Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 588
Filter
1.
J Hazard Mater ; 477: 135093, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39088948

ABSTRACT

Exposure to particulate matter (PM) can cause airway inflammation and worsen various airway diseases. However, the underlying molecular mechanism by which PM triggers airway inflammation has not been completely elucidated, and effective interventions are lacking. Our study revealed that PM exposure increased the expression of histone deacetylase 9 (HDAC9) in human bronchial epithelial cells and mouse airway epithelium through the METTL3/m6A methylation/IGF2BP3 pathway. Functional assays showed that HDAC9 upregulation promoted PM-induced airway inflammation and activation of MAPK signaling pathway in vitro and in vivo. Mechanistically, HDAC9 modulated the deacetylation of histone 4 acetylation at K12 (H4K12) in the promoter region of dual specificity phosphatase 9 (DUSP9) to repress the expression of DUSP9 and resulting in the activation of MAPK signaling pathway, thereby promoting PM-induced airway inflammation. Additionally, HDAC9 bound to MEF2A to weaken its anti-inflammatory effect on PM-induced airway inflammation. Then, we developed a novel inhaled lipid nanoparticle system for delivering HDAC9 siRNA to the airway, offering an effective treatment for PM-induced airway inflammation. Collectively, we elucidated the crucial regulatory mechanism of HDAC9 in PM-induced airway inflammation and introduced an inhaled therapeutic approach targeting HDAC9. These findings contribute to alleviating the burden of various airway diseases caused by PM exposure.


Subject(s)
Epigenesis, Genetic , Histone Deacetylases , Particulate Matter , Up-Regulation , Animals , Particulate Matter/toxicity , Humans , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Epigenesis, Genetic/drug effects , Up-Regulation/drug effects , Mice , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Inflammation , Nanoparticles/chemistry , Nanoparticles/toxicity , Mice, Inbred C57BL , Cell Line , MAP Kinase Signaling System/drug effects , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Male
2.
Adipocyte ; 13(1): 2381262, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39039652

ABSTRACT

Obesity is a low-grade chronic inflammation induced by the pathological expansion of adipocytes which allows the development of obesity-associated metabolic diseases like type 2 diabetes mellitus (T2D) and non-alcoholic fatty liver disease (NAFLD). However, mechanisms regulating adipocyte inflammation remain poorly understood. Here, we observed that TRIM8 was upregulated in adipocyte inflammation and insulin resistance while DUSP14 was downregulated. TRIM8 deficiency and DUSP14 over-expression decreased the level of inflammatory cytokines, increased glucose uptake content, and improved insulin signalling transduction compared to LPS treatment alone. Conversely, silencing DUSP14 increased the expression of inflammatory cytokines. It decreased the glucose uptake content and the phosphorylation level of proteins involved in insulin signalling, further impairing insulin signalling and aggravating insulin resistance. Furthermore, The decreased level of inflammatory cytokines, increased glucose uptake, and improved insulin signalling transduction caused by TRIM8 deficiency were reversed by down-regulated DUSP14. Collectively, our findings revealed that TRIM8 can regulate adipocyte inflammation and insulin resistance by regulating the MAPKs pathway which is dependent on DUSP14.


Subject(s)
Adipocytes , Dual-Specificity Phosphatases , Inflammation , Insulin Resistance , Animals , Adipocytes/metabolism , Mice , Inflammation/metabolism , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , MAP Kinase Signaling System , 3T3-L1 Cells , Signal Transduction , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mice, Inbred C57BL
3.
Nat Commun ; 15(1): 5851, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38992029

ABSTRACT

Tumor cells reprogram their metabolism to produce specialized metabolites that both fuel their own growth and license tumor immune evasion. However, the relationships between these functions remain poorly understood. Here, we report CRISPR screens in a mouse model of colo-rectal cancer (CRC) that implicates the dual specificity phosphatase 18 (DUSP18) in the establishment of tumor-directed immune evasion. Dusp18 inhibition reduces CRC growth rates, which correlate with high levels of CD8+ T cell activation. Mechanistically, DUSP18 dephosphorylates and stabilizes the USF1 bHLH-ZIP transcription factor. In turn, USF1 induces the SREBF2 gene, which allows cells to accumulate the cholesterol biosynthesis intermediate lanosterol and release it into the tumor microenvironment (TME). There, lanosterol uptake by CD8+ T cells suppresses the mevalonate pathway and reduces KRAS protein prenylation and function, which in turn inhibits their activation and establishes a molecular basis for tumor cell immune escape. Finally, the combination of an anti-PD-1 antibody and Lumacaftor, an FDA-approved small molecule inhibitor of DUSP18, inhibits CRC growth in mice and synergistically enhances anti-tumor immunity. Collectively, our findings support the idea that a combination of immune checkpoint and metabolic blockade represents a rationally-designed, mechanistically-based and potential therapy for CRC.


Subject(s)
CD8-Positive T-Lymphocytes , Cholesterol , Colorectal Neoplasms , Dual-Specificity Phosphatases , Animals , Colorectal Neoplasms/immunology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Mice , Humans , Cholesterol/biosynthesis , Cholesterol/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Tumor Escape/drug effects , Tumor Escape/genetics , Female
4.
Cell Death Dis ; 15(6): 452, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926346

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer that is prone to metastasis and therapy resistance. Owing to its aggressive nature and limited availability of targeted therapies, TNBC is associated with higher mortality as compared to other forms of breast cancer. In order to develop new therapeutic options for TNBC, we characterized the factors involved in TNBC growth and progression. Here, we demonstrate that N-acylsphingosine amidohydrolase 1 (ASAH1) is overexpressed in TNBC cells and is regulated via p53 and PI3K-AKT signaling pathways. Genetic knockdown or pharmacological inhibition of ASAH1 suppresses TNBC growth and progression. Mechanistically, ASAH1 inhibition stimulates dual-specificity phosphatase 5 (DUSP5) expression, suppressing the mitogen-activated protein kinase (MAPK) pathway. Furthermore, pharmacological cotargeting of the ASAH1 and MAPK pathways inhibits TNBC growth. Collectively, we unmasked a novel role of ASAH1 in driving TNBC and identified dual targeting of the ASAH1 and MAPK pathways as a potential new therapeutic approach for TNBC treatment.


Subject(s)
Acid Ceramidase , Dual-Specificity Phosphatases , MAP Kinase Signaling System , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Acid Ceramidase/metabolism , Acid Ceramidase/genetics , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Female , Cell Line, Tumor , MAP Kinase Signaling System/drug effects , Cell Proliferation/drug effects , Animals , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Mice , Proto-Oncogene Proteins c-akt/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects
5.
Drug Des Devel Ther ; 18: 2301-2315, 2024.
Article in English | MEDLINE | ID: mdl-38911032

ABSTRACT

Background: Nepetoidin B (NB) has been reported to possess anti-inflammatory, antibacterial, and antioxidant properties. However, its effects on liver ischemia/reperfusion (I/R) injury remain unclear. Methods: In this study, a mouse liver I/R injury model and a mouse AML12 cell hypoxia reoxygenation (H/R) injury model were used to investigate the potential role of NB. Serum transaminase levels, liver necrotic area, cell viability, oxidative stress, inflammatory response, and apoptosis were evaluated to assess the effects of NB on liver I/R and cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to measure mRNA and protein expression levels, respectively. Molecular docking was used to predict the binding capacity of NB and mitogen-activated protein kinase phosphatase 5 (MKP5). Results: The results showed that NB significantly reduced serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, liver necrosis, oxidative stress, reactive oxygen species (ROS) content, inflammatory cytokine content and expression, inflammatory cell infiltration, and apoptosis after liver I/R and AML12 cells H/R injury. Additionally, NB inhibited the JUN protein amino-terminal kinase (JNK)/P38 pathway. Molecular docking results showed good binding between NB and MKP5 proteins, and Western blotting results showed that NB increased the protein expression of MKP5. MKP5 knockout (KO) significantly diminished the protective effects of NB against liver injury and its inhibitory effects on the JNK/P38 pathway. Conclusion: NB exerts hepatoprotective effects against liver I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.


Subject(s)
Mice, Inbred C57BL , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Mice , Male , p38 Mitogen-Activated Protein Kinases/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Molecular Docking Simulation , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/antagonists & inhibitors , Dose-Response Relationship, Drug , MAP Kinase Signaling System/drug effects , Structure-Activity Relationship , Disease Models, Animal , Molecular Structure , Oxidative Stress/drug effects
6.
Dig Dis Sci ; 69(8): 2856-2874, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38824257

ABSTRACT

INTRODUCTION: Previous studies have demonstrated that Dual-specificity phosphatase 4 (DUSP4) plays an important role in the progression of different tumor types. However, the role and mechanism of DUSP4 in colorectal cancer (CRC) remain unclear. AIMS: We investigate the role and mechanisms of DUSP4 in CRC. METHODS: Immunohistochemistry was used to investigate DUSP4 expression in CRC tissues. Cell proliferation, apoptosis and migration assays were used to validate DUSP4 function in vitro and in vivo. RNA-sequence assay was used to identify the target genes of DUSP4. Human phosphokinase array and inhibitor assays were used to explore the downstream signaling of DUSP4. RESULTS: DUSP4 expression was upregulated in CRC tissues relative to normal colorectal tissues, and DUSP4 expression showed a significant positive correlation with CRC stage. Consistently, we found that DUSP4 was highly expressed in colorectal cancer cells compared to normal cells. DUSP4 knockdown inhibits CRC cell proliferation, migration and promotes apoptosis. Furthermore, the ectopic expression of DUSP4 enhanced CRC cell proliferation, migration and diminished apoptosis in vitro and in vivo. Human phosphokinase array data showed that ectopic expression of DUSP4 promotes CREB activation. RNA-sequencing data showed that PRKACB acts as a downstream target gene of DUSP4/CREB and enhances CREB activation through PKA/cAMP signaling. In addition, xenograft model results demonstrated that DUSP4 promotes colorectal tumor progression via PRKACB/CREB activation in vivo. CONCLUSION: These findings suggest that DUSP4 promotes CRC progression. Therefore, it may be a promising therapeutic target for CRC.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Colorectal Neoplasms , Cyclic AMP Response Element-Binding Protein , Dual-Specificity Phosphatases , Mitogen-Activated Protein Kinase Phosphatases , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Animals , Female , Male , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/metabolism , Cyclic AMP-Dependent Protein Kinase Catalytic Subunits/genetics , Gene Expression Regulation, Neoplastic , Mice , Cell Line, Tumor , Mice, Nude , Middle Aged , Signal Transduction
7.
Life Sci ; 351: 122787, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38851418

ABSTRACT

BACKGROUND: Exosomes play a crucial role in promoting tumor progression, dissemination, and resistance to treatment. These extracellular vesicles hold promise as valuable indicators for cancer detection. Our investigation focuses on exploring the significance and clinical relevance of exosomal miRNAs in small cell lung cancer (SCLC). METHODS: Serum exosomes were isolated from both SCLC patients and healthy controls, and subjected to exosomal miRNA sequencing analysis. Mimics and inhibitors were employed to investigate the function of exosomal miR-1128-5p in cell migration and proliferation, both in vitro and in vivo. Western blot and luciferase assay were utilized to identify the interaction between miR-1228-5p and dual specificity phosphatase 22 (DUSP22). RESULTS: Exosomal miRNA sequencing analysis revealed enrichment of specific miRNAs in SCLC compared to healthy controls. Circulating miR-1228-5p was upregulated in SCLC patients, associated with advanced stages, suggesting its potential oncogenic role. In vitro, miR-1228-5p expression was significantly higher in SCLC cells than in normal cells. SCLC cell-derived exosomes contained elevated levels of miR-1228-5p, facilitating its entry into co-cultured cells. Notably, migration and proliferation induced by SCLC exosomes were mainly mediated by miR-1228-5p. In vivo experiments confirmed these findings. Western blot analysis demonstrated miR-1228-5p's regulation of DUSP22 expression, and luciferase reporter assay validated DUSP22 as a direct target gene. Overexpressing DUSP22 counteracted miR-1228-5p's promotion of SCLC cell proliferation and migration. CONCLUSIONS: Collectively, our results suggest that exosomes play a role in facilitating cancer growth and metastasis by delivering miR-1228-5p. Moreover, circulating exosomal miR-1228-5p may serve as a potential marker for SCLC diagnosis and prognosis.


Subject(s)
Cell Movement , Cell Proliferation , Down-Regulation , Dual-Specificity Phosphatases , Exosomes , Gene Expression Regulation, Neoplastic , Lung Neoplasms , MicroRNAs , Mitogen-Activated Protein Kinase Phosphatases , Small Cell Lung Carcinoma , Humans , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/metabolism , Male , Female , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Animals , Mice , Mitogen-Activated Protein Kinase Phosphatases/genetics , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Middle Aged , Cell Line, Tumor , Mice, Nude , Mice, Inbred BALB C , Aged
8.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38721693

ABSTRACT

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Subject(s)
Apoptosis , Dual-Specificity Phosphatases , Glucose , Inflammation , MAP Kinase Kinase Kinase 5 , Neurons , Oxygen , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Animals , Mice , Cells, Cultured , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Glucose/metabolism , Inflammation/metabolism , Inflammation/pathology , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Signaling System , Neurons/metabolism , Neurons/pathology , Oxygen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction , Mitogen-Activated Protein Kinase 14
9.
Theriogenology ; 226: 10-19, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38820772

ABSTRACT

The lipogenesis and steroidogenesis of granulosa cells are crucial during follicular development, yet it remains unclear whether dual-specificity phosphatase 8 (DUSP8) is involved. In this study, the specific role of DUSP8 in lipogenesis and steroidogenesis was investigated through culturing chicken granulosa cells in vitro. The results revealed that the expression levels of adipogenic genes were elevated after DUSP8 overexpression and reduced after knockdown. The same was observed for lipid deposition in granulosa cells. Meanwhile, the steroidogenic gene expression and progesterone synthesis were promoted after DUSP8 overexpression and inhibited after knockdown. In addition, we also found that DUSP8 blocked the phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2). Based on the previous results that activated ERK1/2 signaling inhibited lipid deposition and progesterone synthesis in chicken granulosa cells, we demonstrated that DUSP8 promoted lipid deposition and progesterone synthesis through mediating the ERK1/2 signaling pathway. The results will improve our understanding of the molecular regulatory mechanisms regarding lipid metabolism and progesterone synthesis in chicken granulosa cells.


Subject(s)
Chickens , Granulosa Cells , Lipogenesis , MAP Kinase Signaling System , Animals , Female , Cells, Cultured , Chickens/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Gene Expression Regulation , Granulosa Cells/metabolism , Progesterone/biosynthesis , Progesterone/metabolism
10.
J Immunol ; 213(1): 63-74, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38767414

ABSTRACT

The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.


Subject(s)
Feedback, Physiological , Janus Kinases , Penaeidae , STAT Transcription Factors , Signal Transduction , Animals , Penaeidae/immunology , Penaeidae/genetics , Signal Transduction/immunology , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Phosphorylation , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Arthropod Proteins/genetics , Arthropod Proteins/immunology , Arthropod Proteins/metabolism
11.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(5): 404-410, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38790096

