Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.088
1.
Planta Med ; 90(7-08): 576-587, 2024 Jun.
Article En | MEDLINE | ID: mdl-38843797

The average age of the population is increasing worldwide, which has a profound impact on our society. This leads to an increasing demand for medicines and requires the development of new strategies to promote health during the additional years. In the search for resources and therapeutics for improved health during an extended life span, attention has to be paid to environmental exposure and ecosystem burdens that inevitably emerge with the extended consumption of medicines and drug development, even in the preclinical stage. The hereby introduced sustainable strategy for drug discovery is built on 3Rs, "R: obustness, R: eliability, and saving R: esources", inspired by both the 3Rs used in animal experiments and environmental protection, and centers on the usefulness and the variety of the small model organism Caenorhabditis elegans for detecting health-promoting natural products. A workflow encompassing a multilevel screening approach is presented to maximize the amount of information on health-promoting samples, while considering the 3Rs. A detailed, methodology- and praxis-oriented compilation and discussion of proposed C. elegans health span assays and more disease-specific assays are presented to offer guidance for scientists intending to work with C. elegans, thus facilitating the initial steps towards the integration of C. elegans assays in their laboratories.


Biological Products , Caenorhabditis elegans , Caenorhabditis elegans/drug effects , Animals , Biological Products/pharmacology , Drug Discovery/methods
2.
MAbs ; 16(1): 2361928, 2024.
Article En | MEDLINE | ID: mdl-38844871

The naïve human antibody repertoire has theoretical access to an estimated > 1015 antibodies. Identifying subsets of this prohibitively large space where therapeutically relevant antibodies may be found is useful for development of these agents. It was previously demonstrated that, despite the immense sequence space, different individuals can produce the same antibodies. It was also shown that therapeutic antibodies, which typically follow seemingly unnatural development processes, can arise independently naturally. To check for biases in how the sequence space is explored, we data mined public repositories to identify 220 bioprojects with a combined seven billion reads. Of these, we created a subset of human bioprojects that we make available as the AbNGS database (https://naturalantibody.com/ngs/). AbNGS contains 135 bioprojects with four billion productive human heavy variable region sequences and 385 million unique complementarity-determining region (CDR)-H3s. We find that 270,000 (0.07% of 385 million) unique CDR-H3s are highly public in that they occur in at least five of 135 bioprojects. Of 700 unique therapeutic CDR-H3, a total of 6% has direct matches in the small set of 270,000. This observation extends to a match between CDR-H3 and V-gene call as well. Thus, the subspace of shared ('public') CDR-H3s shows utility for serving as a starting point for therapeutic antibody design.


Biological Products , Complementarity Determining Regions , Data Mining , Drug Discovery , Humans , Data Mining/methods , Drug Discovery/methods , Biological Products/immunology , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/genetics
3.
Respir Res ; 25(1): 231, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824592

Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.


Drug Discovery , Lung Diseases , Lung , Animals , Lung/drug effects , Lung/physiopathology , Humans , Lung Diseases/physiopathology , Lung Diseases/pathology , Drug Discovery/methods , Organ Culture Techniques
4.
Artif Cells Nanomed Biotechnol ; 52(1): 345-354, 2024 Dec.
Article En | MEDLINE | ID: mdl-38829715

Cell encapsulation into spherical microparticles is a promising bioengineering tool in many fields, including 3D cancer modelling and pre-clinical drug discovery. Cancer microencapsulation models can more accurately reflect the complex solid tumour microenvironment than 2D cell culture and therefore would improve drug discovery efforts. However, these microcapsules, typically in the range of 1 - 5000 µm in diameter, must be carefully designed and amenable to high-throughput production. This review therefore aims to outline important considerations in the design of cancer cell microencapsulation models for drug discovery applications and examine current techniques to produce these. Extrusion (dripping) droplet generation and emulsion-based techniques are highlighted and their suitability to high-throughput drug screening in terms of tumour physiology and ease of scale up is evaluated.


3D microencapsulation models of cancer offer a customisable platform to mimic key aspects of solid tumour physiology in vitro. However, many 3D models do not recapitulate the hypoxic conditions and altered tissue stiffness established in many tumour types and stages. Furthermore, microparticles for cancer cell encapsulation are commonly produced using methods that are not necessarily suitable for scale up to high-throughput manufacturing. This review aims to evaluate current technologies for cancer cell-laden microparticle production with a focus on physiological relevance and scalability. Emerging techniques will then be touched on, for production of uniform microparticles suitable for high-throughput drug discovery applications.


Drug Discovery , Neoplasms , Humans , Neoplasms/pathology , Neoplasms/drug therapy , Neoplasms/metabolism , Drug Discovery/methods , Cell Encapsulation/methods , Models, Biological , Capsules , Animals , Drug Compounding/methods , Tumor Microenvironment/drug effects
5.
Drug Res (Stuttg) ; 74(5): 208-219, 2024 Jun.
Article En | MEDLINE | ID: mdl-38830370

The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.


Artificial Intelligence , Drug Discovery , Drug Discovery/methods , Humans , Pharmaceutical Preparations
6.
BMC Genomics ; 25(1): 411, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724911

BACKGROUND: In recent years, there has been a growing interest in utilizing computational approaches to predict drug-target binding affinity, aiming to expedite the early drug discovery process. To address the limitations of experimental methods, such as cost and time, several machine learning-based techniques have been developed. However, these methods encounter certain challenges, including the limited availability of training data, reliance on human intervention for feature selection and engineering, and a lack of validation approaches for robust evaluation in real-life applications. RESULTS: To mitigate these limitations, in this study, we propose a method for drug-target binding affinity prediction based on deep convolutional generative adversarial networks. Additionally, we conducted a series of validation experiments and implemented adversarial control experiments using straw models. These experiments serve to demonstrate the robustness and efficacy of our predictive models. We conducted a comprehensive evaluation of our method by comparing it to baselines and state-of-the-art methods. Two recently updated datasets, namely the BindingDB and PDBBind, were used for this purpose. Our findings indicate that our method outperforms the alternative methods in terms of three performance measures when using warm-start data splitting settings. Moreover, when considering physiochemical-based cold-start data splitting settings, our method demonstrates superior predictive performance, particularly in terms of the concordance index. CONCLUSION: The results of our study affirm the practical value of our method and its superiority over alternative approaches in predicting drug-target binding affinity across multiple validation sets. This highlights the potential of our approach in accelerating drug repurposing efforts, facilitating novel drug discovery, and ultimately enhancing disease treatment. The data and source code for this study were deposited in the GitHub repository, https://github.com/mojtabaze7/DCGAN-DTA . Furthermore, the web server for our method is accessible at https://dcgan.shinyapps.io/bindingaffinity/ .


Drug Discovery , Drug Discovery/methods , Computational Biology/methods , Humans , Neural Networks, Computer , Protein Binding , Machine Learning
7.
J Biomed Semantics ; 15(1): 5, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693563

Leveraging AI for synthesizing the deluge of biomedical knowledge has great potential for pharmacological discovery with applications including developing new therapeutics for untreated diseases and repurposing drugs as emergent pandemic treatments. Creating knowledge graph representations of interacting drugs, diseases, genes, and proteins enables discovery via embedding-based ML approaches and link prediction. Previously, it has been shown that these predictive methods are susceptible to biases from network structure, namely that they are driven not by discovering nuanced biological understanding of mechanisms, but based on high-degree hub nodes. In this work, we study the confounding effect of network topology on biological relation semantics by creating an experimental pipeline of knowledge graph semantic and topological perturbations. We show that the drop in drug repurposing performance from ablating meaningful semantics increases by 21% and 38% when mitigating topological bias in two networks. We demonstrate that new methods for representing knowledge and inferring new knowledge must be developed for making use of biomedical semantics for pharmacological innovation, and we suggest fruitful avenues for their development.


Drug Discovery , Semantics , Drug Discovery/methods , Drug Repositioning/methods
8.
Sci Rep ; 14(1): 10072, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698208

Drug repositioning aims to identify new therapeutic indications for approved medications. Recently, the importance of computational drug repositioning has been highlighted because it can reduce the costs, development time, and risks compared to traditional drug discovery. Most approaches in this area use networks for systematic analysis. Inferring drug-disease associations is then defined as a link prediction problem in a heterogeneous network composed of drugs and diseases. In this article, we present a novel method of computational drug repositioning, named drug repositioning with attention walking (DRAW). DRAW proceeds as follows: first, a subgraph enclosing the target link for prediction is extracted. Second, a graph convolutional network captures the structural features of the labeled nodes in the subgraph. Third, the transition probabilities are computed using attention mechanisms and converted into random walk profiles. Finally, a multi-layer perceptron takes random walk profiles and predicts whether a target link exists. As an experiment, we constructed two heterogeneous networks with drug-drug similarities based on chemical structures and anatomical therapeutic chemical classification (ATC) codes. Using 10-fold cross-validation, DRAW achieved an area under the receiver operating characteristic (ROC) curve of 0.903 and outperformed state-of-the-art methods. Moreover, we demonstrated the results of case studies for selected drugs and diseases to further confirm the capability of DRAW to predict drug-disease associations.


Drug Repositioning , Drug Repositioning/methods , Humans , Computational Biology/methods , ROC Curve , Neural Networks, Computer , Algorithms , Drug Discovery/methods
9.
PLoS One ; 19(5): e0302276, 2024.
Article En | MEDLINE | ID: mdl-38713692

Based on topological descriptors, QSPR analysis is an incredibly helpful statistical method for examining many physical and chemical properties of compounds without demanding costly and time-consuming laboratory tests. Firstly, we discuss and provide research on kidney cancer drugs using topological indices and done partition of the edges of kidney cancer drugs which are based on the degree. Secondly, we examine the attributes of nineteen drugs casodex, eligard, mitoxanrone, rubraca, and zoladex, etc and among others, using linear QSPR model. The study in the article not only demonstrates a good correlation between TIs and physical characteristics with the QSPR model being the most suitable for predicting complexity, enthalpy, molar refractivity, and other factors and a best-fit model is attained in this study. This theoretical approach might benefit chemists and professionals in the pharmaceutical industry to forecast the characteristics of kidney cancer therapies. This leads towards new opportunities to paved the way for drug discovery and the formation of efficient and suitable treatment options in therapeutic targeting. We also employed multicriteria decision making techniques like COPRAS and PROMETHEE-II for ranking of said disease treatment drugs and physicochemical characteristics.


Antineoplastic Agents , Kidney Neoplasms , Quantitative Structure-Activity Relationship , Kidney Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Humans , Decision Making , Drug Discovery/methods
10.
Clin Transl Sci ; 17(5): e13824, 2024 May.
Article En | MEDLINE | ID: mdl-38752574

Accurate prediction of a new compound's pharmacokinetic (PK) profile is pivotal for the success of drug discovery programs. An initial assessment of PK in preclinical species and humans is typically performed through allometric scaling and mathematical modeling. These methods use parameters estimated from in vitro or in vivo experiments, which although helpful for an initial estimation, require extensive animal experiments. Furthermore, mathematical models are limited by the mechanistic underpinning of the drugs' absorption, distribution, metabolism, and elimination (ADME) which are largely unknown in the early stages of drug discovery. In this work, we propose a novel methodology in which concentration versus time profile of small molecules in rats is directly predicted by machine learning (ML) using structure-driven molecular properties as input and thus mitigating the need for animal experimentation. The proposed framework initially predicts ADME properties based on molecular structure and then uses them as input to a ML model to predict the PK profile. For the compounds tested, our results demonstrate that PK profiles can be adequately predicted using the proposed algorithm, especially for compounds with Tanimoto score greater than 0.5, the average mean absolute percentage error between predicted PK profile and observed PK profile data was found to be less than 150%. The suggested framework aims to facilitate PK predictions and thus support molecular screening and design earlier in the drug discovery process.


Drug Discovery , Machine Learning , Animals , Rats , Drug Discovery/methods , Pharmaceutical Preparations/metabolism , Pharmaceutical Preparations/chemistry , Humans , Models, Biological , Algorithms , Molecular Structure , Pharmacokinetics , Small Molecule Libraries/pharmacokinetics
11.
J Comput Aided Mol Des ; 38(1): 22, 2024 May 16.
Article En | MEDLINE | ID: mdl-38753096

Although the size of virtual libraries of synthesizable compounds is growing rapidly, we are still enumerating only tiny fractions of the drug-like chemical universe. Our capability to mine these newly generated libraries also lags their growth. That is why fragment-based approaches that utilize on-demand virtual combinatorial libraries are gaining popularity in drug discovery. These à la carte libraries utilize synthetic blocks found to be effective binders in parts of target protein pockets and a variety of reliable chemistries to connect them. There is, however, no data on the potential impact of the chemistries used for making on-demand libraries on the hit rates during virtual screening. There are also no rules to guide in the selection of these synthetic methods for production of custom libraries. We have used the SAVI (Synthetically Accessible Virtual Inventory) library, constructed using 53 reliable reaction types (transforms), to evaluate the impact of these chemistries on docking hit rates for 40 well-characterized protein pockets. The data shows that the virtual hit rates differ significantly for different chemistries with cross coupling reactions such as Sonogashira, Suzuki-Miyaura, Hiyama and Liebeskind-Srogl coupling producing the highest hit rates. Virtual hit rates appear to depend not only on the property of the formed chemical bond but also on the diversity of available building blocks and the scope of the reaction. The data identifies reactions that deserve wider use through increasing the number of corresponding building blocks and suggests the reactions that are more effective for pockets with certain physical and hydrogen bond-forming properties.


Molecular Docking Simulation , Protein Binding , Proteins , Small Molecule Libraries , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Proteins/chemistry , Proteins/metabolism , Binding Sites , Drug Discovery/methods , Ligands , Drug Design , Humans
12.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38754409

Drug repurposing offers a viable strategy for discovering new drugs and therapeutic targets through the analysis of drug-gene interactions. However, traditional experimental methods are plagued by their costliness and inefficiency. Despite graph convolutional network (GCN)-based models' state-of-the-art performance in prediction, their reliance on supervised learning makes them vulnerable to data sparsity, a common challenge in drug discovery, further complicating model development. In this study, we propose SGCLDGA, a novel computational model leveraging graph neural networks and contrastive learning to predict unknown drug-gene associations. SGCLDGA employs GCNs to extract vector representations of drugs and genes from the original bipartite graph. Subsequently, singular value decomposition (SVD) is employed to enhance the graph and generate multiple views. The model performs contrastive learning across these views, optimizing vector representations through a contrastive loss function to better distinguish positive and negative samples. The final step involves utilizing inner product calculations to determine association scores between drugs and genes. Experimental results on the DGIdb4.0 dataset demonstrate SGCLDGA's superior performance compared with six state-of-the-art methods. Ablation studies and case analyses validate the significance of contrastive learning and SVD, highlighting SGCLDGA's potential in discovering new drug-gene associations. The code and dataset for SGCLDGA are freely available at https://github.com/one-melon/SGCLDGA.


Neural Networks, Computer , Humans , Drug Repositioning/methods , Computational Biology/methods , Algorithms , Software , Drug Discovery/methods , Machine Learning
13.
Nat Commun ; 15(1): 4175, 2024 May 16.
Article En | MEDLINE | ID: mdl-38755132

Drug-recalcitrant infections are a leading global-health concern. Bacterial cells benefit from phenotypic variation, which can suggest effective antimicrobial strategies. However, probing phenotypic variation entails spatiotemporal analysis of individual cells that is technically challenging, and hard to integrate into drug discovery. In this work, we develop a multi-condition microfluidic platform suitable for imaging two-dimensional growth of bacterial cells during transitions between separate environmental conditions. With this platform, we implement a dynamic single-cell screening for pheno-tuning compounds, which induce a phenotypic change and decrease cell-to-cell variation, aiming to undermine the entire bacterial population and make it more vulnerable to other drugs. We apply this strategy to mycobacteria, as tuberculosis poses a major public-health threat. Our lead compound impairs Mycobacterium tuberculosis via a peculiar mode of action and enhances other anti-tubercular drugs. This work proves that harnessing phenotypic variation represents a successful approach to tackle pathogens that are increasingly difficult to treat.


Antitubercular Agents , Mycobacterium tuberculosis , Single-Cell Analysis , Tuberculosis , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Single-Cell Analysis/methods , Tuberculosis/drug therapy , Tuberculosis/microbiology , Humans , Microbial Sensitivity Tests , Microfluidics/methods , Phenotype , Drug Discovery/methods , Drug Synergism
14.
Theranostics ; 14(7): 2946-2968, 2024.
Article En | MEDLINE | ID: mdl-38773973

Recent advancements in modern science have provided robust tools for drug discovery. The rapid development of transcriptome sequencing technologies has given rise to single-cell transcriptomics and single-nucleus transcriptomics, increasing the accuracy of sequencing and accelerating the drug discovery process. With the evolution of single-cell transcriptomics, spatial transcriptomics (ST) technology has emerged as a derivative approach. Spatial transcriptomics has emerged as a hot topic in the field of omics research in recent years; it not only provides information on gene expression levels but also offers spatial information on gene expression. This technology has shown tremendous potential in research on disease understanding and drug discovery. In this article, we introduce the analytical strategies of spatial transcriptomics and review its applications in novel target discovery and drug mechanism unravelling. Moreover, we discuss the current challenges and issues in this research field that need to be addressed. In conclusion, spatial transcriptomics offers a new perspective for drug discovery.


Drug Discovery , Gene Expression Profiling , Single-Cell Analysis , Transcriptome , Drug Discovery/methods , Humans , Transcriptome/genetics , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Animals
16.
Prog Mol Biol Transl Sci ; 205: 247-257, 2024.
Article En | MEDLINE | ID: mdl-38789182

High-throughput screening (HTS) is a simple, rapid and cost-effective solution to determine active candidates from large library of compounds. HTS is gaining attention from Pharmaceuticals and Biotechnology companies for accelerating their drug discovery programs. Conventional drug discovery program is time consuming and expensive. In contrast drug repurposing approach is cost-effective and increases speed of drug discovery as toxicity profile is already known. The present chapter highlight HTS technology including microplate, microfluidics, lab-on-chip, organ-on-chip for drug repurposing. The current chapter also highlights the application of HTS for bacterial infections and cancer.


Drug Repositioning , High-Throughput Screening Assays , High-Throughput Screening Assays/methods , Humans , Animals , Drug Discovery/methods
17.
Prog Mol Biol Transl Sci ; 205: 91-109, 2024.
Article En | MEDLINE | ID: mdl-38789189

The drug discovery and development (DDD) process greatly relies on the data available in various forms to generate hypotheses for novel drug design. The complex and heterogeneous nature of biological data makes it difficult to utilize or gather meaningful information as such. Computational biology techniques have provided us with opportunities to better understand biological systems through refining and organizing large amounts of data into actionable and systematic purviews. The drug repurposing approach has been utilized to overcome the expansive time periods and costs associated with traditional drug development. It deals with discovering new uses of already approved drugs that have an established safety and efficacy profile, thereby, requiring them to go through fewer development phases. Thus, drug repurposing through computational biology provides a systematic approach to drug development and overcomes the constraints of traditional processes. The current chapter covers the basics, approaches and tools of computational biology that can be employed to effectively develop repurposing profile of already approved drug molecules.


Computational Biology , Drug Repositioning , Humans , Computational Biology/methods , Drug Discovery/methods
18.
Prog Mol Biol Transl Sci ; 205: 277-302, 2024.
Article En | MEDLINE | ID: mdl-38789184

The field of drug repurposing is gaining attention as a way to introduce pharmaceutical agents with established safety profiles to new patient populations. This approach involves finding new applications for existing drugs through observations or deliberate efforts to understand their mechanisms of action. Recent advancements in bioinformatics and pharmacology, along with the availability of extensive data repositories and analytical techniques, have fueled the demand for novel methodologies in pharmaceutical research and development. To facilitate systematic drug repurposing, various computational methodologies have emerged, combining experimental techniques and in silico approaches. These methods have revolutionized the field of drug discovery by enabling the efficient repurposing of screens. However, establishing an ideal drug repurposing pipeline requires the integration of molecular data accessibility, analytical proficiency, experimental design expertise, and a comprehensive understanding of clinical development processes. This chapter explores the key methodologies used in systematic drug repurposing and discusses the stakeholders involved in this field. It emphasizes the importance of strategic alliances to enhance the success of repurposing existing compounds for new indications. Additionally, the chapter highlights the current benefits, considerations, and challenges faced in the repurposing process, which is pursued by both biotechnology and pharmaceutical companies. Overall, drug repurposing holds great promise in expanding the use of existing drugs and bringing them to new patient populations. With the advancements in computational methodologies and the collaboration of various stakeholders, this approach has the potential to accelerate drug development and improve patient outcomes.


Biological Products , Drug Repositioning , Drug Repositioning/methods , Humans , Biological Products/therapeutic use , Biological Products/pharmacology , Computational Biology/methods , Drug Discovery/methods
19.
Bioinformatics ; 40(5)2024 May 02.
Article En | MEDLINE | ID: mdl-38710497

MOTIVATION: Molecular property prediction (MPP) is a fundamental but challenging task in the computer-aided drug discovery process. More and more recent works employ different graph-based models for MPP, which have achieved considerable progress in improving prediction performance. However, current models often ignore relationships between molecules, which could be also helpful for MPP. RESULTS: For this sake, in this article we propose a graph structure learning (GSL) based MPP approach, called GSL-MPP. Specifically, we first apply graph neural network (GNN) over molecular graphs to extract molecular representations. Then, with molecular fingerprints, we construct a molecule similarity graph (MSG). Following that, we conduct GSL on the MSG, i.e. molecule-level GSL, to get the final molecular embeddings, which are the results of fuzing both GNN encoded molecular representations and the relationships among molecules. That is, combining both intra-molecule and inter-molecule information. Finally, we use these molecular embeddings to perform MPP. Extensive experiments on 10 various benchmark datasets show that our method could achieve state-of-the-art performance in most cases, especially on classification tasks. Further visualization studies also demonstrate the good molecular representations of our method. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/zby961104/GSL-MPP.


Neural Networks, Computer , Drug Discovery/methods , Machine Learning , Algorithms
...