Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.425
Filter
1.
Adv Parasitol ; 125: 105-157, 2024.
Article in English | MEDLINE | ID: mdl-39095111

ABSTRACT

Fish parasitology is a dynamic and internationally important discipline with numerous biological, ecological and practical applications. We reviewed optimal fish and parasite sampling methods for key ectoparasite phyla (i.e. Ciliophora, Platyhelminthes, Annelida and Arthropoda) as well as recent advances in molecular detection of ectoparasites in aquatic environments. Ideally, fish capture and anaesthesia as well as parasite recovery methods should be validated to eliminate potential sampling bias and inaccuracy in determining ectoparasite population parameters. There are considerable advantages to working with fresh samples and live parasites, when combined with appropriate fixation methods, as sampling using dead or decaying materials can lead to rapid decomposition of soft-bodied parasites and subsequent challenges for identification. Sampling methods differ between target phyla, and sometimes genera, with optimum techniques largely associated with identification of parasite microhabitat and the method of attachment. International advances in fish parasitology can be achieved through the accession of whole specimens and/or molecular voucher specimens (i.e. hologenophores) in curated collections for further study. This approach is now critical for data quality because of the increased application of environmental DNA (eDNA) for the detection and surveillance of parasites in aquatic environments where the whole organism may be unavailable. Optimal fish parasite sampling methods are emphasised to aid repeatability and reliability of parasitological studies that require accurate biodiversity and impact assessments, as well as precise surveillance and diagnostics.


Subject(s)
Ectoparasitic Infestations , Fish Diseases , Fishes , Animals , Fishes/parasitology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/diagnosis , Fish Diseases/parasitology , Fish Diseases/diagnosis , Specimen Handling/methods , Parasites/isolation & purification , Parasitology/methods
2.
J Parasitol ; 110(4): 239-249, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38972666

ABSTRACT

In salt marsh ecosystems, daggerblade grass shrimp, Palaemon (Palaemonetes) pugio, play a crucial role in food webs and serve as the definitive host for the bopyrid isopod Probopyrus pandalicola. These ectoparasites infest the branchial chambers of grass shrimp, which can lead to decreased energy availability and sterilization of infected hosts. Although bopyrid isopod infestation of daggerblade grass shrimp has been frequently reported in literature from coastal marshes of the southeastern United States, the prevalence of this parasite has not been recently documented in daggerblade grass shrimp from marshes of the northeastern United States. The goal of this project was to quantify the prevalence of Pr. pandalicola infestations in Pa. pugio across Cape Cod, Massachusetts. We evaluated bopyrid isopod prevalence from shrimp collected from 5 different salt marsh habitats along Cape Cod in August 2021. Bopyrid isopod infestations were found in shrimp at 4 of 5 salt marshes, with prevalence ranging from 0.04 to 14.1%. Seasonal resampling of one of the salt marshes revealed the highest average infestation prevalence in spring (<17.1%) and an isolated high of 30.3% prevalence in a single salt panne. A series of linear and multivariate models showed that panne area, shrimp abundance, and distance to shoreline were related to Pr. pandalicola shrimp infestations in salt pannes in summer. This study describes the prevalence of the bopyrid isopod infesting daggerblade grass shrimp in salt marshes in New England, with implications for how parasitized shrimp influence salt marsh food webs in which they are found.


Subject(s)
Isopoda , Palaemonidae , Wetlands , Animals , Massachusetts/epidemiology , Palaemonidae/parasitology , Prevalence , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/parasitology
4.
An Acad Bras Cienc ; 96(suppl 1): e20231253, 2024.
Article in English | MEDLINE | ID: mdl-39082592

ABSTRACT

Fish parasites are an important part of aquatic biodiversity and knowing these species and their interactions with their hosts helps in monitoring the aquatic biota. The present study investigated the ectoparasite crustacean fauna of ten fish species from the upper Araguari River, in the state of Amapá, northern Brazil. A total of 508 fish were collected and analyzed from July to November 2014, of which 82.6% (109) were parasitized by one or more crustacean ectoparasite species. In the ten host fish species, a total of 308 ectoparasite specimens were collected, from 12 taxa, such as Argulus multicolor Stekhoven, 1937, Argulus spinulosus Silva, 1980, Argulus sp.1, Argulus sp.2, Argulus sp.3, Dipteropeltis sp., Dipteropeltis hirundo Calman, 1912, Dolops bidentata Bouvier, 1899, Dolops striata Bouvier, 1899 (Argulidae), Braga fluviatilis Richardson, 1911, Braga amapaensis Thatcher, 1996 (Cymothoidae) and Excorallana berbicensis Boone, 1918 (Corallanidae). Higher levels of prevalence and abundance were recorded for Hoplias aimara (Valenciennes, 1847) and Tometes trilobatus Valenciennes, 1850, respectively. These ectoparasites were found in the fins, integument, mouth, and anus of the host fish. Argulus sp.2 and D. bidentata were the most abundant parasites (65.1%), and had the highest species richness. This study registered 36 novel host-parasite interactions, and thus represents a new record for all host species here examined.


Subject(s)
Crustacea , Ectoparasitic Infestations , Fishes , Host-Parasite Interactions , Rivers , Animals , Brazil , Fishes/parasitology , Fishes/classification , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/epidemiology , Crustacea/classification , Crustacea/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Biodiversity , Male
5.
Dis Aquat Organ ; 158: 179-184, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869093

ABSTRACT

The marine leech Pterobdella arugamensis is a hematophagous parasite, and the extent of injury to the host largely depends on the number of attached leeches. This study aimed to assess the pathogenicity of marine leeches in Asian seabass (Lates calcarifer) and tiger grouper (Epinephelus fuscoguttatus) fingerlings under laboratory conditions. Five groups of healthy Asian seabass and tiger grouper were exposed to varying numbers of marine leeches (0, 1, 10, 30, or 70 per fish) for 7 d. Infested Asian seabass and tiger grouper both showed pathological changes even with only 1 leech, manifesting as clinical signs like haemorrhages. The cumulative mortality at 7 d post-exposure (dpe) was 11 or 33% for Asian seabass infested with 1 or 10 marine leeches, respectively. Fish with 30 or 70 marine leeches showed higher rates of mortality (56%). A similar trend was seen in tiger grouper, with mortality rates reaching 78% in fish with 30 or 70 marine leeches, and 56 or 33% in fish with 10 leeches or 1 leech, respectively. Factorial analysis of mortality after 7 dpe between both species showed significant differences (2-way ANOVA p = 0.001) when exposed to varying numbers of marine leeches. The haematocrit values differed significantly between Asian seabass or tiger grouper infested with either 0 or 1 marine leech and those infested with 10, 30, or 70 marine leeches (1-way ANOVA, p = 0.0001). This suggests that marine leech infestation has a measurable impact on both species. Consequently, fish farmers should promptly address leech infestation upon discovery in their cages.


Subject(s)
Fish Diseases , Leeches , Animals , Fish Diseases/parasitology , Host-Parasite Interactions , Aquaculture , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Bass/parasitology
6.
Fish Shellfish Immunol ; 151: 109692, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876411

ABSTRACT

The fish's immune response is affected by different factors, including a wide range of environmental conditions that can also disrupt or promote changes in the host-pathogen interactions. How environmental conditions modulate the salmon genome during parasitism is poorly understood here. This study aimed to explore the environmental influence on the Salmo salar transcriptome and methylome infected with the sea louse Caligus rogercresseyi. Atlantic salmon were experimentally infected with lice at two temperatures (8 and 16 °C) and salinity conditions (32 and 26PSU). Fish tissues were collected from the infected Atlantic salmon for reduced representation bisulfite sequencing (RRBS) and whole transcriptome sequencing (RNA-seq) analysis. The parasitic load was highly divergent in the evaluated environmental conditions, where the lowest lice abundance was observed in fish infected at 8 °C/26PSU. Notably, transcriptome profile differences were statistically associated with the number of alternative splicing events in fish exposed to low temperature/salinity conditions. Furthermore, the temperature significantly affected the methylation level, where high values of differential methylation regions were observed at 16 °C. Also, the association between expression levels of spliced transcripts and their methylation levels was determined, revealing significant correlations with Ferroptosis and TLR KEEG pathways. This study supports the relevance of the environmental conditions during host-parasite interactions in marine ecosystems. The discovery of alternative splicing transcripts associated with DMRs is also discussed as a novel player in fish biology.


Subject(s)
Copepoda , Ectoparasitic Infestations , Fish Diseases , Salmo salar , Transcriptome , Animals , Salmo salar/genetics , Salmo salar/immunology , Copepoda/physiology , Copepoda/genetics , Fish Diseases/immunology , Fish Diseases/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics , Ectoparasitic Infestations/parasitology , Salinity , Temperature , Epigenome , DNA Methylation
7.
Vet Parasitol ; 330: 110223, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38889669

ABSTRACT

Sea lice infestations can pose significant challenges in the aquaculture sector, affecting fish health and overall production. In the search for effective and eco-friendly solutions, hydrogen peroxide bath treatment has been considered as one of the promising methods. This is the first study to evaluate the field efficacy of hydrogen peroxide bath technique against sea lice infestation on cage-cultured snubnose pompano (Trachinotus blochii). Sea lice was identified as Lepeophtheirus spinifer using morphological description. Naturally-infested snubnose pompano stocked in 2 ×3×2 m3 net cages at 15 fish/cage at the Igang Marine Station of SEAFDEC/AQD, in Guimaras, Philippines were treated in triplicates with two hydrogen peroxide concentrations (1500 and 2000 ppm) in comparison to a control (seawater only) for 20 minutes at 32.8 ± 0.7 ppt and 28.9 ± 0.3 °C and were monitored at 3rd and 7th day post-treatment. The total mean intensity of sea lice, mean intensity per life stages (copepodid, chalimus I, chalimus II, pre-adult I, pre-adult II, adult male and adult female), and the 12-h viability of scraped male and adult female L. spinifer from the treatment groups were evaluated. The total mean intensity of sea lice in the treated groups at 3 day post-treatment was significantly lower than the control group (p<0.001). A possible re-infection of sea lice was observed 7 days post-treatment as explained by the slight increase in the mean intensity in the treated groups. However, no mortalities of pompano were recorded throughout the experiment. In addition, adult female lice were absent in the treated group while adult male lice were only detected in the 1500 ppm treatment group at a very low mean intensity. The viability test also showed that all sea lice were not able to recover after 12 h whereas a 100 % recovery rate was noted in the control group. Results suggest that the 1500 and 2000 ppm hydrogen peroxide concentrations are effective in reducing sea lice infestation on cage-cultured snubnose pompano. However, a long-term effect of hydrogen peroxide treatment on sea lice needs further investigation.


Subject(s)
Aquaculture , Copepoda , Ectoparasitic Infestations , Fish Diseases , Hydrogen Peroxide , Animals , Copepoda/drug effects , Copepoda/physiology , Fish Diseases/parasitology , Fish Diseases/drug therapy , Hydrogen Peroxide/pharmacology , Male , Female , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/drug therapy , Perciformes/parasitology , Philippines
8.
Parasitol Int ; 101: 102900, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38701942

ABSTRACT

This study reports the metazoan ectoparasite fauna of juvenile Critically Endangered green sawfish, Pristis zijsron, and sympatric elasmobranchs in Western Australia. Five parasite taxa were found on 76 screened P. zijsron: Caligus furcisetifer (Copepoda: Caligidae), Dermopristis pterophila (Monogenea: Microbothriidae), Branchellion plicobranchus and Stibarobdella macrothela (Hirudinea: Piscicolidae), and praniza larvae of an unidentified gnathiid isopod. Only C. furcisetifer and D. pterophila were common, exhibiting discrepant site-specificity, with C. furcisetifer occurring mostly on the head and rostrum, and D. pterophila around the pectoral and pelvic fins. Intensity of infection for C. furcisetifer and D. pterophila increased with host total length and was influenced by host sex, but in opposite directions; intensity of C. furcisetifer was greater on female P. zijsron, whereas intensity of D. pterophila was greater on males. In the Ashburton River, likelihood of infection for C. furcisetifer and D. pterophila on P. zijsron increased with time since substantial freshwater discharge events, suggesting decreased salinity impacts both taxa. In addition to P. zijsron, five other sympatric elasmobranch species were opportunistically screened for ectoparasites in the study area: the giant shovelnose ray, Glaucostegus typus, the eyebrow wedgefish, Rhynchobatus palpebratus, the nervous shark, Carcharhinus cautus, the lemon shark, Negaprion acutidens, and the graceful shark, Carcharhinus amblyrhynchoides. Caligus furcisetifer was found on R. palpebratus; no other parasites of P. zijsron were found on other sympatric elasmobranch species. Conversely, Perissopus dentatus (Copepoda: Pandaridae) was found on all three carcharhinids but not on batoid rays (P. zijsron, G. typus or R. palpebratus).


Subject(s)
Ectoparasitic Infestations , Endangered Species , Fish Diseases , Animals , Western Australia , Fish Diseases/parasitology , Fish Diseases/epidemiology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/epidemiology , Male , Female , Elasmobranchii/parasitology , Copepoda/classification , Isopoda/classification , Sympatry
9.
Fish Shellfish Immunol ; 149: 109606, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705547

ABSTRACT

Moritella viscosa (M. viscosa) and sea lice (Lepeophtheirus salmonis) are severe pathogens that primarily infect the skin of Atlantic salmon (Salmo salar), which cause significant economic losses in the farming industry. However, the pathogenesis and molecular mechanisms underlying the host's immune defence at the post-transcriptional level remain unclear. Alternative splicing (AS) is an evolutionarily conserved post-transcriptional mechanism that can greatly increase the richness of the transcriptome and proteome. In this study, transcriptomic data derived from skin tissues of Atlantic salmon after M. viscosa and sea lice infections were used to examine the AS profiles and their differential expression patterns. In total, we identified 33,044 AS events (involving 13,718 genes) in the control (CON) group, 35,147 AS events (involving 14,340 genes) in the M. viscosa infection (MV) group, and 30,364 AS events (involving 13,142 genes) in the sea lice infection (LC) group, respectively. Among the five types of AS identified in our study (i.e., SE, A5SS, A3SS, MXE, and RI), SE was the most prevalent type in all three groups (i.e., CON, MV, and LC groups). Decreased percent-spliced-in (PSI) levels were observed in SE events under both MV- and LC-infected conditions, suggesting that MV or LC infection elevated exon-skipping isoforms and promoted the selection of shorter transcripts in numerous DAS genes. In addition, most of the differential AS genes were found to be associated with pathways related to mRNA regulation, epithelial or muscle development, and immune response. These findings provide novel insights into the role of AS in host-pathogen interactions and represent the first comparative analysis of AS in response to bacterial and parasitic infections in fish.


Subject(s)
Alternative Splicing , Copepoda , Fish Diseases , Moritella , Salmo salar , Animals , Salmo salar/immunology , Salmo salar/genetics , Copepoda/physiology , Fish Diseases/immunology , Moritella/immunology , Moritella/genetics , Transcriptome , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/immunology , Ectoparasitic Infestations/genetics
10.
J Parasitol ; 110(3): 186-194, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38700436

ABSTRACT

Leech specimens of the genus Pontobdella (Hirudinida: Piscicolidae) were found off the coast of the state of Oaxaca (Pacific) as well as in Veracruz and Tabasco (Gulf of Mexico), Mexico. Based on the specimens collected in Oaxaca, a redescription of Pontobdella californiana is provided, with emphasis on the differences in the reproductive organs with the original description of the species. In addition, leech cocoons assigned to P. californiana were found attached to items hauled by gillnets and studied using scanning electron microscopy and molecular approaches. Samples of Pontobdella macrothela were found in both Pacific and Atlantic oceans, representing new geographic records. The phylogenetic position of P. californiana is investigated for the first time, and with the addition of Mexican samples of both species, the phylogenetic relationships within Pontobdella are reinvestigated. Parsimony and maximum-likelihood phylogenetic analysis were based on mitochondrial (cytochrome oxidase subunit I [COI] and 12S rRNA) and nuclear (18S rRNA and 28S rRNA) DNA sequences. Based on our results, we confirm the monophyly of Pontobdella and the pantropical distribution of P. macrothela with a new record in the Tropical Eastern Pacific.


Subject(s)
Leeches , Microscopy, Electron, Scanning , Phylogeny , Animals , Leeches/classification , Leeches/genetics , Leeches/anatomy & histology , Mexico , Microscopy, Electron, Scanning/veterinary , Pacific Ocean , Atlantic Ocean , DNA, Ribosomal/chemistry , RNA, Ribosomal, 28S/genetics , Fish Diseases/parasitology , Gulf of Mexico/epidemiology , Electron Transport Complex IV/genetics , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , RNA, Ribosomal, 18S/genetics , Molecular Sequence Data , Sequence Alignment/veterinary , Likelihood Functions , Fishes/parasitology
11.
Parasitol Res ; 123(5): 221, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787430

ABSTRACT

Ivermectin mass drug administration has been used for decades to target human and veterinary ectoparasites, and is currently being considered for use against malaria vectors. Although there have been few reports of resistance to date in human ectoparasites, we must anticipate the development of resistance in mosquitoes in the future. Hence, through this review, we mapped the existing evidence on ivermectin resistance mechanisms in human ectoparasites. A search was conducted on the 8th November 2023 through databases, PubMed, Web of Science, and Google Scholar, using terms related to ivermectin, human and veterinary ectoparasites, and resistance. Abstracts (5893) were screened by JFA and CK. Data on the study organism, the type of resistance, the analysis methods, and, where applicable, the gene loci of interest were extracted from the studies. Details of the methodology and results of each study were summarised narratively and in a table. Eighteen studies were identified describing ivermectin resistance in ectoparasites. Two studies described target site resistance; and 16 studies reported metabolic resistance and/or changes in efflux pump expression. The studies investigated genetic mutations in resistant organisms, detoxification, and efflux pump expression in resistant versus susceptible organisms, and the effect of synergists on mortality or detoxification enzyme/efflux pump transcription. To date, very few studies have been conducted examining the mechanisms of ivermectin resistance in ectoparasites, with only two on Anopheles spp. Of the existing studies, most examined detoxification and efflux pump gene expression, and only two studies in lice investigated target-site resistance. Further research in this field should be encouraged, to allow for close monitoring in ivermectin MDA programmes, and the development of resistance mitigation strategies.


Subject(s)
Ivermectin , Ivermectin/pharmacology , Animals , Humans , Drug Resistance/genetics , Insecticides/pharmacology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/drug therapy , Insecticide Resistance/genetics
12.
Vet Parasitol Reg Stud Reports ; 51: 101034, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772644

ABSTRACT

Koi carp are globally known for their colors and cultural significance. The introduction of these fish to new environments poses a threat to local biodiversity, in addition to releasing parasites, such as argulid ectoparasites. This study presents a record of Argulus japonicus infecting carp in an artificial lake in Southern Brazil using morphological and molecular methods, with a 100% prevalence (n = 3) and a mean intensity of 21.6 parasites per host, distributed over the body surface. The invasion history of hosts in the study locality indicates that the introduction of A. japonicus occurred decades before its first formal record in Brazil.


Subject(s)
Arguloida , Carps , Fish Diseases , Animals , Carps/parasitology , Fish Diseases/parasitology , Brazil/epidemiology , Prevalence , Lakes/parasitology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Lice Infestations/veterinary , Lice Infestations/parasitology
13.
Int J Parasitol ; 54(8-9): 463-474, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38609075

ABSTRACT

Parasitic salmon lice (Lepeophtheirus salmonis) are a constraint to the sustainable growth of salmonids in open net pens, and this issue has caused production to level off in recent years in the most aquaculture-intensive areas of Norway. The maximum allowed biomass at a regional level is regulated by using the so-called "traffic light" system, where salmon louse-induced mortality of migrating wild salmon post-smolts is evaluated against set targets. As a case study, we have investigated how a specific aquaculture-intensive area can reduce its louse levels sufficiently to achieve a low impact on wild salmon. Analyses of the output from a virtual post-smolt model that uses data on the reported number of salmon lice in fish farms as key input data and estimates the salmon louse-induced mortality of wild out-migrating Atlantic salmon post-smolts, suggested that female louse abundance on the local farms must be halved in spring to reach the goal implied by the traffic light system. The outcome of a modelling scenario simulating a proposed new plan for coordinated production and fallowing proved beneficial, with an overall reduction in louse infestations and treatment efforts. The interannual variability in louse abundance in spring, however, increased for this scenario, implying unacceptably high louse abundance when many farms were in their second production year. We then combined the scenario with coordinated production with other louse control measures. Only measures that reduced the density of farmed salmonids in open cages in the study area resulted in reductions in salmon louse infestations to acceptable levels. This could be achieved either by stocking with larger fish to reduce exposure time or by reducing fish numbers, e.g. by producing in closed units.


Subject(s)
Aquaculture , Copepoda , Fish Diseases , Animals , Fish Diseases/parasitology , Fish Diseases/prevention & control , Copepoda/physiology , Aquaculture/methods , Norway , Female , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/prevention & control , Salmo salar/parasitology , Salmonidae/parasitology , Salmon/parasitology
14.
Fish Shellfish Immunol ; 149: 109576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670414

ABSTRACT

The copepod Lernathropus kroyeri constitutes one of the major parasites for the Mediterranean aquaculture, infesting the sea bass Dicentrarchus labrax causing thus disruptions of growth performance and occasionally mortalities. Despite the large spread and the high frequency of this parasite in mariculture farms of Eastern Mediterranean, L. kroyeri genetic profile from aquaculture as well as the pathophysiological response of D. labrax have not been studied so far. Keeping this in mind, in the present study we investigated the L. kroyeri infestation on D. labrax from two farms in Greece, examining both healthy and heavy parasitized individuals. Assays included histopathology, phylogenetic reconstruction of the parasite and physiological response of the fish by the means of antioxidant, inflammatory metabolic and stress related gene expression analysis at both mRNA and protein levels. Genetic analysis indicated that L. kroyeri composes a monophyletic group, highly phylogenetically distant from other congeneric groups. Heavy infested D. labrax witnessed a significantly increased immune response that further led to oxidative stress and metabolic alterations. Overall, our results demonstrate the, seasonally independent, high infestation of this parasitic copepods, which continue to affect Mediterranean intensive aquaculture systems.


Subject(s)
Aquaculture , Bass , Copepoda , Fish Diseases , Phylogeny , Animals , Bass/immunology , Copepoda/physiology , Copepoda/genetics , Fish Diseases/immunology , Fish Diseases/parasitology , Greece , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/immunology
15.
Acta Parasitol ; 69(1): 874-888, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38468018

ABSTRACT

PURPOSE: The present paper describes two new genera and species of the parasitic copepod family Chondracanthidae Milne Edwards, 1840 based on specimens collected from two species of deep-sea fishes at a depth of 212 m off Suruga Bay, Japan. Avatar nishidai gen. et sp. nov. is described from the host fish Chaunax abei Le Danois, 1978 (Chaunacidae). Kokeshioides surugaensis gen. et sp. nov. is described from the host fish Setarches longimanus (Alcock, 1894) (Setarchidae). METHODS: Fresh specimens of chondracanthids were collected from the buccal cavity of two species of deep-sea fishes (fish hosts were frozen), Chaunax abei Le Danois, 1978 (Lophiiformes: Chaunacidae) and Setarches longimanus (Alcock, 1894) (Perciformes: Setarchidae), caught at a depth of 212 m in Suruga Bay, Japan (34° 37'48.87″ N, 138° 43'2.958″ E). Both the species are described and illustrated based on ovigerous females. RESULTS: The genus Avatar gen. nov. can readily be distinguished from all other chondracanthid genera by the following combination of features: cephalothorax slightly wider than long with anterior pair of large and posterior pair of small lateral lobes, and two pairs of ventro-lateral processes; the very posteriormost part of the first pedigerous somite contributes to the neck; cylindrical trunk with two pairs of blunt proximal fusiform processes; antennule with small knob terminally; antenna bearing distal endopodal segment; labrum protruding ventrally; two pairs of biramous legs each with 2-segmented rami. Kokeshioides gen. nov. has the following combinations of features that distinguish it from other chondracanthid genera: body flattened, without lateral processes; cephalothorax much wider than long, with paired anterolateral and posterolateral lobes, folded ventrally; the very posteriormost part of the first pedigerous somite contributes to the neck; mandible elongate; legs unique, heavily sclerotized, represented by two pairs of acutely pointed processes. CONCLUSION: With the addition of two new genera presently reported, the family Chondracanthidae currently includes 52 valid genera. Among the described genera Avatar gen. nov. seems to be very primitive, while Kokeshioides gen. nov. is highly advanced. The deduced evolutionary history of chondracanthid genera is also discussed.


Subject(s)
Copepoda , Fish Diseases , Animals , Copepoda/classification , Copepoda/anatomy & histology , Japan , Fish Diseases/parasitology , Female , Bays , Male , Fishes/parasitology , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Perciformes/parasitology
16.
Vet Parasitol Reg Stud Reports ; 47: 100949, 2024 01.
Article in English | MEDLINE | ID: mdl-38199692

ABSTRACT

Parasitic diseases caused by uncommonly diagnosed parasites may pose a threat to companion animals' health in urban environments where they are least expected. The pentastomid Linguatula serrata (tongue worm) and the capillarid Pearsonema plica (syn. Capillaria plica) are parasites with an indirect life cycle, infecting both domestic and wild carnivores. The present report describes two cases: the first one of urinary capillariosis and the other of linguatulosis, in two dogs living in the urban environment of Athens, Greece. In the case of capillariosis, the dog never lived out of the city, so it was presumably infected in the urban environment. On the contrary, in the case of linguatulosis, the dog was adopted at a young age from a rural environment but remained asymptomatic for several months while living in the city. Both dogs had mild symptoms, compatible with these infections. Urinary capillariosis and linguatulosis are uncommon in owned, pet dogs, living in cities due to epizootiological characteristics, i.e. need for wildlife reservoir for P. plica and consumption of raw infected viscera for L. serrata. Different factors contribute to the fact that such infections may occur in scenarios where they are least expected. Recent studies show a progressive worldwide increase in the number of uncommon parasitoses in pet animals, that in some cases, such as linguatulosis, are of zoonotic relevance. Regular parasitological examinations and preventive antiparasitic schemes are necessary in order to treat and prevent infections in pet animals and safeguard the health of both animals and humans under the concept of One Health.


Subject(s)
Dog Diseases , Ectoparasitic Infestations , Enoplida Infections , Parasitic Diseases , Pentastomida , Humans , Dogs , Animals , Ectoparasitic Infestations/veterinary , Animals, Wild , Antiparasitic Agents , Capillaria , Enoplida Infections/diagnosis , Enoplida Infections/veterinary , Dog Diseases/diagnosis
17.
Vet Parasitol Reg Stud Reports ; 47: 100953, 2024 01.
Article in English | MEDLINE | ID: mdl-38199696

ABSTRACT

Ticks (Ixodida) and Fleas (Siphonaptera) are considered among the most important arthropod of public health concern due to their ability to transmit vector-borne pathogens to humans. By sharing a common environment, vector-borne diseases constituted major setbacks to the development of a pet population in Bangladesh. This study aimed to determine companion animal-associated ticks and fleas based on morpho-molecular approaches. Between December 2021 and May 2022, 74 animals (62 cats and 12 dogs) were examined, of which 17 (27.4%) cats and 9 (75.0%) dogs had ectoparasitic infestations, with 35.1% overall prevalence. Morphometrical examination showed the ectoparasites in these animals were Ctenocephalides spp. (flea) and Riphicephalus spp. (tick). Genetic analysis using the mitochondrial markers i.e. Cytochrome c oxidase subunit 1 (cox1) revealed the presence of two flea species i.e., Ctenocephalides canis, Ctenocephalides felis, and one tick species Rhipicephalus sanguineus. Interviews of animal owners indicate that 35.14% of them had no concern about ectoparasitic infestation or ectoparasites-borne diseases. Our results indicated that fleas and ticks were the most common ectoparasites in companion animals of this area. The zoonotic nature of some ectoparasites can be regarded as a public health alert. The findings will assist epidemiologists and policymakers in offering customized guidance for upcoming monitoring and preventive tactics in this area.


Subject(s)
Cat Diseases , Ctenocephalides , Dog Diseases , Ectoparasitic Infestations , Flea Infestations , Siphonaptera , Skin Diseases, Parasitic , Cats , Humans , Animals , Dogs , Pets , Bangladesh/epidemiology , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/veterinary , Flea Infestations/epidemiology , Flea Infestations/veterinary , Skin Diseases, Parasitic/veterinary , Cat Diseases/epidemiology , Dog Diseases/epidemiology
18.
Parasit Vectors ; 17(1): 2, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167501

ABSTRACT

BACKGROUND: The European hedgehog (Erinaceus europaeus) is known for high levels of ectoparasitism that not only represents a health risk for the animals themselves, but also for pet animals and humans as hedgehogs are frequently taken into human care. In the present study, patterns of ectoparasite infestation were assessed in hedgehogs taken into care at northern German animal rehabilitation centres. METHODS: Ectoparasites (ticks, fleas and mites) of 498 hedgehogs were collected over a period of 3 years from July 2018 to May 2021. Species were identified based on morphological characteristics and also via amplification and sequencing of the partial cytochrome c oxidase subunit 2 (COX-2) gene for fleas of the family Ceratophyllidae. Seasonal changes in infestation patterns as well as correlations with animal age, body weight and health status were assessed using generalised linear models. RESULTS: Infestation with ticks, fleas and mites occurred throughout the year. Overall, 86.5% (431/498) of the examined hedgehogs were infested with ticks, 91.4% (455/498) with fleas and 17.7% (88/498) with mites. Ixodes ricinus and Ixodes hexagonus/Ixodes canisuga were the most common tick species detected, with the additional occurrence of one Ixodes frontalis. Significant seasonal changes were observed for I. ricinus, but not for I. hexagonus/I. canisuga. Additionally, I. ricinus nymph prevalence declined significantly as of 2020, probably as a consequence of the climate change-related drought as of 2018. In hedgehogs with flea infestations, Archaeopsylla erinacei, Ceratophyllus sciurorum, Nosopsyllus fasciatus and Ctenocephalides felis were identified. In all cases of mite infestation, Caparinia tripilis was detected, in addition to specimens of the family Macronyssidae and free-living mites of the family Acaridae. Statistical analyses showed correlations regarding the factors month, year, body weight and age, but no correlation was evident regarding the health status of the animals. CONCLUSIONS: With a detected infestation rate of 98.6%, almost all of the examined hedgehogs were infested with at least one ectoparasite species. The seasonal activity patterns of the different ectoparasite species together with the complex annual cycle of hedgehogs lead to different seasonal patterns in ectoparasite prevalence and infestation intensities. Due to the risk of transmission of zoonotic pathogens as well as the possible negative impact on the host itself, hedgehogs should be treated against ectoparasites when taken into care facilities.


Subject(s)
Ectoparasitic Infestations , Flea Infestations , Ixodes , Mites , Scabies , Siphonaptera , Tick Infestations , Animals , Humans , Hedgehogs/parasitology , Flea Infestations/epidemiology , Ectoparasitic Infestations/epidemiology , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Germany/epidemiology , Body Weight , Tick Infestations/epidemiology , Tick Infestations/veterinary , Tick Infestations/parasitology
19.
J Vet Med Sci ; 86(2): 221-223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38171845

ABSTRACT

Armillifer moniliformis belongs to the order Porocephalida and family Porocephalidae, and it can cause zoonotic pentastomiasis. A suspected parasitic infection was incidentally discovered in the abdominal cavity of a cynomolgus macaque that died of persistent diarrhea. 18S rDNA amplification and sequencing revealed a high similarity (99.83%) to the Armillifer moniliformis Guangxi isolate. The isolated parasite was named the Armillifer moniliformis Yunnan isolate (GenBank accession no. HM048870). Our report presents a case of Armillifer moniliformis infection in macaques. The results indicated that early quarantine and diagnosis should be employed for animal health.


Subject(s)
Ectoparasitic Infestations , Parasitic Diseases , Pentastomida , Animals , Macaca fascicularis/parasitology , China , Parasitic Diseases/diagnosis , Parasitic Diseases/parasitology , Pentastomida/genetics , Ectoparasitic Infestations/veterinary
20.
Acta Trop ; 249: 107068, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37951328

ABSTRACT

Among the parasites, some groups that have a limited capacity for locomotion, such as mites and lice, the transmission is challenging to win. These ectoparasites disperse through direct contact between hosts or, in some cases, through phoresy. However, these processes are not well-documented in detail because they are difficult to observe and quantify. In the present study, the patterns of distribution of skin mites and phoretic lice on hippoboscid louse fly Pseudolynchia canariensis sampled from Columba livia were evaluated. The analyzed pigeons were juveniles and adults, with three distinct plumage colors: blue checker, spread, or wild type, and were caught over 24 months. A total of 1,381 hippoboscid flies were collected on 377 hosts. The plumage color did not influence the infestation patterns of louse flies on juvenile and adult pigeons, nor did it influence the infestation patterns of skin mites and phoretic lice on the hippoboscid flies. However, the environmental temperature was directly related to higher prevalence, mean infestation intensity, and phoretic species richness on P. canariensis during the hottest seasons. Furthermore, a higher abundance of phoretic mite eggs, including embryonated eggs, was observed in females of P. canariensis in all seasons.


Subject(s)
Anoplura , Bird Diseases , Columbidae , Diptera , Ectoparasitic Infestations , Mites , Animals , Female , Age Factors , Bird Diseases/parasitology , Columbidae/parasitology , Diptera/parasitology , Feathers/parasitology , Pigmentation , Seasons , Sex Factors , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/veterinary , Male
SELECTION OF CITATIONS
SEARCH DETAIL