ABSTRACT

Objective To explore the regulatory role of dual-specificity phosphatase 5 (DUSP5) in BCG-mediated inflammatory response in mouse RAW264.7 macrophages. Methods Western blot analysis was employed to detect the expression changes of DUSP5 in BCG-infected RAW264.7 macrophages at the period of 0.5, 1, 2, 4, 6, 8, 12 and 24 hours. Intracellular DUSP5 was reduced by small interfering RNA (siRNA) and transfected RAW264.7 macrophages were divided into siRNA-negative control (si-NC) group, DUSP5 knockdown (si-DUSP5) group, si-NC combined BCG infection group, and si-DUSP5 combined BCG infection group. Real-time quantitative PCR was conducted to measure the mRNA expression of interleukin 1ß (IL-1ß), IL-6, tumor necrosis factor α (TNF-α), and IL-10 in cells. ELISA was performed to measure the concentration of the cytokines in cell culture medium. Western blot analysis was performed to detect the expression changes of cellular nuclear factor κB (NF-κB) and phosphorylated NF-κB (p-NF-κB). Results BCG infection upregulated DUSP5 protein expression in RAW264.7 macrophages with the expression of DUSP5 reaching the peak after 4 hours' BCG stimulation. Comparing with si-NC combined BCG infection group, DUSP5 knockdown inhibited the expression and secretion of pro-inflammatory factors IL-1ß, IL-6, and TNF-α, while the expression of the anti-inflammatory factor IL-10 was not affected by DUSP5. Moreover, knockdown of DUSP5 inhibited the phosphorylation of NF-κB in cells. Conclusion DUSP5 knockdown inhibites BCG-mediated macrophage inflammatory response via blocking NF-κB signaling activation.


Subject(s)
Dual-Specificity Phosphatases , Macrophages , NF-kappa B , Signal Transduction , Animals , Mice , RAW 264.7 Cells , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , NF-kappa B/metabolism , Macrophages/metabolism , Macrophages/immunology , Inflammation/genetics , Inflammation/metabolism , Gene Knockdown Techniques , Mycobacterium bovis/immunology , Cytokines/metabolism , Cytokines/genetics
12.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727958

ABSTRACT

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Subject(s)
Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Humans , Cell Survival/genetics , Cell Survival/drug effects , Cells, Cultured , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Signal Transduction/genetics , Stem Cells/metabolism
13.
J Nanobiotechnology ; 22(1): 236, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724995

ABSTRACT

Increased proinflammatory cytokines and infiltration of inflammatory cells in the stroma are important pathological features of type IIIA chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS-A), and the interaction between stromal cells and other cells in the inflammatory microenvironment is closely related to the inflammatory process of CP/CPPS-A. However, the interaction between stromal and epithelial cells remains unclear. In this study, inflammatory prostate epithelial cells (PECs) released miR-203a-3p-rich exosomes and facilitated prostate stromal cells (PSCs) inflammation by upregulating MCP-1 expression. Mechanistically, DUSP5 was identified as a novel target gene of miR-203a-3p and regulated PSCs inflammation through the ERK1/2/MCP-1 signaling pathway. Meanwhile, the effect of exosomes derived from prostatic fluids of CP/CPPS-A patients was consistent with that of exosomes derived from inflammatory PECs. Importantly, we demonstrated that miR-203a-3p antagomirs-loaded exosomes derived from PECs targeted the prostate and alleviated prostatitis by inhibiting the DUSP5-ERK1/2 pathway. Collectively, our findings provide new insights into underlying the interaction between PECs and PSCs in CP/CPPS-A, providing a promising therapeutic strategy for CP/CPPS-A.


Subject(s)
Epithelial Cells , Exosomes , MicroRNAs , Prostatitis , Stromal Cells , Animals , Humans , Male , Mice , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Epithelial Cells/metabolism , Epithelial Cells/pathology , Exosomes/metabolism , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System , MicroRNAs/genetics , MicroRNAs/metabolism , Pelvic Pain/genetics , Pelvic Pain/metabolism , Prostate/pathology , Prostate/metabolism , Prostatitis/genetics , Prostatitis/pathology , Prostatitis/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism
14.
Toxicol Appl Pharmacol ; 487: 116954, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705402

ABSTRACT

Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-ß-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.


Subject(s)
Apoptosis , Epithelial Cells , Kidney Tubules , MAP Kinase Kinase Kinases , Rats, Sprague-Dawley , Reperfusion Injury , p38 Mitogen-Activated Protein Kinases , Animals , Reperfusion Injury/pathology , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Epithelial Cells/metabolism , Epithelial Cells/pathology , Male , Kidney Tubules/pathology , Kidney Tubules/metabolism , Rats , p38 Mitogen-Activated Protein Kinases/metabolism , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Cell Line , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Inflammation/pathology , Inflammation/metabolism , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinase Phosphatases/metabolism , Mitogen-Activated Protein Kinase Phosphatases/genetics , Signal Transduction/physiology
15.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674085

ABSTRACT

DUSPs, a diverse group of protein phosphatases, play a pivotal role in orchestrating cellular growth and development through intricate signaling pathways. Notably, they actively participate in the MAPK pathway, which governs crucial aspects of plant physiology, including growth regulation, disease resistance, pest resistance, and stress response. DUSP is a key enzyme, and it is the enzyme that limits the rate of cell metabolism. At present, complete understanding of the DUSP gene family in cotton and its specific roles in resistance to Verticillium wilt (VW) remains elusive. To address this knowledge gap, we conducted a comprehensive identification and analysis of four key cotton species: Gossypium arboreum, Gossypium barbadense, Gossypium hirsutum, and Gossypium raimondii. The results revealed the identification of a total of 120 DUSP genes in the four cotton varieties, which were categorized into six subgroups and randomly distributed at both ends of 26 chromosomes, predominantly localized within the nucleus. Our analysis demonstrated that closely related DUSP genes exhibited similarities in terms of the conserved motif composition and gene structure. A promoter analysis performed on the GhDUSP gene promoter revealed the presence of several cis-acting elements, which are associated with abiotic and biotic stress responses, as well as hormone signaling. A tissue expression pattern analysis demonstrated significant variations in GhDUSP gene expression under different stress conditions, with roots exhibiting the highest levels, followed by stems and leaves. In terms of tissue-specific detection, petals, leaves, stems, stamens, and receptacles exhibited higher expression levels of the GhDUSP gene. The gene expression analysis results for GhDUSPs under stress suggest that DUSP genes may have a crucial role in the cotton response to stress in cotton. Through Virus-Induced Gene Silencing (VIGS) experiments, the silencing of the target gene significantly reduced the resistance efficiency of disease-resistant varieties against Verticillium wilt (VW). Consequently, we conclude that GH_A11G3500-mediated bispecific phosphorylated genes may serve as key regulators in the resistance of G. hirsutum to Verticillium wilt (VW). This study presents a comprehensive structure designed to provide an in-depth understanding of the potential biological functions of cotton, providing a strong foundation for further research into molecular breeding and resistance to plant pathogens.


Subject(s)
Gene Expression Regulation, Plant , Gossypium , Plant Diseases , Verticillium , Disease Resistance , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Genome, Plant , Gossypium/genetics , Gossypium/microbiology , Phylogeny , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Verticillium/drug effects , Verticillium/physiology
16.
Endocrine ; 85(3): 1268-1277, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38564084

ABSTRACT

PURPOSE: The role of dual-specificity phosphatase-5 (DUSP5) in BRAF-mutant thyroid cancers remains unclear. The aims of this study are to investigate the role of DUSP5 in BRAF-mutant thyroid cancer cells, explore its value in the diagnosis and evaluate therapeutic potential of targeting DUSP5 combined with sorafenib for BRAF-mutant thyroid cancer patients. METHODS: The role of DUSP5 in thyroid cancer cells was determined by a series of in vitro and in vivo experiments. Underlying mechanisms were explored by western blotting analysis. The diagnostic value of combination detection of DUSP5 expression and BRAFV600E mutation was evaluated using ROC curve. RESULTS: Knocking down DUSP5 in BRAF-mutant thyroid cancer cells significantly inhibited colony formation, cell migration and invasion, meanwhile, induced cell cycle arrest and cell apoptosis. Moreover, inhibition of DUSP5 improved the anti-tumor efficacy of sorafenib both in vitro and in vivo. Besides, combination detection of DUSP5 expression and BRAFV600E mutation showed much more accuracy in preoperative diagnosis of thyroid cancer. CONCLUSIONS: Our data demonstrate an oncogenic role of DUSP5 in BRAF-mutant thyroid cancer cells, and combined analysis of its expression and BRAFV600E mutation can accurately diagnose thyroid cancer. In addition, inhibition of DUSP5 improves the response of BRAF-mutant thyroid cancer cells to sorafenib.


Subject(s)
Antineoplastic Agents , Proto-Oncogene Proteins B-raf , Sorafenib , Thyroid Neoplasms , Sorafenib/pharmacology , Sorafenib/therapeutic use , Humans , Proto-Oncogene Proteins B-raf/genetics , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Animals , Mutation , Female , Male , Cell Movement/drug effects , Apoptosis/drug effects , Mice , Middle Aged , Cell Proliferation/drug effects , Phenotype
17.
Oncogene ; 43(21): 1608-1619, 2024 May.
Article in English | MEDLINE | ID: mdl-38565943

ABSTRACT

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Subject(s)
Cell Movement , Cell Survival , Dual-Specificity Phosphatases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Cell Movement/genetics , Cell Survival/radiation effects , Cell Survival/genetics , Cell Survival/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Cell Line, Tumor , Ultraviolet Rays/adverse effects , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , JNK Mitogen-Activated Protein Kinases/metabolism
18.
J Biol Chem ; 300(5): 107271, 2024 May.
Article in English | MEDLINE | ID: mdl-38588813

ABSTRACT

Lafora disease (LD) is an autosomal recessive myoclonus epilepsy with onset in the teenage years leading to death within a decade of onset. LD is characterized by the overaccumulation of hyperphosphorylated, poorly branched, insoluble, glycogen-like polymers called Lafora bodies. The disease is caused by mutations in either EPM2A, encoding laforin, a dual specificity phosphatase that dephosphorylates glycogen, or EMP2B, encoding malin, an E3-ubiquitin ligase. While glycogen is a widely accepted laforin substrate, substrates for malin have been difficult to identify partly due to the lack of malin antibodies able to detect malin in vivo. Here we describe a mouse model in which the malin gene is modified at the C-terminus to contain the c-myc tag sequence, making an expression of malin-myc readily detectable. Mass spectrometry analyses of immunoprecipitates using c-myc tag antibodies demonstrate that malin interacts with laforin and several glycogen-metabolizing enzymes. To investigate the role of laforin in these interactions we analyzed two additional mouse models: malin-myc/laforin knockout and malin-myc/LaforinCS, where laforin was either absent or the catalytic Cys was genomically mutated to Ser, respectively. The interaction of malin with partner proteins requires laforin but is not dependent on its catalytic activity or the presence of glycogen. Overall, the results demonstrate that laforin and malin form a complex in vivo, which stabilizes malin and enhances interaction with partner proteins to facilitate normal glycogen metabolism. They also provide insights into the development of LD and the rescue of the disease by the catalytically inactive phosphatase.


Subject(s)
Lafora Disease , Protein Tyrosine Phosphatases, Non-Receptor , Ubiquitin-Protein Ligases , Lafora Disease/metabolism , Lafora Disease/genetics , Lafora Disease/pathology , Animals , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Humans , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Disease Models, Animal , Glycogen/metabolism , Glycogen/genetics
19.
NPJ Biofilms Microbiomes ; 10(1): 22, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480743

ABSTRACT

Gut microbiota rearrangement induced by cold temperature is crucial for browning in murine white adipose tissue. This study provides evidence that DUSP6, a host factor, plays a critical role in regulating cold-induced gut microbiota rearrangement. When exposed to cold, the downregulation of intestinal DUSP6 increased the capacity of gut microbiota to produce ursodeoxycholic acid (UDCA). The DUSP6-UDCA axis is essential for driving Lachnospiraceae expansion in the cold microbiota. In mice experiencing cold-room temperature (CR) transitions, prolonged DUSP6 inhibition via the DUSP6 inhibitor (E/Z)-BCI maintained increased cecal UDCA levels and cold-like microbiota networks. By analyzing DUSP6-regulated microbiota dynamics in cold-exposed mice, we identified Marvinbryantia as a genus whose abundance increased in response to cold exposure. When inoculated with human-origin Marvinbryantia formatexigens, germ-free recipient mice exhibited significantly enhanced browning phenotypes in white adipose tissue. Moreover, M. formatexigens secreted the methylated amino acid Nε-methyl-L-lysine, an enriched cecal metabolite in Dusp6 knockout mice that reduces adiposity and ameliorates nonalcoholic steatohepatitis in mice. Our work revealed that host-microbiota coadaptation to cold environments is essential for regulating the browning-promoting gut microbiome.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Mice , Adiposity , Cold Temperature , Dual-Specificity Phosphatases/metabolism , Gastrointestinal Microbiome/physiology , Obesity
20.
Cancer Biother Radiopharm ; 39(6): 451-462, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38512300

ABSTRACT

Background: Long noncoding RNAs (lncRNAs), as emerging regulators of a wide variety of biological processes via diverse mechanisms, have been demonstrated to be of increasing importance in biology. Genome-wide association studies of tumor samples have identified several lncRNAs as either oncogenes or tumor suppressors in various types of cancers. In recent years, the importance of lncRNAs, especially in endometrioid cancer (EEC), has become increasingly well understood. The lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) has been reported to fulfill roles in several types of cancers; however, the main biological function and associated underlying molecular mechanism of FOXP4-AS1 in EEC have yet to be fully elucidated. The present study therefore aimed to investigate how RNA FOXP4-AS1 may participate in the development and progression of endometrioid carcinoma tissues. Materials and Methods: In the present study, the expression level of FOXP4-AS1 was investigated in endometrioid carcinoma tissues and matching nearby normal endometrial tissues collected from patients receiving surgery at the hospital. A series of molecular biological assays were performed to investigate the effect of FOXP4-AS1 on cell proliferation, cell migration, and cell invasion. Results: An increased concentration of FOXP4-AS1 was identified in endometrioid carcinoma samples and cell lines compared with the corresponding controls, and this lncRNA was found to be positively correlated with advanced FIGO stages in patients with endometrial cancer. Furthermore, knocking down endogenous FOXP4-AS1 led to a significant reduction in the colony formation number and a significant inhibition of cell proliferation, cell migration, and cell invasion in endometrioid carcinoma cells. Moreover, dual-specificity phosphatase 5 (DUSP5), which is lowly expressed in endometrioid carcinoma tissues cells and negatively modulated by FOXP4-AS1, was identified as the downstream target molecule of FOXP4-AS1. Subsequently, the mechanistic experiments confirmed that, through binding to enhancer of zeste homolog 2 (EZH2; one of the catalytic subunits of polycomb repressive complex 2 [PRC2]), FOXP4-AS1 could epigenetically suppress the expression of DUSP5. Finally, the oncogenic function of the FOXP4-AS1/EZH2/DUSP5 axis in endometrioid carcinoma was confirmed via rescue assays. Conclusions: The findings of the present study have highlighted how FOXP4-AS1 fulfills an oncogenic role in endometrioid carcinoma, and targeting FOXP4-AS1 and its pathway may provide new biomarkers for patients with endometrioid carcinoma.


Subject(s)
Carcinoma, Endometrioid , Dual-Specificity Phosphatases , Endometrial Neoplasms , RNA, Long Noncoding , Female , Humans , Middle Aged , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL