multimerization , Thermodynamics , Animals , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Crystallography, X-Ray , Drosophila melanogaster/enzymology , Models, Molecular , Amino Acid Sequence , Drosophila/enzymology
5.
Nature ; 632(8026): 850-857, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39085606

ABSTRACT

Motivations bias our responses to stimuli, producing behavioural outcomes that match our needs and goals. Here we describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate towards a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges1-3. We show that a set of copulation decision neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signalling restricts CDN integration time by potentiating Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation in response to stimulatory inputs, imposing a high threshold for changing behaviours. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviours. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.


Subject(s)
Copulation , Decision Making , Dopamine , Drosophila melanogaster , Animals , Female , Male , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Copulation/physiology , Decision Making/physiology , Dopamine/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/physiology , Neurons/metabolism , Neurons/physiology , Time Factors
6.
Nature ; 630(8016): 466-474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839952

ABSTRACT

Histone acetylation regulates gene expression, cell function and cell fate1. Here we study the pattern of histone acetylation in the epithelial tissue of the Drosophila wing disc. H3K18ac, H4K8ac and total lysine acetylation are increased in the outer rim of the disc. This acetylation pattern is controlled by nuclear position, whereby nuclei continuously move from apical to basal locations within the epithelium and exhibit high levels of H3K18ac when they are in proximity to the tissue surface. These surface nuclei have increased levels of acetyl-CoA synthase, which generates the acetyl-CoA for histone acetylation. The carbon source for histone acetylation in the rim is fatty acid ß-oxidation, which is also increased in the rim. Inhibition of fatty acid ß-oxidation causes H3K18ac levels to decrease in the genomic proximity of genes involved in disc development. In summary, there is a physical mark of the outer rim of the wing and other imaginal epithelia in Drosophila that affects gene expression.


Subject(s)
Acetyl Coenzyme A , Cell Nucleus , Chromatin , Drosophila melanogaster , Animals , Acetate-CoA Ligase/metabolism , Acetyl Coenzyme A/metabolism , Acetylation , Biological Transport , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/metabolism , Chromatin/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Fatty Acids/chemistry , Fatty Acids/metabolism , Gene Expression Regulation , Histones/chemistry , Histones/metabolism , Imaginal Discs/cytology , Imaginal Discs/growth & development , Imaginal Discs/metabolism , Lysine/metabolism , Oxidation-Reduction , Wings, Animal/cytology , Wings, Animal/growth & development , Wings, Animal/metabolism
7.
Nature ; 631(8020): 350-359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38926577

ABSTRACT

Insect respiration has long been thought to be solely dependent on an elaborate tracheal system without assistance from the circulatory system or immune cells1,2. Here we describe that Drosophila crystal cells-myeloid-like immune cells called haemocytes-control respiration by oxygenating Prophenoloxidase 2 (PPO2) proteins. Crystal cells direct the movement of haemocytes between the trachea of the larval body wall and the circulation to collect oxygen. Aided by copper and a neutral pH, oxygen is trapped in the crystalline structures of PPO2 in crystal cells. Conversely, PPO2 crystals can be dissolved when carbonic anhydrase lowers the intracellular pH and then reassembled into crystals in cellulo by adhering to the trachea. Physiologically, larvae lacking crystal cells or PPO2, or those expressing a copper-binding mutant of PPO2, display hypoxic responses under normoxic conditions and are susceptible to hypoxia. These hypoxic phenotypes can be rescued by hyperoxia, expression of arthropod haemocyanin or prevention of larval burrowing activity to expose their respiratory organs. Thus, we propose that insect immune cells collaborate with the tracheal system to reserve and transport oxygen through the phase transition of PPO2 crystals, facilitating internal oxygen homeostasis in a process that is comparable to vertebrate respiration.


Subject(s)
Catechol Oxidase , Drosophila Proteins , Drosophila melanogaster , Enzyme Precursors , Hemocytes , Oxygen , Phase Transition , Respiration , Animals , Female , Male , Biological Transport , Carbonic Anhydrases/metabolism , Catechol Oxidase/metabolism , Copper/metabolism , Crystallization , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Drosophila melanogaster/immunology , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Enzyme Precursors/metabolism , Hemocyanins/metabolism , Hemocytes/immunology , Hemocytes/metabolism , Homeostasis , Hydrogen-Ion Concentration , Hyperoxia/metabolism , Hypoxia/metabolism , Larva/anatomy & histology , Larva/cytology , Larva/immunology , Larva/metabolism , Oxygen/metabolism
8.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38680096

ABSTRACT

The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.


Subject(s)
Coleoptera , Drosophila melanogaster , Energy Metabolism , Animals , Bees/enzymology , Bees/metabolism , Bees/physiology , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Drosophila melanogaster/physiology , Coleoptera/enzymology , Coleoptera/metabolism , Coleoptera/physiology , Hot Temperature
9.
Biochim Biophys Acta Bioenerg ; 1865(3): 149046, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38642871

ABSTRACT

The respiratory chain alternative enzymes (AEs) NDX and AOX from the tunicate Ciona intestinalis (Ascidiacea) have been xenotopically expressed and characterized in human cells in culture and in the model organisms Drosophila melanogaster and mouse, with the purpose of developing bypass therapies to combat mitochondrial diseases in human patients with defective complexes I and III/IV, respectively. The fact that the genes coding for NDX and AOX have been lost from genomes of evolutionarily successful animal groups, such as vertebrates and insects, led us to investigate if the composition of the respiratory chain of Ciona and other tunicates differs significantly from that of humans and Drosophila, to accommodate the natural presence of AEs. We have failed to identify in tunicate genomes fifteen orthologous genes that code for subunits of the respiratory chain complexes; all of these putatively missing subunits are peripheral to complexes I, III and IV in mammals, and many are important for complex-complex interaction in supercomplexes (SCs), such as NDUFA11, UQCR11 and COX7A. Modeling of all respiratory chain subunit polypeptides of Ciona indicates significant structural divergence that is consistent with the lack of these fifteen clear orthologous subunits. We also provide evidence using Ciona AOX expressed in Drosophila that this AE cannot access the coenzyme Q pool reduced by complex I, but it is readily available to oxidize coenzyme Q molecules reduced by glycerophosphate oxidase, a mitochondrial inner membrane-bound dehydrogenase that is not involved in SCs. Altogether, our results suggest that Ciona AEs might have evolved in a mitochondrial inner membrane environment much different from that of mammals and insects, possibly without SCs; this correlates with the preferential functional interaction between these AEs and non-SC dehydrogenases in heterologous mammalian and insect systems. We discuss the implications of these findings for the applicability of Ciona AEs in human bypass therapies and for our understanding of the evolution of animal respiratory chain.


Subject(s)
Ciona intestinalis , Mitochondrial Proteins , Oxidative Phosphorylation , Animals , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Ciona intestinalis/genetics , Ciona intestinalis/enzymology , Humans , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Subunits/metabolism , Protein Subunits/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/enzymology , Urochordata/genetics , Urochordata/enzymology , Electron Transport , Electron Transport Complex I/metabolism , Electron Transport Complex I/genetics , Phylogeny , Plant Proteins
10.
J Biol Chem ; 300(1): 105491, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37995940

ABSTRACT

l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.


Subject(s)
Alcohol Oxidoreductases , Brain Diseases, Metabolic, Inborn , Drosophila melanogaster , Models, Molecular , Animals , Humans , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Brain Diseases, Metabolic, Inborn/enzymology , Brain Diseases, Metabolic, Inborn/genetics , Brain Diseases, Metabolic, Inborn/physiopathology , Drosophila melanogaster/enzymology , Glutarates/metabolism , Mutation , Catalytic Domain/genetics , Substrate Specificity/genetics , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
11.
Nature ; 623(7985): 122-131, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37722602

ABSTRACT

A fundamental and unresolved question in regenerative biology is how tissues return to homeostasis after injury. Answering this question is essential for understanding the aetiology of chronic disorders such as inflammatory bowel diseases and cancer1. We used the Drosophila midgut2 to investigate this and discovered that during regeneration a subpopulation of cholinergic3 neurons triggers Ca2+ currents among intestinal epithelial cells, the enterocytes, to promote return to homeostasis. We found that downregulation of the conserved cholinergic enzyme acetylcholinesterase4 in the gut epithelium enables acetylcholine from specific Egr5 (TNF in mammals)-sensing cholinergic neurons to activate nicotinic receptors in innervated enterocytes. This activation triggers high Ca2+, which spreads in the epithelium through Innexin2-Innexin7 gap junctions6, promoting enterocyte maturation followed by reduction of proliferation and inflammation. Disrupting this process causes chronic injury consisting of ion imbalance, Yki (YAP in humans) activation7, cell death and increase of inflammatory cytokines reminiscent of inflammatory bowel diseases8. Altogether, the conserved cholinergic pathway facilitates epithelial Ca2+ currents that heal the intestinal epithelium. Our findings demonstrate nerve- and bioelectric9-dependent intestinal regeneration and advance our current understanding of how a tissue returns to homeostasis after injury.


Subject(s)
Calcium Signaling , Calcium , Cholinergic Neurons , Drosophila melanogaster , Enterocytes , Intestines , Animals , Humans , Acetylcholine/metabolism , Acetylcholinesterase/metabolism , Calcium/metabolism , Cholinergic Neurons/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/metabolism , Enterocytes/metabolism , Homeostasis , Inflammation/enzymology , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestines/cytology , Intestines/metabolism , Receptors, Nicotinic/metabolism , Disease Models, Animal
12.
J Biol Chem ; 299(8): 104961, 2023 08.
Article in English | MEDLINE | ID: mdl-37380077

ABSTRACT

Myosin-1D (myo1D) is important for Drosophila left-right asymmetry, and its effects are modulated by myosin-1C (myo1C). De novo expression of these myosins in nonchiral Drosophila tissues promotes cell and tissue chirality, with handedness depending on the paralog expressed. Remarkably, the identity of the motor domain determines the direction of organ chirality, rather than the regulatory or tail domains. Myo1D, but not myo1C, propels actin filaments in leftward circles in in vitro experiments, but it is not known if this property contributes to establishing cell and organ chirality. To further explore if there are differences in the mechanochemistry of these motors, we determined the ATPase mechanisms of myo1C and myo1D. We found that myo1D has a 12.5-fold higher actin-activated steady-state ATPase rate, and transient kinetic experiments revealed myo1D has an 8-fold higher MgADP release rate compared to myo1C. Actin-activated phosphate release is rate limiting for myo1C, whereas MgADP release is the rate-limiting step for myo1D. Notably, both myosins have among the tightest MgADP affinities measured for any myosin. Consistent with ATPase kinetics, myo1D propels actin filaments at higher speeds compared to myo1C in in vitro gliding assays. Finally, we tested the ability of both paralogs to transport 50 nm unilamellar vesicles along immobilized actin filaments and found robust transport by myo1D and actin binding but no transport by myo1C. Our findings support a model where myo1C is a slow transporter with long-lived actin attachments, whereas myo1D has kinetic properties associated with a transport motor.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Functional Laterality , Myosin Type I , Animals , Actins/metabolism , Kinetics , Myosin Type I/chemistry , Myosin Type I/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Protein Domains , Drosophila melanogaster/anatomy & histology , Drosophila melanogaster/enzymology
13.
J Cell Physiol ; 238(3): 647-658, 2023 03.
Article in English | MEDLINE | ID: mdl-36745702

ABSTRACT

Cardiomyopathy is a common disease of cardiac muscle that negatively affects cardiac function. HDAC3 commonly functions as corepressor by removing acetyl moieties from histone tails. However, a deacetylase-independent role of HDAC3 has also been described. Cardiac deletion of HDAC3 causes reduced cardiac contractility accompanied by lipid accumulation, but the molecular function of HDAC3 in cardiomyopathy remains unknown. We have used powerful genetic tools in Drosophila to investigate the enzymatic and nonenzymatic roles of HDAC3 in cardiomyopathy. Using the Drosophila heart model, we showed that cardiac-specific HDAC3 knockdown (KD) leads to prolonged systoles and reduced cardiac contractility. Immunohistochemistry revealed structural abnormalities characterized by myofiber disruption in HDAC3 KD hearts. Cardiac-specific HDAC3 KD showed increased levels of whole-body triglycerides and increased fibrosis. The introduction of deacetylase-dead HDAC3 mutant in HDAC3 KD background showed comparable results with wild-type HDAC3 in aspects of contractility and Pericardin deposition. However, deacetylase-dead HDAC3 mutants failed to improve triglyceride accumulation. Our data indicate that HDAC3 plays a deacetylase-independent role in maintaining cardiac contractility and preventing Pericardin deposition as well as a deacetylase-dependent role to maintain triglyceride homeostasis.


Subject(s)
Cardiomyopathies , Disease Models, Animal , Drosophila Proteins , Drosophila melanogaster , Histone Deacetylases , Animals , Cardiomyopathies/enzymology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/deficiency , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Heart/physiology , Histone Deacetylases/deficiency , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Histones/chemistry , Histones/metabolism , Myocardium/metabolism , Triglycerides/metabolism , Homeostasis
14.
Genetics ; 223(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36482767

ABSTRACT

Transvection, a type of trans-regulation of gene expression in which regulatory elements on one chromosome influence elements on a paired homologous chromosome, is itself a complex biological phenotype subject to modification by genetic background effects. However, relatively few studies have explored how transvection is affected by distal genetic variation, perhaps because it is strongly influenced by local regulatory elements and chromosomal architecture. With the emergence of the "hub" model of transvection and a series of studies showing variation in transvection effects, it is becoming clear that genetic background plays an important role in how transvection influences gene transcription. We explored the effects of genetic background on transvection by performing two independent genome wide association studies (GWASs) using the Drosophila genetic reference panel (DGRP) and a suite of Malic enzyme (Men) excision alleles. We found substantial variation in the amount of transvection in the 149 DGRP lines used, with broad-sense heritability of 0.89 and 0.84, depending on the excision allele used. The specific genetic variation identified was dependent on the excision allele used, highlighting the complex genetic interactions influencing transvection. We focussed primarily on genes identified as significant using a relaxed P-value cutoff in both GWASs. The most strongly associated genetic variant mapped to an intergenic single nucleotide polymorphism (SNP), located upstream of Tiggrin (Tig), a gene that codes for an extracellular matrix protein. Variants in other genes, such transcription factors (CG7368 and Sima), RNA binding proteins (CG10418, Rbp6, and Rig), enzymes (AdamTS-A, CG9743, and Pgant8), proteins influencing cell cycle progression (Dally and Eip63E) and signaling proteins (Atg-1, Axo, Egfr, and Path) also associated with transvection in Men. Although not intuitively obvious how many of these genes may influence transvection, some have been previously identified as promoting or antagonizing somatic homolog pairing. These results identify several candidate genes to further explore in the understanding of transvection in Men and in other genes regulated by transvection. Overall, these findings highlight the complexity of the interactions involved in gene regulation, even in phenotypes, such as transvection, that were traditionally considered to be primarily influenced by local genetic variation.


Subject(s)
Genome-Wide Association Study , Malate Dehydrogenase , Animals , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Malate Dehydrogenase/metabolism
15.
Elife ; 112022 01 17.
Article in English | MEDLINE | ID: mdl-35037620

ABSTRACT

Neuronal health depends on quality control functions of autophagy, but mechanisms regulating neuronal autophagy are poorly understood. Previously, we showed that in Drosophila starvation-independent quality control autophagy is regulated by acinus (acn) and the Cdk5-dependent phosphorylation of its serine437 (Nandi et al., 2017). Here, we identify the phosphatase that counterbalances this activity and provides for the dynamic nature of acinus-serine437 (acn-S437) phosphorylation. A genetic screen identified six phosphatases that genetically interacted with an acn gain-of-function model. Among these, loss of function of only one, the PPM-type phosphatase Nil (CG6036), enhanced pS437-acn levels. Cdk5-dependent phosphorylation of acn-S437 in nil1 animals elevates neuronal autophagy and reduces the accumulation of polyQ proteins in a Drosophila Huntington's disease model. Consistent with previous findings that Cd2+ inhibits PPM-type phosphatases, Cd2+ exposure elevated acn-S437 phosphorylation which was necessary for increased neuronal autophagy and protection against Cd2+-induced cytotoxicity. Together, our data establish the acn-S437 phosphoswitch as critical integrator of multiple stress signals regulating neuronal autophagy.


Subject(s)
Autophagy/genetics , Cadmium/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/physiology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Serine/genetics , Stress, Physiological/drug effects , Animals , Autophagy/drug effects , Autophagy/physiology , Cadmium/toxicity , Cadmium Poisoning , Drosophila melanogaster/enzymology , Female , Male , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Serine/metabolism
16.
Pigment Cell Melanoma Res ; 35(1): 26-37, 2022 01.
Article in English | MEDLINE | ID: mdl-34388859

ABSTRACT

Melanin is a widely distributed phenolic pigment that is biosynthesized from tyrosine and its hydroxylated product, dopa, in all animals. However, recent studies reveal a significant deviation from this paradigm, as insects appear to use dopamine rather than dopa as the major precursor of melanin. This observation calls for a reconsideration of the insect melanogenic pathway. While phenoloxidases and laccases can oxidize dopamine for dopaminechrome production, the fate of dopaminechrome remains undetermined. Dopachrome decarboxylase/tautomerase, encoded by yellow-f/f2 of Drosophila melanogaster, can convert dopaminechrome into 5,6-dihydroxyindole, but the same enzyme from other organisms does not act on dopaminechrome, suggesting the existence of a specific dopaminechrome tautomerase (DPT). We now report the identification of this novel enzyme that biosynthesizes 5,6-dihydroxyindole from dopaminechrome in Drosophila. Dopaminechrome tautomerase acted on both dopaminechrome and N-methyl dopaminechrome but not on dopachrome or other aminochromes tested. Our biochemical and molecular studies reveal that this enzyme is encoded by the yellow-h gene, a member of the yellow gene family, and advance our understanding of the physiological functions of this gene family. Identification and characterization of DPT clarifies the precursor for melanin biosynthetic pathways and proves the existence of an independent melanogenic pathway in insects that utilizes dopamine as the primary precursor.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Intramolecular Oxidoreductases , Melanins , Animals , Animals, Genetically Modified , Cell Line , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Indoles/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Melanins/biosynthesis , Mutation
17.
Nucleic Acids Res ; 49(22): 13108-13121, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34878141

ABSTRACT

Mutations in genes encoding mitochondrial aminoacyl-tRNA synthetases are linked to diverse diseases. However, the precise mechanisms by which these mutations affect mitochondrial function and disease development are not fully understood. Here, we develop a Drosophila model to study the function of dFARS2, the Drosophila homologue of the mitochondrial phenylalanyl-tRNA synthetase, and further characterize human disease-associated FARS2 variants. Inactivation of dFARS2 in Drosophila leads to developmental delay and seizure. Biochemical studies reveal that dFARS2 is required for mitochondrial tRNA aminoacylation, mitochondrial protein stability, and assembly and enzyme activities of OXPHOS complexes. Interestingly, by modeling FARS2 mutations associated with human disease in Drosophila, we provide evidence that expression of two human FARS2 variants, p.G309S and p.D142Y, induces seizure behaviors and locomotion defects, respectively. Together, our results not only show the relationship between dysfunction of mitochondrial aminoacylation system and pathologies, but also illustrate the application of Drosophila model for functional analysis of human disease-causing variants.


Subject(s)
Developmental Disabilities/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Mitochondrial Proteins/genetics , Mutation , Phenylalanine-tRNA Ligase/genetics , RNA, Transfer/genetics , Seizures/genetics , Animals , Cell Line , Developmental Disabilities/enzymology , Disease Models, Animal , Drosophila Proteins/deficiency , Drosophila melanogaster/enzymology , Gene Knockdown Techniques , Humans , Microscopy, Electron, Transmission , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/deficiency , Oxidative Phosphorylation , Phenylalanine-tRNA Ligase/deficiency , RNA, Transfer/metabolism , Seizures/enzymology , Transfer RNA Aminoacylation
18.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34918741

ABSTRACT

Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.


Subject(s)
Drosophila Proteins/genetics , Hematopoiesis/genetics , Jagged-1 Protein/genetics , Receptors, Notch/genetics , Transcription Factors/genetics , Animals , Blood Cells/cytology , Blood Cells/metabolism , Cell Differentiation/genetics , Cell Lineage/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Hemocytes , Lectins/genetics , Receptors, Interleukin/genetics , Signal Transduction/genetics , Stem Cells/cytology , Stem Cells/metabolism
19.
Cell Rep ; 37(3): 109834, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686333

ABSTRACT

WNTs play key roles in development and disease, signaling through Frizzled (FZD) seven-pass transmembrane receptors and numerous co-receptors including ROR and RYK family receptor tyrosine kinases (RTKs). We describe crystal structures and WNT-binding characteristics of extracellular regions from the Drosophila ROR and RYK orthologs Nrk (neurospecific receptor tyrosine kinase) and Derailed-2 (Drl-2), which bind WNTs though a FZD-related cysteine-rich domain (CRD) and WNT-inhibitory factor (WIF) domain respectively. Our crystal structures suggest that neither Nrk nor Drl-2 can accommodate the acyl chain typically attached to WNTs. The Nrk CRD contains a deeply buried bound fatty acid, unlikely to be exchangeable. The Drl-2 WIF domain lacks the lipid-binding site seen in WIF-1. We also find that recombinant DWnt-5 can bind Drosophila ROR and RYK orthologs despite lacking an acyl chain. Alongside analyses of WNT/receptor interaction sites, our structures provide further insight into how WNTs may recruit RTK co-receptors into signaling complexes.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Nerve Tissue Proteins/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Animals , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Models, Molecular , Nerve Tissue Proteins/genetics , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Sf9 Cells , Structure-Activity Relationship , Wnt Proteins/genetics
20.
Cell Rep ; 37(3): 109874, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686334

ABSTRACT

Embryos repair wounds rapidly, with no inflammation or scarring, in a process that involves polarization of the actomyosin cytoskeleton. Actomyosin polarization results in the assembly of a contractile cable around the wound that drives wound closure. Here, we demonstrate that a contractile actomyosin cable is not sufficient for rapid wound repair in Drosophila embryos. We show that wounding causes activation of the serine/threonine kinase p38 mitogen-activated protein kinase (MAPK) in the cells adjacent to the wound. p38 activation reduces the levels of wound-induced reactive oxygen species in the cells around the wound, limiting wound size. In addition, p38 promotes an increase in volume in the cells around the wound, thus facilitating the collective cell movements that drive rapid wound healing. Our data indicate that p38 regulates cell volumes through the sodium-potassium-chloride cotransporter NKCC1. Our work reveals cell growth and cell survival as cell behaviors critical for embryonic wound repair.


Subject(s)
Cell Proliferation , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Wound Healing , Wounds and Injuries/enzymology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Animals, Genetically Modified , Cell Size , Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Enzyme Activation , Gene Expression Regulation, Developmental , Myosin Type II/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Signal Transduction , Solute Carrier Family 12, Member 2/genetics , Solute Carrier Family 12, Member 2/metabolism , Time Factors , Wounds and Injuries/genetics , Wounds and Injuries/pathology , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL