Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273597

ABSTRACT

Hu antigen R (HuR) plays a key role in regulating genes critical to the pathogenesis of diabetic nephropathy (DN). This study investigates the therapeutic potential of niclosamide (NCS) as an HuR inhibitor in DN. Uninephrectomized mice were assigned to four groups: normal control; untreated db/db mice terminated at 14 and 22 weeks, respectively; and db/db mice treated with NCS (20 mg/kg daily via i.p.) from weeks 18 to 22. Increased HuR expression was observed in diabetic kidneys from db/db mice, which was mitigated by NCS treatment. Untreated db/db mice exhibited obesity, progressive hyperglycemia, albuminuria, kidney hypertrophy and glomerular mesangial matrix expansion, increased renal production of fibronectin and a-smooth muscle actin, and decreased glomerular WT-1+-podocytes and nephrin expression. NCS treatment did not affect mouse body weight, but reduced blood glucose and HbA1c levels and halted the DN progression observed in untreated db/db mice. Renal production of inflammatory and oxidative stress markers (NF-κBp65, TNF-a, MCP-1) and urine MDA levels increased during disease progression in db/db mice but were halted by NCS treatment. Additionally, the Wnt1-signaling-pathway downstream factor, Wisp1, was identified as a key downstream mediator of HuR-dependent action and found to be markedly increased in db/db mouse kidneys, which was normalized by NCS treatment. These findings suggest that inhibition of HuR with NCS is therapeutic for DN by improving hyperglycemia, renal inflammation, and oxidative stress. The reduction in renal Wisp1 expression also contributes to its renoprotective effects. This study supports the potential of repurposing HuR inhibitors as a novel therapy for DN.


Subject(s)
Diabetic Nephropathies , Drug Repositioning , ELAV-Like Protein 1 , Niclosamide , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Mice , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Male , Niclosamide/pharmacology , Niclosamide/therapeutic use , Kidney/metabolism , Kidney/pathology , Kidney/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Oxidative Stress/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Mice, Inbred C57BL
2.
Am J Physiol Cell Physiol ; 327(3): C817-C829, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39099425

ABSTRACT

Paneth cells at the bottom of small intestinal crypts secrete antimicrobial peptides, enzymes, and growth factors and contribute to pathogen clearance and maintenance of the stem cell niche. Loss of Paneth cells and their dysfunction occur commonly in various pathologies, but the mechanism underlying the control of Paneth cell function remains largely unknown. Here, we identified microRNA-195 (miR-195) as a repressor of Paneth cell development and activity by altering SOX9 translation via interaction with RNA-binding protein HuR. Tissue-specific transgenic expression of miR-195 (miR195-Tg) in the intestinal epithelium decreased the levels of mucosal SOX9 and reduced the numbers of lysozyme-positive (Paneth) cells in mice. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restored Paneth cell development ex vivo. miR-195 did not bind to Sox9 mRNA but it directly interacted with HuR and prevented HuR binding to Sox9 mRNA, thus inhibiting SOX9 translation. Intestinal mucosa from mice that harbored both Sox9 transgene and ablation of the HuR locus exhibited lower levels of SOX9 protein and Paneth cell numbers than those observed in miR-195-Tg mice. Inhibition of miR-195 activity by its specific antagomir improved Paneth cell function in HuR-deficient intestinal organoids. These results indicate that interaction of miR-195 with HuR regulates Paneth cell function by altering SOX9 translation in the small intestinal epithelium.NEW & NOTEWORTHY Our results indicate that intestinal epithelial tissue-specific transgenic miR-195 expression decreases the levels of SOX9 expression, along with reduced numbers of Paneth cells. Ectopically expressed SOX9 in the intestinal organoids derived from miR-195-Tg mice restores Paneth cell development ex vivo. miR-195 inhibits SOX9 translation by preventing binding of HuR to Sox9 mRNA. These findings suggest that interaction between miR-195 and HuR controls Paneth cell function via SOX9 in the intestinal epithelium.


