Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.807
Filter
1.
Pharm Biol ; 62(1): 544-561, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946248

ABSTRACT

CONTEXT: Diabetic peripheral neuropathy (DPN) results in an enormous burden and reduces the quality of life for patients. Considering there is no specific drug for the management of DPN, traditional Chinese medicine (TCM) has increasingly drawn attention of clinicians and researchers around the world due to its characteristics of multiple targets, active components, and exemplary safety. OBJECTIVE: To summarize the current status of TCM in the treatment of DPN and provide directions for novel drug development, the clinical effects and potential mechanisms of TCM used in treating DPN were comprehensively reviewed. METHODS: Existing evidence on TCM interventions for DPN was screened from databases such as PubMed, the Cochrane Neuromuscular Disease Group Specialized Register (CENTRAL), and the Chinese National Knowledge Infrastructure Database (CNKI). The focus was on summarizing and analyzing representative preclinical and clinical TCM studies published before 2023. RESULTS: This review identified the ameliorative effects of about 22 single herbal extracts, more than 30 herbal compound prescriptions, and four Chinese patent medicines on DPN in preclinical and clinical research. The latest advances in the mechanism highlight that TCM exerts its beneficial effects on DPN by inhibiting inflammation, oxidative stress and apoptosis, endoplasmic reticulum stress and improving mitochondrial function. CONCLUSIONS: TCM has shown the power latent capacity in treating DPN. It is proposed that more large-scale and multi-center randomized controlled clinical trials and fundamental experiments should be conducted to further verify these findings.


Subject(s)
Diabetic Neuropathies , Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Diabetic Neuropathies/drug therapy , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/pharmacology , Animals , Quality of Life , Oxidative Stress/drug effects , Drug Evaluation, Preclinical/methods
2.
PLoS One ; 19(7): e0304736, 2024.
Article in English | MEDLINE | ID: mdl-38968248

ABSTRACT

High throughput screening of small molecules and natural products is costly, requiring significant amounts of time, reagents, and operating space. Although microarrays have proven effective in the miniaturization of screening for certain biochemical assays, such as nucleic acid hybridization or antibody binding, they are not widely used for drug discovery in cell culture due to the need for cells to internalize lipophilic drug candidates. Lipid droplet microarrays are a promising solution to this problem as they are capable of delivering lipophilic drugs to cells at dosages comparable to solution delivery. However, the scalablility of the array fabrication, assay validation, and screening steps has limited the utility of this approach. Here we take several new steps to scale up the process for lipid droplet array fabrication, assay validation in cell culture, and drug screening. A nanointaglio printing process has been adapted for use with a printing press. The arrays are stabilized for immersion into aqueous solution using a vapor coating process. In addition to delivery of lipophilic compounds, we found that we are also able to encapsulate and deliver a water-soluble compound in this way. The arrays can be functionalized by extracellular matrix proteins such as collagen prior to cell culture as the mechanism for uptake is based on direct contact with the lipid delivery vehicles rather than diffusion of the drug out of the microarray spots. We demonstrate this method for delivery to 3 different cell types and the screening of 92 natural product extracts on a microarray covering an area of less than 0.1 cm2. The arrays are suitable for miniaturized screening, for instance in high biosafety level facilities where space is limited and for applications where cell numbers are limited, such as in functional precision medicine.


Subject(s)
Lipid Droplets , Humans , Lipid Droplets/metabolism , Microarray Analysis/methods , Animals , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods
3.
Genome Med ; 16(1): 85, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956711

ABSTRACT

BACKGROUND: Restraining or slowing ageing hallmarks at the cellular level have been proposed as a route to increased organismal lifespan and healthspan. Consequently, there is great interest in anti-ageing drug discovery. However, this currently requires laborious and lengthy longevity analysis. Here, we present a novel screening readout for the expedited discovery of compounds that restrain ageing of cell populations in vitro and enable extension of in vivo lifespan. METHODS: Using Illumina methylation arrays, we monitored DNA methylation changes accompanying long-term passaging of adult primary human cells in culture. This enabled us to develop, test, and validate the CellPopAge Clock, an epigenetic clock with underlying algorithm, unique among existing epigenetic clocks for its design to detect anti-ageing compounds in vitro. Additionally, we measured markers of senescence and performed longevity experiments in vivo in Drosophila, to further validate our approach to discover novel anti-ageing compounds. Finally, we bench mark our epigenetic clock with other available epigenetic clocks to consolidate its usefulness and specialisation for primary cells in culture. RESULTS: We developed a novel epigenetic clock, the CellPopAge Clock, to accurately monitor the age of a population of adult human primary cells. We find that the CellPopAge Clock can detect decelerated passage-based ageing of human primary cells treated with rapamycin or trametinib, well-established longevity drugs. We then utilise the CellPopAge Clock as a screening tool for the identification of compounds which decelerate ageing of cell populations, uncovering novel anti-ageing drugs, torin2 and dactolisib (BEZ-235). We demonstrate that delayed epigenetic ageing in human primary cells treated with anti-ageing compounds is accompanied by a reduction in senescence and ageing biomarkers. Finally, we extend our screening platform in vivo by taking advantage of a specially formulated holidic medium for increased drug bioavailability in Drosophila. We show that the novel anti-ageing drugs, torin2 and dactolisib (BEZ-235), increase longevity in vivo. CONCLUSIONS: Our method expands the scope of CpG methylation profiling to accurately and rapidly detecting anti-ageing potential of drugs using human cells in vitro, and in vivo, providing a novel accelerated discovery platform to test sought after anti-ageing compounds and geroprotectors.


Subject(s)
Aging , DNA Methylation , Longevity , Humans , Animals , DNA Methylation/drug effects , Longevity/drug effects , Aging/drug effects , Epigenesis, Genetic/drug effects , Drug Discovery/methods , Cellular Senescence/drug effects , Drug Evaluation, Preclinical/methods , Drosophila , Cells, Cultured , Sirolimus/pharmacology
4.
Mar Drugs ; 22(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38921571

ABSTRACT

TRAF6 is an E3 ubiquitin ligase that plays a crucial role in cell signaling. It is known that MMP is involved in tumor metastasis, and TRAF6 induces MMP-9 expression by binding to BSG. However, inhibiting TRAF6's ubiquitinase activity without disrupting the RING domain is a challenge that requires further research. To address this, we conducted computer-based drug screening to identify potential TRAF6 inhibitors. Using a ligand-receptor complex pharmacophore based on the inhibitor EGCG, known for its anti-tumor properties, we screened 52,765 marine compounds. After the molecular docking of 405 molecules with TRAF6, six compounds were selected for further analysis. By replacing fragments of non-binding compounds and conducting second docking, we identified two promising molecules, CMNPD9212-16 and CMNPD12791-8, with strong binding activity and favorable pharmacological properties. ADME and toxicity predictions confirmed their potential as TRAF6 inhibitors. Molecular dynamics simulations showed that CMNPD12791-8 maintained a stable structure with the target protein, comparable to EGCG. Therefore, CMNPD12791-8 holds promise as a potential inhibitor of TRAF6 for inhibiting tumor growth and metastasis.


Subject(s)
Molecular Docking Simulation , Molecular Dynamics Simulation , TNF Receptor-Associated Factor 6 , Humans , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Aquatic Organisms , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Evaluation, Preclinical/methods , Catechin/analogs & derivatives , Catechin/pharmacology , Catechin/chemistry , Pharmacophore , Intracellular Signaling Peptides and Proteins
5.
Biomaterials ; 310: 122627, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38823194

ABSTRACT

The pre-clinical animal models often fail to predict intrinsic and idiosyncratic drug induced liver injury (DILI), thus contributing to drug failures in clinical trials, black box warnings and withdrawal of marketed drugs. This suggests a critical need for human-relevant in vitro models to predict diverse DILI phenotypes. In this study, a porcine liver extracellular matrix (ECM) based biomaterial ink with high printing fidelity, biocompatibility and tunable rheological and mechanical properties is formulated for supporting both parenchymal and non-parenchymal cells. Further, we applied 3D printing and microfluidic technology to bioengineer a human physiomimetic liver acinus model (HPLAM), recapitulating the radial hepatic cord-like structure with functional sinusoidal microvasculature network, biochemical and biophysical properties of native liver acinus. Intriguingly, the human derived hepatic cells incorporated HPLAM cultured under physiologically relevant microenvironment, acts as metabolic biofactories manifesting enhanced hepatic functionality, secretome levels and biomarkers expression over several weeks. We also report that the matured HPLAM reproduces dose- and time-dependent hepatotoxic response of human clinical relevance to drugs typically recognized for inducing diverse DILI phenotypes as compared to conventional static culture. Overall, the developed HPLAM emulates in vivo like functions and may provide a useful platform for DILI risk assessment to better determine safety and human risk.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver , Humans , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Liver/pathology , Animals , Swine , Printing, Three-Dimensional , Microfluidics/methods , Models, Biological , Drug Evaluation, Preclinical/methods , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Biomimetics/methods
6.
Methods Cell Biol ; 188: 89-108, 2024.
Article in English | MEDLINE | ID: mdl-38880530

ABSTRACT

Autosomal Dominant Optic Atrophy (ADOA) is a rare neurodegenerative condition, characterized by the bilateral loss of vision due to the degeneration of retinal ganglion cells. Its primary cause is linked to mutations in OPA1 gene, which ultimately affect mitochondrial structure and function. The current lack of successful treatments for ADOA emphasizes the need to investigate the mechanisms driving disease pathogenesis and exploit the potential of animal models for preclinical trials. Among such models, Caenorhabditis elegans stands out as a powerful tool, due its simplicity, its genetic tractability, and its relevance to human biology. Despite the lack of a visual system, the presence of mutated OPA1 in the nematode recapitulates ADOA pathology, by stimulating key pathogenic features of the human condition that can be studied in a fast and relatively non-laborious manner. Here, we provide a detailed guide on how to assess the therapeutic efficacy of chemical compounds, in either small or large scale, by evaluating three crucial phenotypes of humanized ADOA model nematodes, that express pathogenic human OPA1 in their GABAergic motor neurons: axonal mitochondria number, neuronal cell death and defecation cycle time. The described methods can deepen our understanding of ADOA pathogenesis and offer a practical framework for developing novel treatment schemes, providing hope for improved therapeutic outcomes and a better quality of life for individuals affected by this currently incurable condition.


Subject(s)
Caenorhabditis elegans , Disease Models, Animal , Optic Atrophy, Autosomal Dominant , Animals , Caenorhabditis elegans/genetics , Optic Atrophy, Autosomal Dominant/genetics , Optic Atrophy, Autosomal Dominant/drug therapy , Humans , Mitochondria/metabolism , Mitochondria/drug effects , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mutation , GABAergic Neurons/metabolism , GABAergic Neurons/drug effects , Drug Evaluation, Preclinical/methods
7.
8.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892306

ABSTRACT

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors , SARS-CoV-2 , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Humans , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , COVID-19/virology , Drug Discovery/methods , High-Throughput Screening Assays/methods , Drug Evaluation, Preclinical/methods , Protein Binding , Ligands
9.
Biochem Biophys Res Commun ; 725: 150263, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38905995

ABSTRACT

OBJECTIVE: To explore the feasibility of screening potential drugs for the treatment of diabetic kidney disease (DKD) using a single-cell transcriptome sequencing dataset and Connectivity Map (CMap) database screening. METHODS: A DKD single-nucleus transcriptome sequencing dataset was analyzed using Seurat 4.0 to obtain specific podocyte subclusters and differentially expressed genes (DEGs) related to DKD. These DEGs were subsequently subjected to a search against the CMap database to screen for drug candidates. Cell and animal experiments were conducted to evaluate the efficacy of the top 3 drug candidates. RESULTS: Initially, we analyzed the DKD single-nucleus transcriptome sequencing dataset to obtain intrinsic renal cells such as podocytes, endothelial cells, mesangial cells, proximal tubular cells, collecting duct cells and immune cells. Podocytes were further divided into four subclusters, among which the proportion of POD_1 podcytes was significantly greater in DKD kidneys than in control kidneys (34.0 % vs. 3.4 %). The CMap database was searched using the identified DEGs in the POD_1 subcluster, and the drugs, including tozasertib, paroxetine, and xylazine, were obtained. Cell-based experiments showed that tozasertib, paroxetine and xylazine had no significant podocyte toxicity in the concentration range of 0.01-50 µM. Tozasertib, paroxetine, and xylazine all reversed the advanced glycation end products (AGEs)-induced decrease in podocyte marker levels, but the effect of paroxetine was more prominent. Animal experiments showed that paroxetine decreased urine ALB/Cr levels in DKD model mice by approximately 51.5 % (115.7 mg/g vs. 238.8 mg/g, P < 0.05). Histopathological assessment revealed that paroxetine attenuated basement membrane thickening, restored the number of foot processes of podocytes, and reduced foot process fusion. In addition, paroxetine also attenuated renal tubular-interstitial fibrosis. Mechanistically, paroxetine inhibited the expression of GRK2 and NLRP3, decreased the phosphorylation level of p65, restored NRF2 expression, and relieved inflammation and oxidative stress. CONCLUSION: This strategy based on single-cell transcriptome sequencing and CMap data can facilitate the identification and aid the rapid development of clinical DKD drugs. Paroxetine, screened by this strategy, has excellent renoprotective effects.


Subject(s)
Diabetic Nephropathies , Podocytes , Transcriptome , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Animals , Transcriptome/drug effects , Mice , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Single-Cell Analysis/methods , Male , Drug Evaluation, Preclinical/methods , Mice, Inbred C57BL , Gene Expression Profiling , Humans
11.
J Biomed Sci ; 31(1): 47, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724973

ABSTRACT

The field of regenerative medicine has witnessed remarkable advancements with the emergence of induced pluripotent stem cells (iPSCs) derived from a variety of sources. Among these, urine-derived induced pluripotent stem cells (u-iPSCs) have garnered substantial attention due to their non-invasive and patient-friendly acquisition method. This review manuscript delves into the potential and application of u-iPSCs in advancing precision medicine, particularly in the realms of drug testing, disease modeling, and cell therapy. U-iPSCs are generated through the reprogramming of somatic cells found in urine samples, offering a unique and renewable source of patient-specific pluripotent cells. Their utility in drug testing has revolutionized the pharmaceutical industry by providing personalized platforms for drug screening, toxicity assessment, and efficacy evaluation. The availability of u-iPSCs with diverse genetic backgrounds facilitates the development of tailored therapeutic approaches, minimizing adverse effects and optimizing treatment outcomes. Furthermore, u-iPSCs have demonstrated remarkable efficacy in disease modeling, allowing researchers to recapitulate patient-specific pathologies in vitro. This not only enhances our understanding of disease mechanisms but also serves as a valuable tool for drug discovery and development. In addition, u-iPSC-based disease models offer a platform for studying rare and genetically complex diseases, often underserved by traditional research methods. The versatility of u-iPSCs extends to cell therapy applications, where they hold immense promise for regenerative medicine. Their potential to differentiate into various cell types, including neurons, cardiomyocytes, and hepatocytes, enables the development of patient-specific cell replacement therapies. This personalized approach can revolutionize the treatment of degenerative diseases, organ failure, and tissue damage by minimizing immune rejection and optimizing therapeutic outcomes. However, several challenges and considerations, such as standardization of reprogramming protocols, genomic stability, and scalability, must be addressed to fully exploit u-iPSCs' potential in precision medicine. In conclusion, this review underscores the transformative impact of u-iPSCs on advancing precision medicine and highlights the future prospects and challenges in harnessing this innovative technology for improved healthcare outcomes.


Subject(s)
Cell- and Tissue-Based Therapy , Induced Pluripotent Stem Cells , Precision Medicine , Humans , Precision Medicine/methods , Induced Pluripotent Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Drug Evaluation, Preclinical/methods , Urine/cytology , Regenerative Medicine/methods
12.
J Vis Exp ; (206)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38738900

ABSTRACT

Bacterial cytoskeletal proteins such as FtsZ and MreB perform essential functions such as cell division and cell shape maintenance. Further, FtsZ and MreB have emerged as important targets for novel antimicrobial discovery. Several assays have been developed to identify compounds targeting nucleotide binding and polymerization of these cytoskeletal proteins, primarily focused on FtsZ. Moreover, many of the assays are either laborious or cost-intensive, and ascertaining whether these proteins are the cellular target of the drug often requires multiple methods. Finally, the toxicity of the drugs to eukaryotic cells also poses a problem. Here, we describe a single-step cell-based assay to discover novel molecules targeting bacterial cytoskeleton and minimize hits that might be potentially toxic to eukaryotic cells. Fission yeast is amenable to high-throughput screens based on microscopy, and a visual screen can easily identify any molecule that alters the polymerization of FtsZ or MreB. Our assay utilizes the standard 96-well plate and relies on the ability of the bacterial cytoskeletal proteins to polymerize in a eukaryotic cell such as the fission yeast. While the protocols described here are for fission yeast and utilize FtsZ from Staphylococcus aureus and MreB from Escherichia coli, they are easily adaptable to other bacterial cytoskeletal proteins that readily assemble into polymers in any eukaryotic expression hosts. The method described here should help facilitate further discovery of novel antimicrobials targeting bacterial cytoskeletal proteins.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Cytoskeletal Proteins , Schizosaccharomyces , Schizosaccharomyces/drug effects , Schizosaccharomyces/metabolism , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Drug Evaluation, Preclinical/methods
13.
Sci Rep ; 14(1): 10046, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38698021

ABSTRACT

Phenotype based screening is a powerful tool to evaluate cellular drug response. Through high content fluorescence imaging of simple fluorescent labels and complex image analysis phenotypic measurements can identify subtle compound-induced cellular changes unique to compound mechanisms of action (MoA). Recently, a screen of 1008 compounds in three cell lines was reported where analysis detected changes in cellular phenotypes and accurately identified compound MoA for roughly half the compounds. However, we were surprised that DNA alkylating agents and other compounds known to induce or impact the DNA damage response produced no measured activity in cells with fluorescently labeled 53BP1-a canonical DNA damage marker. We hypothesized that phenotype analysis is not sensitive enough to detect small changes in 53BP1 distribution and analyzed the screen images with autocorrelation image analysis. We found that autocorrelation analysis, which quantifies fluorescently-labeled protein clustering, identified higher compound activity for compounds and MoAs known to impact the DNA damage response, suggesting altered 53BP1 recruitment to damaged DNA sites. We then performed experiments under more ideal imaging settings and found autocorrelation analysis to be a robust measure of changes to 53BP1 clustering in the DNA damage response. These results demonstrate the capacity of autocorrelation to detect otherwise undetectable compound activity and suggest that autocorrelation analysis of specific proteins could serve as a powerful screening tool.


Subject(s)
DNA Damage , Phenotype , Tumor Suppressor p53-Binding Protein 1 , Humans , Tumor Suppressor p53-Binding Protein 1/metabolism , Drug Evaluation, Preclinical/methods , Cell Line, Tumor
14.
Methods Mol Biol ; 2786: 365-386, 2024.
Article in English | MEDLINE | ID: mdl-38814404

ABSTRACT

In this chapter, we will first consider the overall goal of nonclinical safety testing during drug development and have a brief overview of its regulatory background. We will then discuss some basic requirements of safety/toxicity testing before concentrating on the safety testing of RNA vaccines and developing a sample RNA vaccine safety testing program.


Subject(s)
mRNA Vaccines , Animals , Humans , Drug Evaluation, Preclinical/methods , Toxicity Tests/methods
15.
Sci Rep ; 14(1): 12348, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811688

ABSTRACT

X-ray Phase Contrast Tomography (XPCT) based on wavefield propagation has been established as a high resolution three-dimensional (3D) imaging modality, suitable to reconstruct the intricate structure of soft tissues, and the corresponding pathological alterations. However, for biomedical research, more is needed than 3D visualisation and rendering of the cytoarchitecture in a few selected cases. First, the throughput needs to be increased to cover a statistically relevant number of samples. Second, the cytoarchitecture has to be quantified in terms of morphometric parameters, independent of visual impression. Third, dimensionality reduction and classification are required for identification of effects and interpretation of results. To address these challenges, we here design and implement a novel integrated and high throughput XPCT imaging and analysis workflow for 3D histology, pathohistology and drug testing. Our approach uses semi-automated data acquisition, reconstruction and statistical quantification. We demonstrate its capability for the example of lung pathohistology in Covid-19. Using a small animal model, different Covid-19 drug candidates are administered after infection and tested in view of restoration of the physiological cytoarchitecture, specifically the alveolar morphology. To this end, we then use morphometric parameter determination followed by a dimensionality reduction and classification based on optimal transport. This approach allows efficient discrimination between physiological and pathological lung structure, thereby providing quantitative insights into the pathological progression and partial recovery due to drug treatment. Finally, we stress that the XPCT image chain implemented here only used synchrotron radiation for validation, while the data used for analysis was recorded with laboratory µ CT radiation, more easily accessible for pre-clinical research.


Subject(s)
COVID-19 , Imaging, Three-Dimensional , Lung , SARS-CoV-2 , Animals , COVID-19/diagnostic imaging , COVID-19/virology , COVID-19/pathology , Imaging, Three-Dimensional/methods , Lung/diagnostic imaging , Lung/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Tomography, X-Ray Computed/methods , Cricetinae , Disease Models, Animal , Drug Evaluation, Preclinical/methods , COVID-19 Drug Treatment
16.
J Pharmacol Toxicol Methods ; 127: 107517, 2024.
Article in English | MEDLINE | ID: mdl-38797367

ABSTRACT

INTRODUCTION: Rat telemetry is the assay of choice to assess the potential effects of novel drug candidates on cardiovascular parameters during early drug discovery. Telemetry device implantation can be combined with venous catheter and access button implantation when intravenous administration of the drug substance is required. METHODS: Rats (Sprague Dawley or Han Wistar) were implanted with telemetry devices for arterial blood pressure measurement using either direct aortic catheterisation (n = 131) or aortic catheterisation via the femoral artery (n = 17). Bipolar leads for ECG recording were also implanted in some of the animals (n = 102). Femoral vein catheters and access buttons were implanted as a separate surgery after the initial telemetry implantation (n = 43). RESULTS: 128 animals (86%) were implanted successfully with telemetry devices without any notable surgical or post-surgical problems. When considering the 2 different catheterisation methods separately, the success rate of the direct aortic approach was 88% compared to 76% with the aortic placement via the femoral artery. Lameness was the most common post-surgical problem. Blood loss during surgery and ischaemic patches on the tail were also observed at a low incidence with the direct aortic approach. Catheter pull-out occurred in some rats before the first signal check reducing the overall success rate for blood pressure measurement using the direct aortic approach to 85%. A 95% success rate was observed for catheter and access button implantation. DISCUSSION: A high success rate is possible when implanting telemetry devices in rats with and without venous catheters and access buttons. We have attempted to provide solutions to problems and describe refinements to the procedure which may further improve surgical outcomes.


Subject(s)
Rats, Sprague-Dawley , Rats, Wistar , Telemetry , Animals , Telemetry/methods , Telemetry/instrumentation , Rats , Male , Femoral Artery/surgery , Blood Pressure/drug effects , Electrocardiography/methods , Drug Evaluation, Preclinical/methods
17.
Protein Sci ; 33(6): e5007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723187

ABSTRACT

The identification of an effective inhibitor is an important starting step in drug development. Unfortunately, many issues such as the characterization of protein binding sites, the screening library, materials for assays, etc., make drug screening a difficult proposition. As the size of screening libraries increases, more resources will be inefficiently consumed. Thus, new strategies are needed to preprocess and focus a screening library towards a targeted protein. Herein, we report an ensemble machine learning (ML) model to generate a CDK8-focused screening library. The ensemble model consists of six different algorithms optimized for CDK8 inhibitor classification. The models were trained using a CDK8-specific fragment library along with molecules containing CDK8 activity. The optimized ensemble model processed a commercial library containing 1.6 million molecules. This resulted in a CDK8-focused screening library containing 1,672 molecules, a reduction of more than 99.90%. The CDK8-focused library was then subjected to molecular docking, and 25 candidate compounds were selected. Enzymatic assays confirmed six CDK8 inhibitors, with one compound producing an IC50 value of ≤100 nM. Analysis of the ensemble ML model reveals the role of the CDK8 fragment library during training. Structural analysis of molecules reveals the hit compounds to be structurally novel CDK8 inhibitors. Together, the results highlight a pipeline for curating a focused library for a specific protein target, such as CDK8.


Subject(s)
Cyclin-Dependent Kinase 8 , Drug Evaluation, Preclinical , Machine Learning , Protein Kinase Inhibitors , Humans , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/chemistry , Cyclin-Dependent Kinase 8/metabolism , Drug Evaluation, Preclinical/methods , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
18.
J Chem Inf Model ; 64(11): 4387-4391, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38768560

ABSTRACT

We introduce STOPLIGHT, a web portal to assist medicinal chemists in prioritizing hits from screening campaigns and the selection of compounds for optimization. STOPLIGHT incorporates services to assess 6 physiochemical and structural properties, 6 assay liabilities, and 11 pharmacokinetic properties, for any small molecule represented by its SMILES string. We briefly describe each service and illustrate the utility of this portal with a case study. The STOPLIGHT portal provides a user-friendly tool to guide hit selection in early drug discovery campaigns, whereby compounds with unfavorable properties can be quickly recognized and eliminated.


Subject(s)
Drug Discovery , Drug Discovery/methods , Software , Drug Evaluation, Preclinical/methods , Internet , Small Molecule Libraries/chemistry
19.
J Pharmacol Toxicol Methods ; 127: 107510, 2024.
Article in English | MEDLINE | ID: mdl-38705245

ABSTRACT

Cardiovascular safety pharmacology and toxicology studies include vehicle control animals in most studies. Electrocardiogram data on common vehicles is accumulated relatively quickly. In the interests of the 3Rs principles it may be useful to use this historical information to reduce the use of animals or to refine the sensitivity of studies. We used implanted telemetry data from a large nonhuman primate (NHP) cardiovascular study (n = 48) evaluating the effect of moxifloxacin. We extracted 24 animals to conduct a n = 3/sex/group analysis. The remaining 24 animals were used to generate 1000 unique combinations of 3 male and 3 female NHP to act as control groups for the three treated groups in the n = 3/sex/group analysis. The distribution of treatment effects, median minimum detectable difference (MDD) values were gathered from the 1000 studies. These represent contemporary controls. Data were available from 42 NHP from 3 other studies in the same laboratory using the same technology. These were used to generate 1000 unique combinations of 6, 12, 18, 24 and 36 NHP to act as historical control animals for the 18 animals in the treated groups of the moxifloxacin study. Data from an additional laboratory were also available for 20 NHP. The QT, RR and QT-RR data from the three sources were comparable. However, differences in the time course of QTc effect in the vehicle data from the two laboratories meant that it was not possible to use cross-lab controls. In the case of historical controls from the same laboratory, these could be used in place of the contemporary controls in determining a treatment's effect. There appeared to be an advantage in using larger (≥18) group sizes for historical controls. These data support the opportunity of using historical controls to reduce the number of animals used in new cardiovascular studies.


Subject(s)
Electrocardiography , Fluoroquinolones , Moxifloxacin , Telemetry , Animals , Female , Electrocardiography/methods , Electrocardiography/drug effects , Male , Telemetry/methods , Long QT Syndrome/chemically induced , Long QT Syndrome/physiopathology , Control Groups , Heart Rate/drug effects , Heart Rate/physiology , Consciousness/drug effects , Drug Evaluation, Preclinical/methods
20.
STAR Protoc ; 5(2): 103058, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38748881

ABSTRACT

Three-dimensional (3D) models play an increasingly important role in preclinical drug testing as they faithfully mimic interactions between cancer cells and the tumor microenvironment (TME). Here, we present a protocol for generating scaffold-free 3D multicomponent human melanoma spheroids. We describe steps for characterizing models using live-cell imaging and histology, followed by drug testing and assessment of cell death through various techniques such as imaging, luminescence-based assays, and flow cytometry. Finally, we demonstrate the models' adaptability for co-cultures with immune cells.


Subject(s)
Melanoma , Spheroids, Cellular , Humans , Spheroids, Cellular/pathology , Spheroids, Cellular/metabolism , Melanoma/pathology , Melanoma/metabolism , Drug Evaluation, Preclinical/methods , Tumor Microenvironment , Coculture Techniques/methods , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Cell Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...