Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.100
Filter
1.
Food Res Int ; 190: 114624, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945578

ABSTRACT

The present work evaluated how a native pea protein isolate (PPI) affects the key roles carried out by bile salts (BS) in lipid digestion by means of the in vitro static INFOGEST protocol. Two gastric residence times were evaluated (10 and 60 min), and then the peptides obtained (GPPP) were mixed with BS at physiological concentration in simulated intestinal fluid to understand how they interact with BS both at the bulk and at the interface. Both GPPP give rise to a film with a predominant viscous character that does not constitute a barrier to the penetration of BS, but interact with BS in the bulk duodenal fluid. When the peptides flushing from the stomach after the different gastric residence times undergo duodenal digestion, it was found that for the longer gastric residence time the percentage of soluble fraction in the duodenal phase, that perform synergistically with BS micelles, was twice that of the lower residence time, leading to an increase in the solubilization of oleic acid. These results finally lead to a greater extent of lipolysis of olive oil emulsions. This work demonstrates the usefulness of in vitro models as a starting point to study the influence of gastric residence time of pea protein on its interaction with BS, affecting lipolysis. Pea proteins were shown to be effective emulsifiers that synergistically perform with BS improving the release and bioaccessibility of bioactive lipids as olive oil.


Subject(s)
Bile Acids and Salts , Digestion , Lipolysis , Pea Proteins , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry , Pea Proteins/chemistry , Pea Proteins/metabolism , Pisum sativum/chemistry , Pisum sativum/metabolism , Peptides/metabolism , Peptides/chemistry , Duodenum/metabolism , Humans
2.
Nat Immunol ; 25(7): 1218-1230, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38914866

ABSTRACT

Transglutaminase 2 (TG2) plays a pivotal role in the pathogenesis of celiac disease (CeD) by deamidating dietary gluten peptides, which facilitates antigenic presentation and a strong anti-gluten T cell response. Here, we elucidate the molecular mechanisms underlying the efficacy of the TG2 inhibitor ZED1227 by performing transcriptional analysis of duodenal biopsies from individuals with CeD on a long-term gluten-free diet before and after a 6-week gluten challenge combined with 100 mg per day ZED1227 or placebo. At the transcriptome level, orally administered ZED1227 effectively prevented gluten-induced intestinal damage and inflammation, providing molecular-level evidence that TG2 inhibition is an effective strategy for treating CeD. ZED1227 treatment preserved transcriptome signatures associated with mucosal morphology, inflammation, cell differentiation and nutrient absorption to the level of the gluten-free diet group. Nearly half of the gluten-induced gene expression changes in CeD were associated with the epithelial interferon-γ response. Moreover, data suggest that deamidated gluten-induced adaptive immunity is a sufficient step to set the stage for CeD pathogenesis. Our results, with the limited sample size, also suggest that individuals with CeD might benefit from an HLA-DQ2/HLA-DQ8 stratification based on gene doses to maximally eliminate the interferon-γ-induced mucosal damage triggered by gluten.


Subject(s)
Celiac Disease , Diet, Gluten-Free , GTP-Binding Proteins , Gene Expression Profiling , Glutens , Intestinal Mucosa , Protein Glutamine gamma Glutamyltransferase 2 , Transglutaminases , Celiac Disease/immunology , Humans , Glutens/immunology , Transglutaminases/metabolism , Transglutaminases/antagonists & inhibitors , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/antagonists & inhibitors , GTP-Binding Proteins/genetics , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/drug effects , Female , Male , Adult , Transcriptome , Duodenum/pathology , Duodenum/immunology , Duodenum/metabolism , Interferon-gamma/metabolism , Middle Aged , HLA-DQ Antigens/genetics , HLA-DQ Antigens/immunology , Young Adult , Adaptive Immunity/drug effects
3.
Gut Microbes ; 16(1): 2361660, 2024.
Article in English | MEDLINE | ID: mdl-38935764

ABSTRACT

The microbiota significantly impacts digestive epithelium functionality, especially in nutrient processing. Given the importance of iron for both the host and the microbiota, we hypothesized that host-microbiota interactions fluctuate with dietary iron levels. We compared germ-free (GF) and conventional mice (SPF) fed iron-containing (65 mg/Kg) or iron-depleted (<6 mg/Kg) diets. The efficacy of iron privation was validated by iron blood parameters. Ferritin and Dmt1, which represent cellular iron storage and transport respectively, were studied in tissues where they are abundant: the duodenum, liver and lung. When the mice were fed an iron-rich diet, the microbiota increased blood hemoglobin and hepcidin and the intestinal ferritin levels, suggesting that the microbiota helps iron storage. When iron was limiting, the microbiota inhibited the expression of the intestinal Dmt1 transporter, likely via the pathway triggered by Hif-2α. The microbiota assists the host in storing intestinal iron when it is abundant and competes with the host by inhibiting Dmt1 in conditions of iron scarcity. Comparison between duodenum, liver and lung indicates organ-specific responses to microbiota and iron availability. Iron depletion induced temporal changes in microbiota composition and activity, reduced α-diversity of microbiota, and led to Lactobacillaceae becoming particularly more abundant after 60 days of privation. By inoculating GF mice with a simplified bacterial mixture, we show that the iron-depleted host favors the gut fitness of Bifidobacterium longum.


Subject(s)
Cation Transport Proteins , Duodenum , Gastrointestinal Microbiome , Hepcidins , Iron, Dietary , Liver , Animals , Mice , Gastrointestinal Microbiome/physiology , Iron, Dietary/metabolism , Iron, Dietary/administration & dosage , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics , Liver/metabolism , Liver/microbiology , Duodenum/metabolism , Duodenum/microbiology , Hepcidins/metabolism , Ferritins/metabolism , Germ-Free Life , Host Microbial Interactions , Lung/microbiology , Lung/metabolism , Iron/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Mice, Inbred C57BL , Hemoglobins/metabolism , Male
4.
Front Immunol ; 15: 1397590, 2024.
Article in English | MEDLINE | ID: mdl-38933260

ABSTRACT

Chronic inflammatory enteropathy (CIE) is a common condition in dogs causing recurrent or persistent gastrointestinal clinical signs. Pathogenesis is thought to involve intestinal mucosal inflammatory infiltrates, but histopathological evaluation of intestinal biopsies from dogs with CIE fails to guide treatment, inform prognosis, or correlate with clinical remission. We employed single-cell RNA sequencing to catalog and compare the diversity of cells present in duodenal mucosal endoscopic biopsies from 3 healthy dogs and 4 dogs with CIE. Through characterization of 35,668 cells, we identified 31 transcriptomically distinct cell populations, including T cells, epithelial cells, and myeloid cells. Both healthy and CIE samples contributed to each cell population. T cells were broadly subdivided into GZMAhigh (putatively annotated as tissue resident) and IL7Rhigh (putatively annotated as non-resident) T cell categories, with evidence of a skewed proportion favoring an increase in the relative proportion of IL7Rhigh T cells in CIE dogs. Among the myeloid cells, neutrophils from CIE samples exhibited inflammatory (SOD2 and IL1A) gene expression signatures. Numerous differentially expressed genes were identified in epithelial cells, with gene set enrichment analysis suggesting enterocytes from CIE dogs may be undergoing stress responses and have altered metabolic properties. Overall, this work reveals the previously unappreciated cellular heterogeneity in canine duodenal mucosa and provides new insights into molecular mechanisms which may contribute to intestinal dysfunction in CIE. The cell type gene signatures developed through this study may also be used to better understand the subtleties of canine intestinal physiology in health and disease.


Subject(s)
Dog Diseases , Duodenum , Gene Expression Profiling , Single-Cell Analysis , Transcriptome , Animals , Dogs , Duodenum/pathology , Duodenum/immunology , Duodenum/metabolism , Dog Diseases/genetics , Dog Diseases/immunology , Dog Diseases/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Chronic Disease , Male , Female , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
Medicina (Kaunas) ; 60(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38929559

ABSTRACT

Background and Objectives: Hyperprolactinemia, as a potential side-effect of some antipsychotic medications, is associated with decreased bone density and an increased risk of fractures. This study investigates whether calcium and vitamin D supplementation affects prolactin receptor (Prlr) gene expression in the duodenum, vertebrae, and kidneys of female rats with sulpiride-induced hyperprolactinemia. Materials and Methods: Twenty-one-week-old female Wistar rats were assigned to three groups: Group S consisted of ten rats who received sulpiride injections (10 mg/kg) twice daily for 6 weeks; Group D (10 rats) received daily supplementation of 50 mg calcium and 500 IU vitamin D along with sulpiride for the last 3 weeks; and Group C consisting of seven age-matched nulliparous rats serving as a control group. Real-time PCR was used to assess Prlr gene expression in the duodenum, vertebrae, and kidneys. Results: In Group S, Prlr gene expression was notably decreased in the duodenum (p < 0.01) but elevated in the vertebrae and kidneys compared to Group C. Conversely, Group D exhibited significantly increased Prlr expression in the duodenum (p < 0.01) alongside elevated expression in the vertebrae and kidneys. Conclusions: In sulpiride-induced hyperprolactinemia, decreased Prlr gene expression in the duodenum may lead to reduced intestinal calcium absorption. Consequently, prolactin may draw calcium from the skeletal system to maintain calcium balance, facilitated by increased Prlr gene expression in the vertebrae. However, vitamin D supplementation in sulpiride-induced hyperprolactinemia notably enhances Prlr gene expression in the duodenum, potentially ameliorating intestinal calcium absorption and mitigating adverse effects on bone health.


Subject(s)
Calcium , Duodenum , Hyperprolactinemia , Rats, Wistar , Receptors, Prolactin , Sulpiride , Vitamin D , Animals , Hyperprolactinemia/drug therapy , Hyperprolactinemia/chemically induced , Sulpiride/pharmacology , Female , Vitamin D/pharmacology , Vitamin D/therapeutic use , Rats , Calcium/metabolism , Duodenum/drug effects , Duodenum/metabolism , Receptors, Prolactin/metabolism , Gene Expression/drug effects
6.
J Clin Immunol ; 44(6): 133, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780872

ABSTRACT

PURPOSE: A large proportion of Common variable immunodeficiency (CVID) patients has duodenal inflammation with increased intraepithelial lymphocytes (IEL) of unknown aetiology. The histologic similarities to celiac disease, lead to confusion regarding treatment (gluten-free diet) of these patients. We aimed to elucidate the role of epigenetic DNA methylation in the aetiology of duodenal inflammation in CVID and differentiate it from true celiac disease. METHODS: DNA was isolated from snap-frozen pieces of duodenal biopsies and analysed for differences in genome-wide epigenetic DNA methylation between CVID patients with increased IEL (CVID_IEL; n = 5) without IEL (CVID_N; n = 3), celiac disease (n = 3) and healthy controls (n = 3). RESULTS: The DNA methylation data of 5-methylcytosine in CpG sites separated CVID and celiac diseases from healthy controls. Differential methylation in promoters of genes were identified as potential novel mediators in CVID and celiac disease. There was limited overlap of methylation associated genes between CVID_IEL and Celiac disease. High frequency of differentially methylated CpG sites was detected in over 100 genes nearby transcription start site (TSS) in both CVID_IEL and celiac disease, compared to healthy controls. Differential methylation of genes involved in regulation of TNF/cytokine production were enriched in CVID_IEL, compared to healthy controls. CONCLUSION: This is the first study to reveal a role of epigenetic DNA methylation in the etiology of duodenal inflammation of CVID patients, distinguishing CVID_IEL from celiac disease. We identified potential biomarkers and therapeutic targets within gene promotors and in high-frequency differentially methylated CpG regions proximal to TSS in both CVID_IEL and celiac disease.


Subject(s)
Celiac Disease , Common Variable Immunodeficiency , CpG Islands , DNA Methylation , Duodenum , Epigenesis, Genetic , Humans , Common Variable Immunodeficiency/genetics , Duodenum/metabolism , Duodenum/pathology , Celiac Disease/genetics , Female , Male , Adult , Middle Aged , CpG Islands/genetics , Promoter Regions, Genetic/genetics , Intraepithelial Lymphocytes/immunology , Young Adult , Genome-Wide Association Study , 5-Methylcytosine/metabolism
7.
Food Res Int ; 187: 114343, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763636

ABSTRACT

Human breast milk promotes maturation of the infant gastrointestinal barrier, including the promotion of mucus production. In the quest to produce next generation infant milk formula (IMF), we have produced IMF by membrane filtration (MEM-IMF). With a higher quantity of native whey protein, MEM-IMF more closely mimics human breast milk than IMF produced using conventional heat treatment (HT-IMF). After a 4-week dietary intervention in young pigs, animals fed a MEM-IMF diet had a higher number of goblet cells, acidic mucus and mucin-2 in the jejunum compared to pigs fed HT-IMF (P < 0.05). In the duodenum, MEM-IMF fed pigs had increased trypsin activity in the gut lumen, increased mRNA transcript levels of claudin 1 in the mucosal scrapings and increased lactase activity in brush border membrane vesicles than those pigs fed HT-IMF (P < 0.05). In conclusion, MEM-IMF is superior to HT-IMF in the promotion of mucus production in the young gut.


Subject(s)
Filtration , Infant Formula , Mucus , Animals , Infant Formula/chemistry , Mucus/metabolism , Swine , Whey Proteins/metabolism , Intestine, Small/metabolism , Trypsin/metabolism , Humans , Goblet Cells/metabolism , Claudin-1/metabolism , Claudin-1/genetics , Lactase/metabolism , Lactase/genetics , Mucin-2/metabolism , Mucin-2/genetics , Intestinal Mucosa/metabolism , Duodenum/metabolism , Jejunum/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Milk Proteins/metabolism , Milk Proteins/analysis
8.
Sci Rep ; 14(1): 11911, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789719

ABSTRACT

Lack of understanding of the pathophysiology of gastrointestinal (GI) complications in type 1 diabetes (T1D), including altered intestinal transcriptomes and protein expression represents a major gap in the management of these patients. Human enteroids have emerged as a physiologically relevant model of the intestinal epithelium but establishing enteroids from individuals with long-standing T1D has proven difficult. We successfully established duodenal enteroids using endoscopic biopsies from pediatric T1D patients and compared them with aged-matched enteroids from healthy subjects (HS) using bulk RNA sequencing (RNA-seq), and functional analyses of ion transport processes. RNA-seq analysis showed significant differences in genes and pathways associated with cell differentiation and proliferation, cell fate commitment, and brush border membrane. Further validation of these results showed higher expression of enteroendocrine cells, and the proliferating cell marker Ki-67, significantly lower expression of NHE3, lower epithelial barrier integrity, and higher fluid secretion in response to cAMP and elevated calcium in T1D enteroids. Enteroids established from pediatric T1D duodenum identify characteristics of an abnormal intestinal epithelium and are distinct from HS. Our data supports the use of pediatric enteroids as an ex-vivo model to advance studies of GI complications and drug discovery in T1D patients.


Subject(s)
Diabetes Mellitus, Type 1 , Duodenum , Intestinal Mucosa , Humans , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/genetics , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Child , Duodenum/metabolism , Duodenum/pathology , Female , Male , Cell Proliferation , Adolescent , Enteroendocrine Cells/metabolism , Enteroendocrine Cells/pathology , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Cell Differentiation , Organoids/metabolism , Organoids/pathology , Ki-67 Antigen/metabolism
9.
J Gastrointest Surg ; 28(6): 923-932, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574966

ABSTRACT

BACKGROUND: Sleeve gastrectomy (SG) is one of the most commonly performed bariatric surgeries. SG treats type 2 diabetes mellitus better than several drugs. The mechanisms that underlie this phenomenon are not clear. This study proposed that somatostatin (SST) isoforms SST-14 and SST-28 are key in the carbohydrate after SG. METHODS: Surgeries were performed on 3 groups of Wistar rats: the fasting, surgery control, and SG groups. Plasma levels of glucose, insulin, SST-14, and SST-28 were measured at 2 survival periods after surgery. Islet SST receptor (SSTR) and cell populations were studied. We performed a pasireotide (SST-28 analogue) infusion assay in another group of rats to confirm the influence of SST-28 plasma levels on the delta-cell population. RESULTS: This study found an elevation in the insulin response after SG in animals but a decrease in the insulin response over the long term with a loss of beta-cell mass. An increase in duodenal SST-28-producing cells in the duodenum and a loss of pancreatic SST-14-producing cells were observed after SG in animals but not in controls. The expression of SSTR type 5 in delta-cell populations from each group and the ability of the pasireotide infusion assay to decrease the delta-cell population indicated the effect of SST-28 plasma levels on delta-cell maintenance. CONCLUSION: After SG initiates a compensatory response in the duodenum, beta-cell mass is depleted after loss of the brake that regulates SST-14 at the paracrine level in a nonobese, normoglycemic rat model. This was an experimental model, with no clinical translation to the human clinic, with a preliminary importance regarding new pathophysiologic perspectives or pathways.


Subject(s)
Blood Glucose , Gastrectomy , Insulin , Rats, Wistar , Receptors, Somatostatin , Somatostatin , Animals , Somatostatin/analogs & derivatives , Gastrectomy/methods , Rats , Male , Receptors, Somatostatin/metabolism , Blood Glucose/metabolism , Insulin/blood , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Duodenum/metabolism , Duodenum/surgery
10.
Diabetologia ; 67(7): 1260-1270, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38561463

ABSTRACT

AIMS/HYPOTHESIS: Metformin lowers postprandial glycaemic excursions in individuals with type 2 diabetes by modulating gastrointestinal function, including the stimulation of glucagon-like peptide-1 (GLP-1). The impact of varying the timing of metformin administration on postprandial glucose metabolism is poorly defined. We evaluated the effects of metformin, administered at different intervals before an intraduodenal glucose infusion, on the subsequent glycaemic, insulinaemic and GLP-1 responses in metformin-treated type 2 diabetes. METHODS: Sixteen participants with type 2 diabetes that was relatively well-controlled by metformin monotherapy were studied on four separate days in a crossover design. On each day, participants were randomised to receive a bolus infusion of metformin (1000 mg in 50 ml 0.9% saline) via a nasoduodenal catheter at t = -60, -30 or 0 min (and saline at the other timepoints) or saline at all timepoints (control), followed by an intraduodenal glucose infusion of 12.56 kJ/min (3 kcal/min) at t = 0-60 min. The treatments were blinded to both participants and investigators involved in the study procedures. Plasma glucose, insulin and total GLP-1 levels were measured every 30 min between t = -60 min and t = 120 min. RESULTS: There was a treatment-by-time interaction for metformin in reducing plasma glucose levels and increasing plasma GLP-1 and insulin levels (p<0.05 for each). The reduction in plasma glucose levels was greater when metformin was administered at t = -60 or -30 min vs t = 0 min (p<0.05 for each), and the increases in plasma GLP-1 levels were evident only when metformin was administered at t = -60 or -30 min (p<0.05 for each). Although metformin did not influence insulin sensitivity, it enhanced glucose-induced insulin secretion (p<0.05), and the increases in plasma insulin levels were comparable on the 3 days when metformin was given. CONCLUSIONS/INTERPRETATION: In well-controlled metformin-treated type 2 diabetes, glucose-lowering by metformin is greater when it is given before, rather than with, enteral glucose, and this is associated with a greater GLP-1 response. These observations suggest that administration of metformin before meals may optimise its effect in improving postprandial glycaemic control. TRIAL REGISTRATION: www.anzctr.org.au ACTRN12621000878875 FUNDING: The study was not funded by a specific research grant.


Subject(s)
Blood Glucose , Cross-Over Studies , Diabetes Mellitus, Type 2 , Glucagon-Like Peptide 1 , Glucose , Hypoglycemic Agents , Metformin , Humans , Metformin/therapeutic use , Metformin/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Glucagon-Like Peptide 1/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Female , Middle Aged , Double-Blind Method , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Glucose/metabolism , Insulin/blood , Aged , Adult , Postprandial Period , Duodenum/metabolism , Duodenum/drug effects
11.
Clin Immunol ; 263: 110202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38575045

ABSTRACT

Celiac disease (CD) is an immune-driven disease characterized by tissue damage in the small intestine of genetically-susceptible individuals. We evaluated here a crucial immune regulatory pathway involving TYRO3, AXL, and MERTK (TAM) receptors and their ligands PROS1 and GAS6 in duodenal biopsies of controls and CD patients. We found increased GAS6 expression associated with downregulation of PROS1 and variable TAM receptors levels in duodenum tissue of CD patients. Interestingly, CD3+ lymphocytes, CD68+, CD11c+ myeloid and epithelial cells, showed differential expressions of TAM components comparing CD vs controls. Principal component analysis revealed a clear segregation of two groups of CD patients based on TAM components and IFN signaling. In vitro validation demonstrated that monocytes, T lymphocytes and epithelial cells upregulated TAM components in response to IFN stimulation. Our findings highlight a dysregulated TAM axis in CD related to IFN signaling and contribute to a deeper understanding of the pathophysiology of CD.


Subject(s)
Axl Receptor Tyrosine Kinase , Celiac Disease , Duodenum , Intercellular Signaling Peptides and Proteins , Intestinal Mucosa , Protein S , Receptor Protein-Tyrosine Kinases , c-Mer Tyrosine Kinase , Humans , Celiac Disease/immunology , Celiac Disease/metabolism , Celiac Disease/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/immunology , Male , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Female , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Adult , Duodenum/metabolism , Duodenum/immunology , Duodenum/pathology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism , Protein S/metabolism , Protein S/genetics , Middle Aged , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Young Adult , Signal Transduction , Adolescent , Interferons/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Biomaterials ; 308: 122559, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38583366

ABSTRACT

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Subject(s)
Gene Editing , Lipids , Liver , Nanoparticles , Animals , Gene Editing/methods , Liver/metabolism , Nanoparticles/chemistry , Lipids/chemistry , Mice , Plasmids/genetics , Plasmids/administration & dosage , Gene Transfer Techniques , Mice, Inbred C57BL , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Humans , DNA/administration & dosage , DNA/genetics , Duodenum/metabolism
13.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G687-G696, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38591144

ABSTRACT

Tryptophan is an essential amino acid transformed by host and gut microbial enzymes into metabolites that regulate mucosal homeostasis through aryl hydrocarbon receptor (AhR) activation. Alteration of tryptophan metabolism has been associated with chronic inflammation; however, whether tryptophan supplementation affects the metabolite repertoire and AhR activation under physiological conditions in humans is unknown. We performed a randomized, double blind, placebo-controlled, crossover study in 20 healthy volunteers. Subjects on a low tryptophan background diet were randomly assigned to a 3-wk l-tryptophan supplementation (3 g/day) or placebo, and after a 2-wk washout switched to opposite interventions. We assessed gastrointestinal and psychological symptoms by validated questionnaires, AhR activation by cell reporter assay, tryptophan metabolites by liquid chromatography and high-resolution mass spectrometry, cytokine production in isolated monocytes by ELISA, and microbiota profile by 16S rRNA Illumina technique. Oral tryptophan supplementation was well tolerated, with no changes in gastrointestinal or psychological scores. Compared with placebo, tryptophan increased AhR activation capacity by duodenal contents, but not by feces. This was paralleled by higher urinary and plasma kynurenine metabolites and indoles. Tryptophan had a modest impact on fecal microbiome profiles and no significant effect on cytokine production. At the doses used in this study, oral tryptophan supplementation in humans induces microbial indole and host kynurenine metabolic pathways in the small intestine, known to be immunomodulatory. The results should prompt tryptophan intervention strategies in inflammatory conditions of the small intestine where the AhR pathway is impaired.NEW & NOTEWORTHY We demonstrate that in healthy subjects, orally administered tryptophan activates microbial indole and host kynurenine pathways in the small intestine, the primary metabolic site for dietary components, and the richest source of immune cells along the gut. This study provides novel insights in how to optimally activate immunomodulatory AhR pathways and indole metabolism in the small intestine, serving as basis for future therapeutic trials using l-tryptophan supplementation in chronic inflammatory conditions affecting the small intestine.


Subject(s)
Cross-Over Studies , Duodenum , Healthy Volunteers , Receptors, Aryl Hydrocarbon , Tryptophan , Humans , Tryptophan/metabolism , Tryptophan/administration & dosage , Receptors, Aryl Hydrocarbon/metabolism , Male , Adult , Female , Duodenum/metabolism , Duodenum/drug effects , Double-Blind Method , Dietary Supplements , Gastrointestinal Microbiome/drug effects , Young Adult , Administration, Oral , Kynurenine/metabolism , Cytokines/metabolism , Feces/microbiology , Feces/chemistry , Indoles/pharmacology , Indoles/administration & dosage , Basic Helix-Loop-Helix Transcription Factors
14.
Mol Nutr Food Res ; 68(9): e2300889, 2024 May.
Article in English | MEDLINE | ID: mdl-38676468

ABSTRACT

SCOPE: Epidemiological studies have linked excessive red and processed meat intake to gut disorders. Under laboratory conditions, high heme content is considered the primary health risk factor for red meat. However, heme in meat is present in myoglobin, which is an indigestible protein, suggesting the different functions between myoglobin and heme. This study aims to explore how dietary myoglobin and heme affect gut health and microbiota differently. METHODS AND RESULTS: Histological and biochemical assessments as well as 16S rRNA sequencing are performed. Moderate myoglobin intake (equivalent to the recommended intake of 150 g meat per day for human) has beneficial effects on the duodenal barrier. However, a too high myoglobin diet (equivalent to intake of 3000 g meat per day for human) triggers duodenum injury and alters the microbial community. The hemin diet destroys intestinal tissue and ileal microbiota more significantly. The in vitro experiments further confirm that free heme exhibits high toxicity to beneficial gut bacteria while myoglobin promotes the growth and metabolism of Limosilactobacillus reuteri. CONCLUSION: Moderate intake of myoglobin or hemin is beneficial to intestinal health and microbiota, but too high amounts lead to tissue inflammation and injury in the small intestine by reshaping ileal microbiota.


Subject(s)
Gastrointestinal Microbiome , Hemin , Inflammation , Myoglobin , Gastrointestinal Microbiome/drug effects , Animals , Myoglobin/metabolism , Hemin/pharmacology , Male , Diet/methods , Intestine, Small/drug effects , Intestine, Small/metabolism , Limosilactobacillus reuteri , Duodenum/metabolism , RNA, Ribosomal, 16S/genetics , Heme
15.
Int J Biol Macromol ; 267(Pt 1): 131690, 2024 May.
Article in English | MEDLINE | ID: mdl-38688790

ABSTRACT

In the current study, how pectin retards the digestibility of wheat gluten was investigated using a static in vitro gastric-duodenal model. The degree of protein hydrolysis was estimated using the o-phthaldialdehyde method, while the in vitro digestograms were mathematically fitted using a single first-order kinetics model. Peptides' profile, free amino acids compositions, gluten-pectin interactions and their effects on enzymatic activities of proteolytic enzymes as well as on the gluten secondary structures under digestive conditions were studied using combined techniques. Results showed that pectin could retard gluten digestibility through 1). preferential absorption to insoluble gluten aggregates by electrostatic interactions; 2). increasing the helix and reducing the ß-sheet content of the solubilized gluten protein fractions in terms of their secondary molecular structures; 3). reducing pepsin activity by forming negatively charged pectin-gluten mixtures which then interacted with the positively charged pepsin molecules. The deeper insight into gluten-pectin interactions and their influences on gluten digestibility under gastrointestinal conditions provides important clues for developing effective forms of dietary fiber to improve the nutritional benefits of plant protein in individuals.


Subject(s)
Digestion , Glutens , Pectins , Pepsin A , Pectins/chemistry , Pectins/pharmacology , Glutens/chemistry , Digestion/drug effects , Hydrolysis , Pepsin A/chemistry , Pepsin A/metabolism , Duodenum/metabolism , Duodenum/drug effects , Triticum/chemistry , Proteolysis , Amino Acids/chemistry , Kinetics
16.
Development ; 151(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587174

ABSTRACT

The gastrointestinal (GI) tract is complex and consists of multiple organs with unique functions. Rare gene variants can cause congenital malformations of the human GI tract, although the molecular basis of these has been poorly studied. We identified a patient with compound-heterozygous variants in RFX6 presenting with duodenal malrotation and atresia, implicating RFX6 in development of the proximal intestine. To identify how mutations in RFX6 impact intestinal patterning and function, we derived induced pluripotent stem cells from this patient to generate human intestinal organoids (HIOs). We identified that the duodenal HIOs and human tissues had mixed regional identity, with gastric and ileal features. CRISPR-mediated correction of RFX6 restored duodenal identity. We then used gain- and loss-of-function and transcriptomic approaches in HIOs and Xenopus embryos to identify that PDX1 is a downstream transcriptional target of RFX6 required for duodenal development. However, RFX6 had additional PDX1-independent transcriptional targets involving multiple components of signaling pathways that are required for establishing early regional identity in the GI tract. In summary, we have identified RFX6 as a key regulator in intestinal patterning that acts by regulating transcriptional and signaling pathways.


Subject(s)
Gene Expression Regulation, Developmental , Homeodomain Proteins , Organoids , Regulatory Factor X Transcription Factors , Trans-Activators , Humans , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism , Animals , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Organoids/metabolism , Organoids/embryology , Duodenum/metabolism , Duodenum/embryology , Intestines/embryology , Intestinal Atresia/genetics , Induced Pluripotent Stem Cells/metabolism , Body Patterning/genetics , Signal Transduction/genetics , Mutation/genetics
17.
Obes Surg ; 34(5): 1665-1673, 2024 May.
Article in English | MEDLINE | ID: mdl-38512643

ABSTRACT

INTRODUCTION: Duodenal-jejunal bypass (DJB) is an experimental procedure in metabolic surgery that does not have a restrictive component. Changes in bile acid (BA) dynamics and intestinal microbiota are possibly related to metabolic improvement after DJB. Our previous studies involving obese diabetic rats showed the crucial role of the biliopancreatic limb (BPL) in metabolic improvement after DJB caused by BA reabsorption. We established a new DJB procedure to prevent bile from flowing into the BPL and aimed to elucidate the importance of bile in the BPL after DJB. METHODS: Otsuka Long-Evans Tokushima Fatty rats with diabetes were divided into three groups: two DJB groups and a sham group (n = 11). Duodenal-jejunal anastomosis was performed proximal to the papilla of Vater in the DJB group (n = 11). However, the DJB-D group (n = 11) underwent a new procedure with duodenal-jejunal anastomosis distal to the papilla of Vater for preventing bile flow into the BPL. RESULTS: Glucose metabolism improved and weight gain was suppressed in the DJB group, but not in the DJB-D and sham groups. Serum BA level and conjugated BA concentration were elevated in the DJB group. The gut microbiota was altered only in the DJB group; the abundance of Firmicutes and Bacteroidetes decreased and that of Actinobacteria increased. However, the DJB-D group exhibited no apparent change in the gut microbiota, similar to the sham group. CONCLUSION: BAs are essential in the BPL for metabolic improvement after DJB; they can improve the gut microbiota in these processes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastric Bypass , Obesity, Morbid , Rats , Animals , Bile , Diabetes Mellitus, Experimental/surgery , Diabetes Mellitus, Type 2/surgery , Diabetes Mellitus, Type 2/metabolism , Obesity, Morbid/surgery , Jejunum/surgery , Jejunum/metabolism , Duodenum/surgery , Duodenum/metabolism , Bile Acids and Salts/metabolism , Blood Glucose/metabolism , Gastric Bypass/methods
18.
Immun Inflamm Dis ; 12(2): e1186, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38353316

ABSTRACT

BACKGROUND: Celiac disease (CD) is a chronic autoimmune disorder characterized by an abnormal immune response to gluten, a protein found in wheat, barley, and rye. It is well established that the integrity of epithelial tight junctions (TJs) and adherens junctions (AJs) plays a crucial role in the pathogenesis of CD. These junctional complexes contribute to the apical-basal polarity of the intestinal epithelial cells, which is crucial for their proper functioning. METHODS: Sixty CD subjects, and 50 controls were enrolled in the current study. Mucosal samples were obtained from the distal duodenum, total RNA was extracted and complementary DNA was synthesized. The relative expression levels of the desired genes were evaluated by quantitative real-time polymerase chain reaction based on ΔΔCt method. The gene-gene interaction network was also constructed using GeneMANIA. RESULTS: CRB3 (p = .0005), LKB1 (p < .0001), and SCRIB (p = .0005) had lower expression in CD patients compared to controls, while PRKCZ expression did not differ between groups (p > .05). CRB3 represented a significant diagnostic value for differentiating CD patients from the control group (p = .02). CONCLUSION: The aim of the current study was to evaluate the changes in the mRNA expression levels of SCRIB, PRKCZ, LKB1, and CRB3 genes in the small intestinal biopsy samples of CD patients in comparison to the healthy control subjects. Our data uncover the importance of polarity-related genes (especially CRB3) in CD pahtomechanism, that may facilitate the planning of the future studies looking for finding innovative diagnostic and therapeutic strategies for CD.


Subject(s)
Celiac Disease , Humans , Celiac Disease/diagnosis , Celiac Disease/genetics , Glutens/metabolism , Duodenum/metabolism , Duodenum/pathology , Biopsy , RNA, Messenger/genetics , RNA, Messenger/metabolism
19.
Peptides ; 174: 171168, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38320643

ABSTRACT

The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.


Subject(s)
Diabetes Mellitus, Type 2 , Incretins , Receptors, Gastrointestinal Hormone , Humans , Incretins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide 1/metabolism , Obesity/drug therapy , Obesity/metabolism , Blood Glucose/metabolism , Duodenum/metabolism , Peptides/therapeutic use , Enteroendocrine Cells/metabolism , Receptors, G-Protein-Coupled , Glucagon-Like Peptide-1 Receptor/metabolism
20.
Nat Cell Biol ; 26(2): 250-262, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38321203

ABSTRACT

A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.


Subject(s)
Duodenum , Intestine, Small , Humans , Mice , Animals , Intestine, Small/metabolism , Duodenum/metabolism , Intestines , Jejunum/metabolism , Ileum/metabolism , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...