Subject(s)
ELAV-Like Protein 1 , Intestinal Mucosa , MicroRNAs , Paneth Cells , SOX9 Transcription Factor , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Paneth Cells/metabolism , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Intestinal Mucosa/metabolism , Mice , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice, Transgenic , Humans , Organoids/metabolism , Protein Biosynthesis , Mice, Inbred C57BL
3.
Biochem Pharmacol ; 227: 116458, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39102993

ABSTRACT

Vasculogenic mimicry (VM) serves as a vascular-like channel that provides important substances for tumor growth and is a primary factor in glioblastoma (GBM) drug resistance. Human Antigen R (HuR)-an mRNA-binding protein-is highly expressed in GBM, closely related to tumor progression, and deemed a potential drug target. Although some small-molecule compounds have been identified to disrupt HuR binding to target mRNA, they remain in the preclinical research stage, suggesting the need for further validation and development of HuR inhibitors. In our study, we aim to screen for potential HuR inhibitors and investigate their efficacy and molecular mechanisms in GBM. We employed the fluorescence polarization method to identify HuR inhibitors from a natural compound library, confirming the efficacy of juglone in effectively inhibiting the binding of HuR to AREVegf-a. Further validation of the binding of juglone to HuR at the protein level was conducted through electrophoretic mobility shift analysis, surface plasmon resonance, and molecular docking. Furthermore, juglone demonstrated inhibitory effects on glioma growth and VM formation in vitro and in vivo. Moreover, it was observed that juglone reversed epithelial-mesenchymal transition by inhibiting the VEGF-A/VEGFR2/AKT/SNAIL signaling pathway. Finally, we established the capability of juglone to target HuR in U251 cells through HuR knockdown, mRNA stability, and cell thermal shift assays. Therefore, this study identifies juglone as a novel HuR inhibitor, potentially offering promise as a lead compound for anti-VM therapy in GBM by targeting HuR. Abbreviations: AKT, protein kinase B; ARE, adenine-and uridine-rich elements; CETSA, cellular thermal shift assay; DMEM, Dulbecco's modified Eagle's medium; ELISA, enzyme linked immune sorbent assay; EMSA, electrophoretic mobility shift assay; EMT, epithelial mesenchymal transition; FP, fluorescence polarization; GBM, glioblastoma; HTS, high-throughput screening; HuR, human antigen R; IF, Immunofluorescence; PAS, periodic acid-Schiff; PI3K, phosphoinositide-3 kinase; qRT-PCR, quantitative real-time PCR; RRMs, RNA recognition motifs; SPR, surface plasmon resonance. TMZ, temozolomide; VM, vasculogenic mimicry; VEGF-A, Vascular endothelial growth factor-A; VEGFR2, Vascular endothelial growth factor receptor-2.


Subject(s)
ELAV-Like Protein 1 , Naphthoquinones , Vascular Endothelial Growth Factor A , Humans , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , ELAV-Like Protein 1/antagonists & inhibitors , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Naphthoquinones/pharmacology , Animals , Mice , Cell Line, Tumor , Mice, Nude , Glioma/metabolism , Glioma/drug therapy , Glioma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Gene Expression Regulation, Neoplastic/drug effects , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Mice, Inbred BALB C , Xenograft Model Antitumor Assays/methods
4.
Nucleic Acids Res ; 52(14): 8552-8565, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38966993

ABSTRACT

Human antigen R (HuR) is an RNA binding protein mainly involved in maintaining the stability and controlling the translation of mRNAs, critical for immune response, cell survival, proliferation and apoptosis. Although HuR is a nuclear protein, its mRNA translational-related function occurs at the cytoplasm, where the oligomeric form of HuR is more abundant. However, the regulation of nucleo-cytoplasmic transport of HuR and its connection with protein oligomerization remain unclear. In this work, we describe the phosphorylation of Tyr5 as a new hallmark for HuR activation. Our biophysical, structural and computational assays using phosphorylated and phosphomimetic HuR proteins demonstrate that phosphorylation of Tyr5 at the disordered N-end stretch induces global changes on HuR dynamics and conformation, modifying the solvent accessible surface of the HuR nucleo-cytoplasmic shuttling (HNS) sequence and releasing regions implicated in HuR dimerization. These findings explain the preferential cytoplasmic accumulation of phosphorylated HuR in HeLa cells, aiding to comprehend the mechanisms underlying HuR nucleus-cytoplasm shuttling and its later dimerization, both of which are relevant in HuR-related pathogenesis.


Subject(s)
Cytoplasm , ELAV-Like Protein 1 , Protein Multimerization , Humans , Cytoplasm/metabolism , Phosphorylation , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , HeLa Cells , Cell Nucleus/metabolism
5.
Cell Mol Biol Lett ; 29(1): 95, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956466

ABSTRACT

BACKGROUND: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated. METHODS: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status. RESULTS: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC. CONCLUSION: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.


Subject(s)
Autophagy , Cell Movement , Cell Proliferation , Core Binding Factor Alpha 2 Subunit , ELAV-Like Protein 1 , MicroRNAs , RNA, Circular , RNA-Binding Protein FUS , Stomach Neoplasms , p21-Activated Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Autophagy/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , p21-Activated Kinases/genetics , Cell Proliferation/genetics , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Cell Movement/genetics , Cell Line, Tumor , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Mice , Neoplasm Invasiveness , Mice, Inbred BALB C
6.
J Cancer Res Clin Oncol ; 150(7): 345, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981872

ABSTRACT

BACKGROUND: Endometrial cancer (EC) is the sixth most frequent cancer in women worldwide and has higher fatality rates. The pathophysiology of EC is complex, and there are currently no reliable methods for diagnosing and treating the condition. Long non-coding RNA (lncRNA), according to mounting evidence, is vital to the pathophysiology of EC. HOTAIR is regarded as a significant prognostic indicator of EC. ZBTB7A decreased EC proliferation and migration, according to recent studies, however the underlying mechanism still needs to be clarified. METHODS: The research utilized RT-qPCR to measure HOTAIR expression in clinical EC tissues and various EC cell lines. Kaplan-Meier survival analysis was employed to correlate HOTAIR levels with patient prognosis. Additionally, the study examined the interaction between ZBTB7A and HOTAIR using bioinformatics tools and ChIP assays. The experimental approach also involved manipulating the expression levels of HOTAIR and ZBTB7A in EC cell lines and assessing the impact on various cellular processes and gene expression. RESULTS: The study found significantly higher levels of HOTAIR in EC tissues compared to adjacent normal tissues, with high HOTAIR expression correlating with poorer survival rates and advanced cancer characteristics. EC cell lines like HEC-1 A and KLE showed higher HOTAIR levels compared to normal cells. Knockdown of HOTAIR in these cell lines reduced proliferation, angiogenesis, and migration. ZBTB7A was found to be inversely correlated with HOTAIR, and its overexpression led to a decrease in HOTAIR levels and a reduction in malignant cell behaviors. The study also uncovered that HOTAIR interacts with ELAVL1 to regulate SOX17, which in turn activates the Wnt/ß-catenin pathway, promoting malignant behaviors in EC cells. CONCLUSION: HOTAIR is a critical regulator in EC, contributing to tumor growth and poor prognosis. Its interaction with ZBTB7A and regulation of SOX17 via the Wnt/ß-catenin pathway underlines its potential as a therapeutic target.


Subject(s)
Cell Proliferation , ELAV-Like Protein 1 , Endometrial Neoplasms , RNA, Long Noncoding , SOXF Transcription Factors , Humans , RNA, Long Noncoding/genetics , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Prognosis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Animals , Mice , Middle Aged , Wnt Signaling Pathway/genetics , Angiogenesis
7.
Nat Commun ; 15(1): 5620, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965208

ABSTRACT

Glutaminase (GLS) is directly related to cell growth and tumor progression, making it a target for cancer treatment. The RNA-binding protein HuR (encoded by the ELAVL1 gene) influences mRNA stability and alternative splicing. Overexpression of ELAVL1 is common in several cancers, including breast cancer. Here we show that HuR regulates GLS mRNA alternative splicing and isoform translation/stability in breast cancer. Elevated ELAVL1 expression correlates with high levels of the glutaminase isoforms C (GAC) and kidney-type (KGA), which are associated with poor patient prognosis. Knocking down ELAVL1 reduces KGA and increases GAC levels, enhances glutamine anaplerosis into the TCA cycle, and drives cells towards glutamine dependence. Furthermore, we show that combining chemical inhibition of GLS with ELAVL1 silencing synergistically decreases breast cancer cell growth and invasion. These findings suggest that dual inhibition of GLS and HuR offers a therapeutic strategy for breast cancer treatment.


Subject(s)
Breast Neoplasms , ELAV-Like Protein 1 , Glutaminase , Glutaminase/metabolism , Glutaminase/genetics , Glutaminase/antagonists & inhibitors , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Humans , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Alternative Splicing , Cell Proliferation , Glutamine/metabolism , RNA Stability
8.
Cell Mol Life Sci ; 81(1): 253, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852108

ABSTRACT

Post-transcriptional regulation of cytokine/chemokine mRNA turnover is critical for immune processes and contributes to the mammalian cellular response to diverse inflammatory stimuli. The ubiquitous RNA-binding protein human antigen R (HuR) is an integral regulator of inflammation-associated mRNA fate. HuR function is regulated by various post-translational modifications that alter its subcellular localization and ability to stabilize target mRNAs. Both poly (ADP-ribose) polymerase 1 (PARP1) and p38 mitogen-activated protein kinases (MAPKs) have been reported to regulate the biological function of HuR, but their specific regulatory and crosstalk mechanisms remain unclear. In this study, we show that PARP1 acts via p38 to synergistically promote cytoplasmic accumulation of HuR and stabilization of inflammation-associated mRNAs in cells under inflammatory conditions. Specifically, p38 binds to auto-poly ADP-ribosylated (PARylated) PARP1 resulting in the covalent PARylation of p38 by PARP1, thereby promoting the retention and activity of p38 in the nucleus. In addition, PARylation of HuR facilitates the phosphorylation of HuR at the serine 197 site mediated by p38, which then increases the translocation of HuR to the cytoplasm, ultimately stabilizing the inflammation-associated mRNA expression at the post-transcriptional level.


Subject(s)
Cytoplasm , ELAV-Like Protein 1 , Inflammation , Poly (ADP-Ribose) Polymerase-1 , RNA, Messenger , p38 Mitogen-Activated Protein Kinases , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Humans , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Cytoplasm/metabolism , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , RNA, Messenger/metabolism , RNA, Messenger/genetics , Phosphorylation , Gene Expression Regulation , Animals , Poly ADP Ribosylation/genetics , HEK293 Cells , Cell Nucleus/metabolism , Mice
9.
Neurochem Res ; 49(9): 2556-2572, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38888828

ABSTRACT

A subarachnoid hemorrhage (SAH) is life-threatening bleeding into the subarachnoid space that causes brain damage. Growing evidence has suggested that melatonin provides neuroprotection following SAH. Exploring the mechanisms underlying melatonin-mediated neuroprotection contributes to its clinical application in SAH. The plasma and cerebrospinal fluid (CSF) were collected from SAH patients, and SAH mice were established via pre-chiasmatic injection. Circodz3 expression, levels of IL-1ß and TNF-α, brain water content, neurological and beam-waling scores were determined. Ferroptosis was evaluated by analyzing levels of iron, lipid ROS, MDA, and GSH. The colocalization of circodz3 and Iba-1 was analyzed by immunofluorescence staining. Interaction of circodz3 and HuR was determined with RNA pull-down and RNA immunoprecipitation assays. Herein, we found that circodz3 was highly abundant in SAH patients and mice. Colocalization of circodz3 and Iba-1 in the left hemisphere of SAH mice suggested the implication of circodz3 in regulating microglia activation following SAH. Melatonin alleviated brain edema, neurological impairment, and microglia activation and inhibited circodz3 expression in SAH mice. Moreover, melatonin inhibited M1 polarization, oxidative stress and ferroptosis and restrained circodz3 expression in primary microglia following SAH. These effects were abrogated by circodz3 overexpression. Circodz3 knockdown inhibited ferroptosis and M1 polarization of BV2 microglia after SAH. Circodz3 interacted with HuR to facilitate ß-Trcp1-mediated ubiquitination and degradation, thus restraining the expression of SLC7A11 and GPX4. Collectively, melatonin exerted neuroprotection following SAH via inhibiting ferroptosis and M1 polarization through the circodz3/HuR axis. Our study suggests potential application of melatonin in the treatment of SAH.


Subject(s)
ELAV-Like Protein 1 , Ferroptosis , Melatonin , Mice, Inbred C57BL , Microglia , Subarachnoid Hemorrhage , Subarachnoid Hemorrhage/metabolism , Subarachnoid Hemorrhage/drug therapy , Ferroptosis/drug effects , Ferroptosis/physiology , Animals , Melatonin/pharmacology , Melatonin/therapeutic use , Melatonin/metabolism , Microglia/metabolism , Microglia/drug effects , Mice , Humans , Male , ELAV-Like Protein 1/metabolism , RNA, Circular/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Middle Aged
10.
Cell Rep ; 43(5): 114238, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38748875

ABSTRACT

Triacylglyceride (TAG) synthesis in the small intestine determines the absorption of dietary fat, but the underlying mechanisms remain to be further studied. Here, we report that the RNA-binding protein HuR (ELAVL1) promotes TAG synthesis in the small intestine. HuR associates with the 3' UTR of Dgat2 mRNA and intron 1 of Mgat2 pre-mRNA. Association of HuR with Dgat2 3' UTR stabilizes Dgat2 mRNA, while association of HuR with intron 1 of Mgat2 pre-mRNA promotes the processing of Mgat2 pre-mRNA. Intestinal epithelium-specific HuR knockout reduces the expression of DGAT2 and MGAT2, thereby reducing the dietary fat absorption through TAG synthesis and mitigating high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and obesity. Our findings highlight a critical role of HuR in promoting dietary fat absorption.


Subject(s)
Diet, High-Fat , ELAV-Like Protein 1 , Intestinal Absorption , Triglycerides , Triglycerides/metabolism , Triglycerides/biosynthesis , Animals , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Mice , Diet, High-Fat/adverse effects , Humans , Mice, Inbred C57BL , Male , Diacylglycerol O-Acyltransferase/metabolism , Diacylglycerol O-Acyltransferase/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/metabolism , Obesity/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Dietary Fats/metabolism , Dietary Fats/pharmacology , Mice, Knockout , 3' Untranslated Regions/genetics , Acyltransferases
11.
Cardiovasc Toxicol ; 24(7): 625-636, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38743320

ABSTRACT

Circular RNAs (circRNAs) have been discovered to serve as vital regulators in atherosclerosis (AS). However, the role and mechanism of circ_0002331 in AS process are still unclear. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL to establish an in vitro model for AS. The expression levels of circ_0002331, Cyclin D2 (CCND2) and ELAVL1 were analyzed by quantitative real-time PCR. Cell proliferation, apoptosis, migration, invasion and angiogenesis were assessed by EdU assay, flow cytometry, transwell assay and tube formation assay. The protein levels of CCND2, ELAVL1, and autophagy-related markers were detected using western blot analysis. IL-8 level was analyzed by ELISA. The relationship between ELAVL1 and circ_0002331 or CCND2 was analyzed by RIP assay and RNA pull-down assay. Moreover, FISH assay was used to analyze the co-localization of ELAVL1 and CCND2 in HUVECs. Our data showed that circ_0002331 was obviously downregulated in AS patients and ox-LDL-induced HUVECs. Overexpression of circ_0002331 could promote proliferation, migration, invasion and angiogenesis, while inhibit apoptosis, autophagy and inflammation in ox-LDL-induced HUVECs. Furthermore, CCND2 was positively regulated by circ_0002331, and circ_0002331 could bind with ELAVL1 to promote CCND2 mRNA stability. Besides, CCND2 overexpression suppressed ox-LDL-induced HUVECs dysfunction, and its knockdown also reversed the regulation of circ_0002331 on ox-LDL-induced HUVECs dysfunction. In conclusion, circ_0002331 might be a potential target for AS treatment, which could improve ox-LDL-induced dysfunction of HUVECs via regulating CCND2 by binding with ELAVL1.


Subject(s)
Apoptosis , Atherosclerosis , Cell Movement , Cell Proliferation , Cyclin D2 , ELAV-Like Protein 1 , Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , RNA Stability , RNA, Circular , RNA, Messenger , Signal Transduction , Humans , RNA, Circular/metabolism , RNA, Circular/genetics , Lipoproteins, LDL/toxicity , Lipoproteins, LDL/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Human Umbilical Vein Endothelial Cells/drug effects , Cyclin D2/metabolism , Cyclin D2/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cells, Cultured , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Gene Expression Regulation , Case-Control Studies , Autophagy , Male , Middle Aged , Female
12.
Biochem Biophys Res Commun ; 722: 150152, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38795452

ABSTRACT

MicroRNAs (miRNAs) can positively regulate gene expression through an unconventional RNA activation mechanism involving direct targeting 3' untranslated regions (UTRs). Our prior study found miR-93-5p activates mitogen-activated protein kinase kinase kinase 2 (MAP3K2) in hepatocellular carcinoma (HCC) via its 3'UTR. However, the underlying mechanism remains elusive. Here, we identified two candidate AU-rich element (ARE) motifs (ARE1 and ARE2) adjacent to the miR-93-5p binding site located within the MAP3K2 3'UTR using AREsite2. Luciferase reporter and translation assays validated that only ARE2 participated in MAP3K2 activation. Integrative analysis revealed that human antigen R (HuR), an ARE2-associated RNA-binding protein (RBP), physically and functionally interacted with the MAP3K2 3'UTR. Consequently, an HuR-ARE2 complex was shown to facilitate miR-93-5p-mediated upregulation of MAP3K2 expression. Furthermore, bioinformatics analysis and studies of HCC cells and specimens highlighted an oncogenic role for HuR and positive HuR-MAP3K2 expression correlation. HuR is also an enhancing factor in the positive feedback circuit comprising miR-93-5p, MAP3K2, and c-Jun demonstrated in our prior study. The newly identified HuR-ARE2 involvement enriches the mechanism of miR-93-5p-driven MAP3K2 activation and suggests new therapeutic strategies warranted for exploration in HCC.


Subject(s)
3' Untranslated Regions , Carcinoma, Hepatocellular , ELAV-Like Protein 1 , Gene Expression Regulation, Neoplastic , Liver Neoplasms , MAP Kinase Kinase Kinase 2 , MicroRNAs , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , 3' Untranslated Regions/genetics , MAP Kinase Kinase Kinase 2/metabolism , MAP Kinase Kinase Kinase 2/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cell Line, Tumor , Protein Biosynthesis
13.
J Diabetes Investig ; 15(8): 1003-1016, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38650121

ABSTRACT

AIMS/INTRODUCTION: Tanshinone IIA (TIIA) is one of the main components of the root of the red-rooted Salvia miltiorrhiza Bunge. However, the molecular mechanisms underlying TIIA-mediated protective effects in diabetic nephropathy (DN) are still unclear. MATERIALS AND METHODS: High glucose (HG)-induced mouse podocyte cell line (MPC5) cells were used as the in vitro model of DN and treated with TIIA. Cell viability, proliferation and apoptosis were detected using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide, 5-ethynyl-2'-deoxyuridine and flow cytometry assays. The protein levels were assessed using western blot assay. The levels of inflammatory factors were deleted by enzyme-linked immunoassay. Fe+ level, reactive oxygen species, malondialdehyde and glutathione products were detected using special assay kits. After ENCORI prediction, the interaction between embryonic lethal abnormal visual-like protein 1 (ELAVL1) and acyl-coenzyme A synthetase long-chain family member 4 (ACSL4) was verified using co-immunoprecipitation assay and dual-luciferase reporter assays. ACSL4 messenger ribonucleic acid expression was measured using real-time quantitative polymerase chain reaction. RESULTS: TIIA repressed HG-induced MPC5 cell apoptosis, inflammatory response and ferroptosis. ACSL4 upregulation relieved the repression of TIIA on HG-mediated MPC5 cell injury and ferroptosis. ELAVL1 is bound with ACSL4 to positively regulate the stability of ACSL4 messenger ribonucleic acid. TIIA hindered HG-triggered MPC5 cell injury and ferroptosis by regulating the ELAVL1-ACSL4 pathway. TIIA blocked DN progression in in vivo research. CONCLUSION: TIIA treatment restrained HG-caused MPC5 cell injury and ferroptosis partly through targeting the ELAVL1-ACSL4 axis, providing a promising therapeutic target for DN treatment.


Subject(s)
Abietanes , Coenzyme A Ligases , Diabetic Nephropathies , Ferroptosis , Podocytes , Signal Transduction , Abietanes/pharmacology , Ferroptosis/drug effects , Animals , Podocytes/drug effects , Podocytes/metabolism , Podocytes/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Mice , Signal Transduction/drug effects , Coenzyme A Ligases/metabolism , ELAV-Like Protein 1/metabolism , Apoptosis/drug effects , Cell Line
14.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38581988

ABSTRACT

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Cell Proliferation , Interleukin-6 , Protein Kinase C-alpha , Synoviocytes , TRPM Cation Channels , TRPM Cation Channels/metabolism , TRPM Cation Channels/genetics , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Animals , Synoviocytes/metabolism , Synoviocytes/pathology , Humans , Interleukin-6/metabolism , Interleukin-6/genetics , Protein Kinase C-alpha/metabolism , Protein Kinase C-alpha/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Male , Rats , Fibroblasts/metabolism , Fibroblasts/pathology , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cells, Cultured , Inflammation/metabolism , Inflammation/pathology , Rats, Sprague-Dawley , Female , Signal Transduction
15.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38608448

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Subject(s)
Cell Nucleus , Cytoplasm , ELAV-Like Protein 1 , Interleukin-1beta , Interleukin-8 , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Interleukin-1beta/metabolism , Interleukin-8/metabolism , Interleukin-8/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cytoplasm/metabolism , Cell Nucleus/metabolism , Cell Line, Tumor , Cyclic S-Oxides/pharmacology , Protein Transport , Signal Transduction , Active Transport, Cell Nucleus , CRISPR-Cas Systems
16.
Atherosclerosis ; 393: 117554, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663275

ABSTRACT

BACKGROUND AND AIMS: Long noncoding RNAs (lncRNAs) play important roles in the progression of atherosclerosis. In this study, we identified an uncharacterized lncRNA, Liver Expressions by PSRC1 Induced Specifically (LEPIS). This study aimed to clarify the mechanism though which LEPIS affects atherosclerosis (AS). METHODS: The expression of LEPIS and its potential target, tropomodulin 4 (TMOD4), was increased in the livers of ApoE-/- mice fed a high-fat diet (HFD). An ApoE-/- mouse model in which LEPIS or TMOD4 was overexpressed in the liver was established. The plaque load in the aorta was assessed, plasma was collected to measure blood lipid levels, and the liver was collected to study cholesterol metabolism. RESULTS: We found that both LEPIS and TMOD4 increased the AS burden and reduced hepatic cholesterol levels. A further study revealed that LEPIS and TMOD4 affected the expression of genes related to hepatic cholesterol homeostasis, including proprotein convertase subtilisin/kexin type 9 (PCSK9) and low-density lipoprotein receptor (LDLR), which are closely related to hypercholesterolemia. Mechanistically, human antigen R (HuR), an RNA-binding protein (RBP), was shown to be critical for the regulation of TMOD4 by LEPIS. Furthermore, we found that verexpression of LEPIS promoted the shuttling of HuR from the nucleus to the cytoplasm, enhanced the stability of TMOD4 mRNA, and in turn promoted the expression of TMOD4. In addition, TMOD4 was found to affect intracellular cholesterol levels through PCSK9. CONCLUSIONS: These results suggest that the LEPIS-HuR-TMOD4 axis is a potential intervention target for dysregulated hepatic cholesterol homeostasis and AS and may provide the basis for further reductions in the circulating LDL-C concentration and arterial plaque burden.


Subject(s)
Atherosclerosis , Cholesterol , Disease Models, Animal , Homeostasis , Liver , Mice, Knockout, ApoE , Animals , Humans , Male , Mice , Aortic Diseases/metabolism , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , Cholesterol/metabolism , Cholesterol/blood , Diet, High-Fat , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Liver/metabolism , Mice, Inbred C57BL , Plaque, Atherosclerotic , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics , Receptors, LDL/genetics , Receptors, LDL/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
17.
RNA ; 30(7): 920-937, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38658162

ABSTRACT

RNA-binding proteins (RBPs) are essential for RNA metabolism and profoundly impact health and disease. The subcellular organization of RBP interaction networks with target RNAs remains largely unexplored. Here, we develop colocalization CLIP (coCLIP), a method that combines cross-linking and immunoprecipitation (CLIP) with proximity labeling, to explore in-depth the subcellular RNA interactions of the RBP human antigen R (HuR). Using this method, we uncover HuR's dynamic and location-specific interactions with RNA, revealing alterations in sequence preferences and interactions in the nucleus, cytosol, or stress granule (SG) compartments. We uncover HuR's unique binding preferences within SGs during arsenite stress, illuminating intricate interactions that conventional methodologies cannot capture. Overall, coCLIP provides a powerful method for revealing RBP-RNA interactions based on localization and lays the foundation for an advanced understanding of RBP models that incorporate subcellular location as a critical determinant of their functions.


Subject(s)
Protein Binding , RNA-Binding Proteins , RNA , Humans , RNA/metabolism , RNA/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Immunoprecipitation/methods , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics , Cytoplasmic Granules/metabolism , Arsenites , HeLa Cells , Cytosol/metabolism , HEK293 Cells
18.
Cell Rep ; 43(3): 113924, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507413

ABSTRACT

The posttranslational modification of proteins critically influences many biological processes and is a key mechanism that regulates the function of the RNA-binding protein Hu antigen R (HuR), a hub in liver cancer. Here, we show that HuR is SUMOylated in the tumor sections of patients with hepatocellular carcinoma in contrast to the surrounding tissue, as well as in human cell line and mouse models of the disease. SUMOylation of HuR promotes major cancer hallmarks, namely proliferation and invasion, whereas the absence of HuR SUMOylation results in a senescent phenotype with dysfunctional mitochondria and endoplasmic reticulum. Mechanistically, SUMOylation induces a structural rearrangement of the RNA recognition motifs that modulates HuR binding affinity to its target RNAs, further modifying the transcriptomic profile toward hepatic tumor progression. Overall, SUMOylation constitutes a mechanism of HuR regulation that could be potentially exploited as a therapeutic strategy for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/metabolism , Disease Models, Animal , ELAV-Like Protein 1/metabolism , Liver Neoplasms/pathology , RNA/metabolism , Sumoylation
19.
J Biol Chem ; 300(4): 107170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492777

ABSTRACT

Intercellular miRNA exchange acts as a key mechanism to control gene expression post-transcriptionally in mammalian cells. Regulated export of repressive miRNAs allows the expression of inflammatory cytokines in activated macrophages. Intracellular trafficking of miRNAs from the endoplasmic reticulum to endosomes is a rate-determining step in the miRNA export process and plays an important role in controlling cellular miRNA levels and inflammatory processes in macrophages. We have identified the SNARE protein Syntaxin 5 (STX5) to show a synchronized expression pattern with miRNA activity loss in activated mammalian macrophage cells. STX5 is both necessary and sufficient for macrophage activation and clearance of the intracellular pathogen Leishmania donovani from infected macrophages. Exploring the mechanism of how STX5 acts as an immunostimulant, we have identified the de novo RNA-binding property of this SNARE protein that binds specific miRNAs and facilitates their accumulation in endosomes in a cooperative manner with human ELAVL1 protein, Human antigen R. This activity ensures the export of miRNAs and allows the expression of miRNA-repressed cytokines. Conversely, in its dual role in miRNA export, this SNARE protein prevents lysosomal targeting of endosomes by enhancing the fusion of miRNA-loaded endosomes with the plasma membrane to ensure accelerated release of extracellular vesicles and associated miRNAs.


Subject(s)
ELAV-Like Protein 1 , Macrophages , MicroRNAs , Qa-SNARE Proteins , Animals , Humans , Mice , Endosomes/metabolism , Leishmania donovani/metabolism , Leishmania donovani/genetics , Macrophage Activation , Macrophages/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Qa-SNARE Proteins/metabolism , Qa-SNARE Proteins/genetics , RNA Transport , ELAV-Like Protein 1/metabolism
20.
J Biol Chem ; 300(5): 107247, 2024 May.
Article in English | MEDLINE | ID: mdl-38556083

ABSTRACT

There is a critical need to understand the disease processes and identify improved therapeutic strategies for hepatocellular carcinoma (HCC). The long noncoding RNAs (lncRNAs) display diverse effects on biological regulations. The aim of this study was to identify a lncRNA as a potential biomarker of HCC and investigate the mechanisms by which the lncRNA promotes HCC progression using human cell lines and in vivo. Using RNA-Seq analysis, we found that lncRNA FIRRE was significantly upregulated in hepatitis C virus (HCV) associated liver tissue and identified that lncRNA FIRRE is significantly upregulated in HCV-associated HCC compared to adjacent non-tumor liver tissue. Further, we observed that FIRRE is significantly upregulated in HCC specimens with other etiologies, suggesting this lncRNA has the potential to serve as an additional biomarker for HCC. Overexpression of FIRRE in hepatocytes induced cell proliferation, colony formation, and xenograft tumor formation as compared to vector-transfected control cells. Using RNA pull-down proteomics, we identified HuR as an interacting partner of FIRRE. We further showed that the FIRRE-HuR axis regulates cyclin D1 expression. Our mechanistic investigation uncovered that FIRRE is associated with an RNA-binding protein HuR for enhancing hepatocyte growth. Together, these findings provide molecular insights into the role of FIRRE in HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Cyclin D1 , ELAV-Like Protein 1 , Gene Expression Regulation, Neoplastic , Liver Neoplasms , RNA, Long Noncoding , Signal Transduction , Animals , Humans , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/virology , Cell Line, Tumor , Cell Proliferation , Cyclin D1/metabolism , Cyclin D1/genetics , ELAV-Like Protein 1/metabolism , ELAV-Like Protein 1/genetics , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/virology , Mice, Nude , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Hepatitis C/complications , Up-Regulation , Biomarkers, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL