Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.425
Filter
1.
Toxins (Basel) ; 16(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39330837

ABSTRACT

Snakebite is a serious health issue in tropical and subtropical areas of the world and results in various pathologies, such as hemotoxicity, neurotoxicity, and local swelling, blistering, and tissue necrosis around the bite site. These pathologies may ultimately lead to permanent morbidity and may even be fatal. Understanding the chemical and biological properties of individual snake venom toxins is of great importance when developing a newer generation of safer and more effective snakebite treatments. Two main approaches to ionizing toxins prior to mass spectrometry (MS) analysis are electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI). In the present study, we investigated the use of both ESI-MS and MALDI-MS as complementary techniques for toxin characterization in venom research. We applied nanofractionation analytics to separate crude elapid venoms using reversed-phase liquid chromatography (RPLC) and high-resolution fractionation of the eluting toxins into 384-well plates, followed by online LC-ESI-MS measurements. To acquire clear comparisons between the two ionization approaches, offline MALDI-MS measurements were performed on the nanofractionated toxins. For comparison to the LC-ESI-MS data, we created so-called MALDI-MS chromatograms of each toxin. We also applied plasma coagulation assaying on 384-well plates with nanofractionated toxins to demonstrate parallel biochemical profiling within the workflow. The plotting of post-column acquired MALDI-MS data as so-called plotted MALDI-MS chromatograms to directly align the MALDI-MS data with ESI-MS extracted ion chromatograms allows the efficient correlation of intact mass toxin results from the two MS-based soft ionization approaches with coagulation bioassay chromatograms. This facilitates the efficient correlation of chromatographic bioassay peaks with the MS data. The correlated toxin masses from ESI-MS and/or MALDI-MS were all around 6-8 or 13-14 kDa, with one mass around 20 kDa. Between 24 and 67% of the toxins were observed with good intensity from both ionization methods, depending on the venom analyzed. All Naja venoms analyzed presented anticoagulation activity, whereas pro-coagulation was only observed for the Pseudonaja textillis venom. The data of MALDI-MS can provide complementary identification and characterization power for toxin research on elapid venoms next to ESI-MS.


Subject(s)
Elapid Venoms , Elapidae , Naja , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Animals , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Elapid Venoms/toxicity , Elapid Venoms/chemistry , Elapid Venoms/analysis , Blood Coagulation/drug effects , Chromatography, Reverse-Phase , Ophiophagus hannah
2.
Toxins (Basel) ; 16(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39330851

ABSTRACT

Snakebite envenoming (SBE) remains a severely neglected public health issue, particularly affecting tropical and subtropical regions, with Africa experiencing an estimated 435,000 to 580,000 snakebites annually, leading to high morbidity and mortality rates, especially across Africa and Asia. Recognized as a Neglected Tropical Disease, SBE management is further complicated by the inadequate efficacy of current antivenom treatments. Of particular concern are cobras (Naja sp.), whose neurotoxins can induce rapid fatal respiratory paralysis. In this study, we investigate the potential of nanobodies as a promising next-generation of immunotherapeutics against cobra venoms. Through a dual strategy of the characterization of venom toxic fractions from cobras captured for the first time in Algeria and Tunisia biotopes, coupled with in vitro assays to evaluate their interactions with acetylcholine receptors, and subsequent immunization of dromedaries to produce specific nanobodies, we identified two lethal fractions, F5 and F6, from each venom, and selected five nanobodies with significant binding and neutralizing of 3DL50 (0.74 mg/kg). The combination of these nanobodies demonstrated a synergistic effect, reaching 100% neutralizing efficacy of 2DL50 lethal venom fraction (0.88 mg/kg) doses in mice. Additionally, our findings highlighted the complex mechanism of cobra venom action through the lethal synergism among its major toxins.


Subject(s)
Antibodies, Neutralizing , Antivenins , Elapid Venoms , Single-Domain Antibodies , Animals , Elapid Venoms/immunology , Elapid Venoms/toxicity , Single-Domain Antibodies/immunology , Antivenins/immunology , Antivenins/pharmacology , Mice , Antibodies, Neutralizing/immunology , Snake Bites/drug therapy , Snake Bites/immunology , Naja naja , Camelus/immunology , Africa, Northern , Naja , Male
3.
Anaesth Intensive Care ; 52(5): 335-337, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39233566

ABSTRACT

We present a case of severe taipan envenoming in northern New South Wales in a 68-year-old man. He developed severe neurotoxicity requiring intubation and ventilation, venom-induced consumption coagulopathy, myotoxicity and thrombotic microangiopathy with acute kidney injury requiring dialysis. He was administered brown and tiger snake antivenom consistent with guidelines and snake occurrence in the region. Taipan venom was detected in serum (72 ng/ml) following concern about the severity of neurotoxicity, clinical toxicology consultation and a concurrent report of a taipan in the area. Based on this it would be prudent to stock and consider treating with polyvalent antivenom in north-eastern New South Wales and south-eastern Queensland.


Subject(s)
Antivenins , Elapid Venoms , Snake Bites , Humans , Male , Aged , Snake Bites/therapy , Snake Bites/complications , Antivenins/therapeutic use , Animals , Acute Kidney Injury/therapy , New South Wales , Neurotoxicity Syndromes/etiology
4.
J Proteome Res ; 23(10): 4601-4613, 2024 Oct 04.
Article in English | MEDLINE | ID: mdl-39231368

ABSTRACT

Snake venoms are comprised of bioactive proteins and peptides that facilitate severe snakebite envenomation symptoms. A comprehensive understanding of venom compositions and the subtle heterogeneity therein is important. While bottom-up proteomics has been the well-established approach to catalogue venom compositions, top-down proteomics has emerged as a complementary strategy to characterize venom heterogeneity at the intact protein level. However, top-down proteomics has not been as widely implemented in the snake venom field as bottom-up proteomics, with various emerging top-down methods yet to be developed for venom systems. Here, we have explored three main top-down mass spectrometry methodologies in a proof-of-concept study to characterize selected three-finger toxin and phospholipase A2 proteoforms from the forest cobra (Naja melanoleuca) venom. We demonstrated the utility of a data-independent acquisition mode "MSE" for untargeted fragmentation on a chromatographic time scale and its improvement in protein sequence coverage compared to conventional targeted tandem mass spectrometry analysis. We also showed that protein identification can be further improved using a hybrid fragmentation approach, combining electron-capture dissociation and collision-induced dissociation. Lastly, we reported the promising application of multifunctional cyclic ion mobility separation and post-ion mobility fragmentation on snake venom proteins for the first time.


Subject(s)
Elapid Venoms , Phospholipases A2 , Proteomics , Animals , Elapid Venoms/chemistry , Elapid Venoms/analysis , Proteomics/methods , Phospholipases A2/chemistry , Phospholipases A2/analysis , Phospholipases A2/metabolism , Tandem Mass Spectrometry/methods , Naja , Amino Acid Sequence , Mass Spectrometry/methods , Venomous Snakes
5.
BMC Complement Med Ther ; 24(1): 334, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39272057

ABSTRACT

INTRODUCTION: Acute lung injury (ALI) as one kind of acute pulmonary inflammatory disorder, manifests primarily as damage to alveolar epithelial cells and microvascular endothelial cells. Activation of the complement system is a common pathological mechanism in ALI induced by diverse factors, with the complement alternative pathway assuming a pivotal role. Baicalin, a flavonoid derived from the root of Scutellaria baicalensis Georgi, exhibits noteworthy biological activities. The present study attempted the interventional effects and underlying mechanisms of baicalin in microangiopathy in ALI induced by complement alternative pathway activation. METHODS: Activation of the complement alternative pathway by cobra venom factor (CVF). HMEC cells were pretreated with baicalin and then exposed to complement activation products. The expression of inflammatory mediators was detected by ELISA, and the intranuclear transcriptional activity of NF-κB was assessed by a dual fluorescent kinase reporter gene assay kit. Before establishing the ALI mouse model, baicalin or PDTC was gavaged for 7 d. CVF was injected into the tail vein to establish the ALI model. The levels of inflammatory mediators in BALF and serum were determined by ELISA. HE staining and immunohistochemistry evaluated pathological changes, complement activation product deposition, and NF-κB p65 phosphorylation in lung tissue. RESULTS: Baicalin reduced complement alternative activation product-induced expression of HMEC cells adhesion molecules (ICAM-1, VCAM-1, E-selectin) and cytokines (IL-6, TNF-α) as well as upregulation of NF-κB intranuclear transcriptional activity. Baicalin intervention reduced the number of inflammatory cells and protein content in the BALF and decreased the levels of IL-6, TNF-α, and ICAM-1 in serum and IL-6, TNF-α, ICAM-1, and P-selectin in BLAF. In addition, baicalin attenuated inflammatory cell infiltration in the lung of ALI mice and reduced the deposition of complement activation products (C5a, C5b-9) and phosphorylation of NF-κB p65 in lung tissue. CONCLUSION: Baicalin relieves complement alternative pathway activation-induced lung inflammation by inhibition of NF-κB pathway, delaying the progression of ALI.


Subject(s)
Acute Lung Injury , Flavonoids , NF-kappa B , Animals , Flavonoids/pharmacology , Mice , NF-kappa B/metabolism , Acute Lung Injury/drug therapy , Humans , Disease Models, Animal , Male , Complement Pathway, Alternative/drug effects , Pneumonia/drug therapy , Mice, Inbred C57BL , Lung/drug effects , Elapid Venoms/pharmacology
6.
Sci Rep ; 14(1): 18570, 2024 08 10.
Article in English | MEDLINE | ID: mdl-39127758

ABSTRACT

Three-finger proteins are the most abundant toxins in the venom of Naja ashei, a snake species from the Elapidae family. This research aimed to describe the effects of varying charges of these proteins, isolated from Naja ashei venom using SEC and IEX chromatography. The study examined how differently charged three-finger toxin fractions interact with and affect neuroblastoma (SK-N-SH) and promyeloblast (HL-60) cells, as well as model Langmuir membranes and liposomes designed to mimic cellular lipid composition. Findings revealed that protein surface charges significantly impact cell survival (MTT assay), membrane damage (lactate dehydrogenase release, malondialdehyde formation), and the structural and electrochemical properties of model membranes (Langmuir membranes and zeta potential for liposomes and cancer cell lines). Results indicated that SK-N-SH cells, characterized by a higher negative charge on their cell membranes, interacted more effectively with positively charged toxins than HL-60 cells. However, the mechanism of these electrostatic interactions is complex. The research demonstrated that electrostatic and mechanical membrane modifications induced by venom proteins can significantly affect cell metabolism. Additionally, the total charge of the membrane, influenced by polar lipid components and phospholipid saturation, plays a decisive role in toxin interaction.


Subject(s)
Cell Membrane , Elapid Venoms , Humans , Cell Membrane/metabolism , Cell Membrane/drug effects , Elapid Venoms/chemistry , Animals , Naja , Cell Line, Tumor , HL-60 Cells , Cell Survival/drug effects , Neurons/drug effects , Neurons/metabolism , Liposomes/chemistry , Neuroblastoma/pathology , Neuroblastoma/metabolism
7.
Toxicon ; 249: 108057, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39103096

ABSTRACT

Snakebites are considered a significant health issue. Current antivenoms contain polyclonal antibodies, which vary in their specificity against different venom components. Development and characterization of next generation antivenoms including nanobodies against Naja naja oxiana was the main aim of this study. Crude venom was injected into the Sephadex G50 filtration gel chromatography column and then toxic fractions were obtained. Then the corresponding fraction was injected into the HPLC column and the toxic peaks were identified. N. naja oxiana venom was injected into a camel and specific nanobodies screening was performed against the toxic peak using phage display technique. The obtained results showed that among the 12 clones obtained, N24 nanobody was capable of neutralizing P1, the most toxic peak obtained from HPLC chromatography. The molecular weight of P1 was measured with a mass spectrometer and was found to be about seven kDa. The results of the neutralization test of crude N. naja oxiana venom with N24 nanobody showed that 250 µg of recombinant nanobody could neutralize the toxic effects of 20 µg equivalent to LD50 × 10 of crude venom in mice. The findings indicate the potential of the developed nanobody to serve as a novel antivenom therapy.


Subject(s)
Antivenins , Elapid Venoms , Naja naja , Single-Domain Antibodies , Snake Bites , Animals , Elapid Venoms/immunology , Single-Domain Antibodies/immunology , Single-Domain Antibodies/pharmacology , Mice , Antivenins/pharmacology , Antivenins/immunology , Snake Bites/drug therapy , Camelus , Chromatography, High Pressure Liquid , Neutralization Tests
8.
Toxicon ; 249: 108056, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39111718

ABSTRACT

The Monocled Cobra (Naja kaouthia), a category one medically significant snake from the Elapidae family, inflicts severe envenomation in South and Southeast Asian countries. N. kaouthia is distributed throughout the eastern and northeastern parts of India, Nepal, Bangladesh, Myanmar, Thailand, Vietnam, Malaysia, and southwestern China. Envenomation by N. kaouthia is a medical emergency, and the primary clinical symptoms are neurotoxicity and localized tissue destruction. Unfortunately, data on the actual magnitude of N. kaouthia envenomation is scarce due to poor record keeping, lack of diagnostic kits, and region-wise well-coordinated epidemiological surveys. The present review highlights the diversity in the composition of N. Kaouthia venom (NKV) across various geographical regions, as revealed through biochemical and proteomic analyses. The qualitative and quantitative differences in the toxin isoforms result in differences in lethality and pathophysiological manifestation that may limit the effectiveness of antivenom therapy. Studies on commercial polyvalent antivenom (PAV) effectiveness against distinct NKV samples have revealed varying toxicity and enzymatic activity neutralization. Additionally, the identification of snake venom's poorly immunogenic toxins by mass spectrometry, quantification of venom-specific antibodies, and implications for antivenom therapy against snakebites are highlighted. Future directions involve clinical studies on NK envenomation where the snake is frequently encountered and the correlation of this data with NKV composition in that region. For more efficient and superior hospital management of NK envenomation, research should enhance the current immunization procedure to boost the development of antibodies against less immunogenic venom components of this snake.


Subject(s)
Antivenins , Elapid Venoms , Snake Bites , Animals , Antivenins/therapeutic use , Asia, Southeastern/epidemiology , Snake Bites/drug therapy , Humans , Venomous Snakes
9.
Appl Environ Microbiol ; 90(8): e0012124, 2024 08 21.
Article in English | MEDLINE | ID: mdl-38980046

ABSTRACT

Naja atra, the Chinese cobra, is a major cause of snake envenomation in Asia, causing hundreds of thousands of clinical incidents annually. The current treatment, horse serum-derived antivenom, has unpredictable side effects and presents manufacturing challenges. This study focused on developing new-generation snake venom antidotes by using microbial phage display technology to derive nanobodies from an alpaca immunized with attenuated N. atra venom. Following confirmation of the immune response in the alpaca, we amplified VHH genes from isolated peripheral blood mononuclear cells and constructed a phage display VHH library of 1.0 × 107 transformants. After four rounds of biopanning, the enriched phages exhibited increased binding activity to N. atra venom. Four nanobody clones with high binding affinities were selected: aNAH1, aNAH6, aNAH7, and aNAH9. Specificity testing against venom from various snake species, including two Southeast Asian cobra species, revealed nanobodies specific to the genus Naja. An in vivo mouse venom neutralization assay demonstrated that all nanobodies prolonged mouse survival and aNAH6 protected 66.6% of the mice from the lethal dosage. These findings highlight the potential of phage display-derived nanobodies as valuable antidotes for N. atra venom, laying the groundwork for future applications in snakebite treatment.IMPORTANCEChinese cobra venom bites present a formidable medical challenge, and current serum treatments face unresolved issues. Our research applied microbial phage display technology to obtain a new, effective, and cost-efficient treatment approach. Despite interest among scientists in utilizing this technology to screen alpaca antibodies against toxins, the available literature is limited. This study makes a significant contribution by introducing neutralizing antibodies that are specifically tailored to Chinese cobra venom. We provide a comprehensive and unbiased account of the antibody construction process, accompanied by thorough testing of various nanobodies and an assessment of cross-reactivity with diverse snake venoms. These nanobodies represent a promising avenue for targeted antivenom development that bridges microbiology and biotechnology to address critical health needs.


Subject(s)
Antivenins , Camelids, New World , Elapid Venoms , Single-Domain Antibodies , Snake Bites , Animals , Single-Domain Antibodies/immunology , Mice , Snake Bites/therapy , Snake Bites/immunology , Antivenins/immunology , Elapid Venoms/immunology , Cell Surface Display Techniques , Naja naja , Peptide Library
10.
Toxicon ; 247: 107838, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38971473

ABSTRACT

Phospholipase A2 (PLA2) is an enzyme present in appreciable quantity in snake venoms which catalyze the hydrolysis of glycerophospholipids at sn-2 position and promote the release of lysophospholipids and fatty acids. 5-methylcoumarin-4-ß-glucoside (5MC4BG) and lupeol were previously isolated from the leaves of V. glaberrima. The aim of this research was to evaluate effect of these compounds as potential inhibitors of snake venom toxins of Naja nigricollis using an in vitro and in silico studies. Antisnake venom studies was conducted using acidimetry while the molecular docking analysis against PLA2 enzyme from N. nigricollis was performed using Auto Dock Vina and ADME-Tox analysis was evaluated using swissADME and ProTox-II online servers. The two compounds (5MC4BG and Lupeol) were able to inhibit the hydrolytic actions of PLA2 enzyme with percentage inhibition ranging from 23.99 to 72.36 % and 21.97-24.82 % at 0.0625-1.00 mg/mL respectively while the standard ASV had 82.63 % at 1.00 mg/mL after 10 min incubation at 37 °C. Similar effects were observed after 30 min incubation, although there was significant increase in percentage inhibition of 5MC4BG and lupeol ranging from 66.51 to 83.73 % and 54.87-59.60 % at similar concentrations. Furthermore, the compounds were able to bind to the active site of PLA2 enzyme with high affinity (-7.7 to -6.3 kcal/mol); the standard ligand, Varespladib had a docking score of -6.9 kcal/mol and they exhibited favorable drug-likeness and pharmacokinetic properties and according to toxicity predictions, the two compounds are toxic. In conclusion, the leaf of V. glaberrima contains phytoconstituents with antisnake activity and thus, validates the hypothesis that, the phytoconstituents of V. glaberrima leaves has antisnake venom activity against N. nigricollis venom and thus, should be studied further for the development as antisnake venom agents.


Subject(s)
Molecular Docking Simulation , Pentacyclic Triterpenes , Phospholipases A2 , Phytochemicals , Plant Leaves , Vernonia , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Leaves/chemistry , Animals , Vernonia/chemistry , Phospholipases A2/pharmacology , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Naja , Coumarins/pharmacology , Coumarins/chemistry , Phospholipase A2 Inhibitors/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Computer Simulation , Lupanes
11.
BMC Biol ; 22(1): 161, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075553

ABSTRACT

BACKGROUND: Snake venoms can exhibit remarkable inter- and intraspecific variation. While diverse ecological and environmental factors are theorised to explain this variation, only a handful of studies have attempted to unravel their precise roles. This knowledge gap not only impedes our understanding of venom evolution but may also have dire consequences on snakebite treatment. To address this shortcoming, we investigated the evolutionary ecology of venoms of Russell's viper (Daboia russelii) and spectacled cobra (Naja naja), India's two clinically most important snakes responsible for an alarming number of human deaths and disabilities. METHODOLOGY: Several individuals (n = 226) of D. russelii and N. naja belonging to multiple clutches (n = 9) and their mothers were maintained in captivity to source ontogenetic stage-specific venoms. Using various in vitro and in vivo assays, we assessed the significance of prey, ontogeny and sex in driving venom composition, function, and potency. RESULTS: Considerable ontogenetic shifts in venom profiles were observed in D. russelii, with the venoms of newborns being many times as potent as juveniles and adults against mammalian (2.3-2.5 ×) and reptilian (2-10 ×) prey. This is the first documentation of the ontogenetic shift in viperine snakes. In stark contrast, N. naja, which shares a biogeographic distribution similar to D. russelii, deployed identical biochemical cocktails across development. Furthermore, the binding kinetics of cobra venom toxins against synthetic target receptors from various prey and predators shed light on the evolutionary arms race. CONCLUSIONS: Our findings, therefore, provide fascinating insights into the roles of ecology and life history traits in shaping snake venoms.


Subject(s)
Biological Evolution , Animals , India , Female , Male , Daboia , Naja naja , Snake Bites , Elapid Venoms/chemistry , Viper Venoms/chemistry
12.
Aust Vet J ; 102(9): 485-488, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009475

ABSTRACT

The eastern small eyed snake (Cryptophis nigrescens; CN) is an uncommon cause of snakebite in Australia despite the widespread distribution of the snake along the east coast of Australia. Diagnosis of envenomation relies on identification of the snake which is often not possible with animal snakebite cases. This study examined the immunoreactivity profile of CN venom towards specific rabbit IgG made against the medically relevant snake venom immunotypes found in Australia (tiger, brown, black, death adder and taipan). A simultaneous sandwich ELISA format was used to quantify CN venom binding to venom specific Protein A purified rabbit IgG. The binding profiles demonstrated weak binding of CN venom to rabbit IgG made against both tiger (N. scutatus) and black snake (P. australis) venoms with approximately 0.19% and 0.069% cross reactivity, respectively. However, the concentration of venom likely to be present in the urine of CN envenomed patients and the low cross reactivity suggest that envenomed veterinary patients are unlikely to be detected in the commercial snake venom detection kit. It is possible that CN envenomation is more common but may be underdiagnosed where snake venom antigen detection is relied upon solely. Serum biochemical abnormalities also overlap with other snake species found in the same geographical area. In respect of antivenom therapy, administration of tiger snake antivenom is supported by the binding data, but due to the low cross reactivity multiple vials may be required. Limited clinical evidence also supports the efficacy of tiger snake antivenom for envenomation by CN.


Subject(s)
Antivenins , Elapid Venoms , Elapidae , Enzyme-Linked Immunosorbent Assay , Snake Bites , Animals , Elapid Venoms/immunology , Snake Bites/veterinary , Snake Bites/immunology , Enzyme-Linked Immunosorbent Assay/veterinary , Australia , Antivenins/immunology , Antivenins/therapeutic use , Rabbits , Species Specificity , Cross Reactions , Immunoglobulin G/blood
13.
PLoS Negl Trop Dis ; 18(7): e0012359, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39052675

ABSTRACT

Snakebite envenomation remains an important, yet a neglected public health issue in most tropical and subtropical countries. Underdeveloped medical infrastructure, suboptimal medical services, poor documentation and failure to make snake-related injury a mandatory notifiable disease are important contributing factors. The King Cobra (Ophiophagus hannah) is a medically significant species encountered in Malaysia however, there have been few publications from the clinical perspective. The objectives of this study were to determine the frequency of King Cobra related injuries, geographical distribution, clinical presentation, type and frequency of antivenom utilization and the management outcome. This is a cross-sectional study of confirmed King Cobra related injuries consulted to Remote Envenomation Consultation Services (RECS) from 2015 to 2020. Data were extracted from the RECS database and descriptively analyzed. A total of 32 cases of King Cobra bite were identified. Most cases were from Peninsular Malaysia with the most frequent from the state of Pahang (n = 9, 28.1%). Most patients got bitten while attempting to catch or play with the snake (68.8%). Signs and symptoms of envenomation were documented in 24 (75.0%) cases and the most frequent systemic manifestation was ptosis (n = 13, 40.6%). Tracheal intubation and ventilatory support were required in 13 (40.6%) patients. Antivenom was administered to 22 (68.8%) patients with most (25.0%) receiving 10 vials (1 dose). The commonest antivenom used was monospecific King Cobra antivenom (50.0%) from Thai Red Cross. There was one death documented due to complications from necrotizing fasciitis and septicemia. Public awareness of the dangers and proper handling of King Cobras needs to be emphasised. Timely administration of the appropriate antivenom is the definitive treatment and leads to favorable outcomes.


Subject(s)
Antivenins , Ophiophagus hannah , Snake Bites , Humans , Snake Bites/drug therapy , Snake Bites/therapy , Snake Bites/epidemiology , Antivenins/therapeutic use , Antivenins/administration & dosage , Animals , Malaysia/epidemiology , Male , Female , Cross-Sectional Studies , Adult , Middle Aged , Young Adult , Adolescent , Child , Aged , Treatment Outcome , Elapid Venoms , Child, Preschool
14.
Sci Transl Med ; 16(756): eadk4802, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018365

ABSTRACT

Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity. Here, we used a pooled whole-genome CRISPR knockout screen to define human genes that, when targeted, modify cell responses to spitting cobra venoms. A large portion of modifying genes that conferred resistance to venom cytotoxicity was found to control proteoglycan biosynthesis, including EXT1, B4GALT7, EXT2, EXTL3, XYLT2, NDST1, and SLC35B2, which we validated independently. This finding suggested heparinoids as possible inhibitors. Heparinoids prevented venom cytotoxicity through binding to three-finger cytotoxins, and the US Food and Drug Administration-approved heparinoid tinzaparin was found to reduce tissue damage in mice when given via a medically relevant route and dose. Overall, our systematic molecular dissection of cobra venom cytotoxicity provides insight into how we can better treat cobra snakebite envenoming.


Subject(s)
Elapid Venoms , Snake Bites , Animals , Humans , Snake Bites/drug therapy , Mice , Antidotes/pharmacology
15.
Toxicon ; 247: 107834, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38950737

ABSTRACT

Snakes show defensive activities, often counting visual or auditory displays against an aggressor. The study observed what happens to rats administered subcutaneously sub-lethal doses of crude venom Naja nubiae. The pro-inflammatory cytokines, such as tumor necrosis alpha (TNF-α) and interleukin-6 (IL-6), as well as the anti-inflammatory cytokines such as interleukin-10 (IL-10), and inflammatory mediator's prostaglandin E-2 (PG-E2), were evaluated. Vascular permeability (VP) was employed to assess how leaky or permeable blood vessels are in various tissues and organs, including the rat peritoneal cavity and lymphoid organs. Lymphoid organs' histological alterations brought on by Nubiae venom. The study found that the two venom doses-1/4 and 1/2 LD50-induced high levels of inflammatory activity as evidenced by the production of inflammatory cytokines. These findings demonstrated that venom enhanced innate immunity through specifically increased T helper cells, IL-6, TNF-α, IL-10, and PG-E2. The results reveal whether the venom has an immunomodulatory effect and promotes inflammation. The data have a substantial impact on the development of new drugs and treatments for inflammatory conditions.


Subject(s)
Elapid Venoms , Naja naja , Animals , Elapid Venoms/toxicity , Rats , Male , Cytokines/metabolism , Rats, Wistar , Capillary Permeability/drug effects , Dinoprostone/metabolism , Immunity, Innate/drug effects , Tumor Necrosis Factor-alpha/metabolism
16.
Toxins (Basel) ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39057927

ABSTRACT

In this paper, we provide an overview of mitochondrial bioenergetics and specific conditions that lead to the formation of non-bilayer structures in mitochondria. Secondly, we provide a brief overview on the structure/function of cytotoxins and how snake venom cytotoxins have contributed to increasing our understanding of ATP synthesis via oxidative phosphorylation in mitochondria, to reconcile some controversial aspects of the chemiosmotic theory. Specifically, we provide an emphasis on the biochemical contribution of delocalized and localized proton movement, involving direct transport of protons though the Fo unit of ATP synthase or via the hydrophobic environment at the center of the inner mitochondrial membrane (proton circuit) on oxidative phosphorylation, and how this influences the rate of ATP synthesis. Importantly, we provide new insights on the molecular mechanisms through which cobra venom cytotoxins affect mitochondrial ATP synthesis, mitochondrial structure, and dynamics. Finally, we provide a perspective for the use of cytotoxins as novel pharmacological tools to study membrane bioenergetics and mitochondrial biology, how they can be used in translational research, and their potential therapeutic applications.


Subject(s)
Elapid Venoms , Energy Metabolism , Mitochondria , Mitochondrial Membranes , Animals , Energy Metabolism/drug effects , Mitochondrial Membranes/drug effects , Mitochondrial Membranes/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Humans , Elapid Venoms/chemistry , Elapid Venoms/toxicity , Elapid Venoms/metabolism , Cytotoxins/pharmacology , Cytotoxins/toxicity , Cytotoxins/chemistry , Adenosine Triphosphate/metabolism , Oxidative Phosphorylation/drug effects
17.
Biochem Biophys Res Commun ; 732: 150420, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39047403

ABSTRACT

Antivenoms are essential in the treatment of the neurotoxicity caused by elapid snakebites. However, there are elapid neurotoxins, e.g., long-chain α-neurotoxins (also known as long-chain three-finger toxins) that are barely neutralized by commercial elapid antivenoms; so, recombinant elapid neurotoxins could be an alternative or complements for improving antibody production against the lethal long-chain α-neurotoxins from elapid venoms. This work communicates the expression of a recombinant long-chain α-neurotoxin, named HisrLcNTx or rLcNTx, which based on the most lethal long-chain α-neurotoxins reported, was constructed de novo. The gene of rLcNTx was synthesized and introduced into the expression vector pQE30, which contains a proteolytic cleavage region for exscinding the mature protein, and His residues in tandem for affinity purification. The cloned pQE30/rLcNTx was transfected into Escherichia coli Origami cells to express rLcNTx. After expression, it was found in inclusion bodies, and folded in multiple Cys-Cys structural isoforms. To observe the capability of those isoforms to generate antibodies against native long-chain α-neurotoxins, groups of rabbits were immunized with different cocktails of Cys-Cys rLcNTx isoforms. In vitro, and in vivo analyses revealed that rabbit antibodies raised against different rLcNTx Cys-Cys isoforms were able to recognize pure native long-chain α-neurotoxins and their elapid venoms, but they were unable to neutralize bungarotoxin, a classical long-chain α-neurotoxin, and other elapid venoms. The rLcNTx Cys-Cys isoform 2 was the immunogen that produced the best neutralizing antibodies in rabbits. Yet to neutralize the elapid venoms from the black mamba Dendroaspis polylepis, and the coral shield cobra Aspidelaps lubricus, it was required to use two types of antibodies, the ones produced using rLcNTx Cys-Cys isoform 2 and antibodies produced using short-chain α-neurotoxins. Expression of recombinant elapid neurotoxins as immunogens could be an alternative to improve elapid antivenoms; nevertheless, recombinant elapid neurotoxins must be well-folded to be used as immunogens for obtaining neutralizing antibodies.


Subject(s)
Antivenins , Elapid Venoms , Neurotoxins , Protein Folding , Recombinant Proteins , Animals , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Elapid Venoms/immunology , Elapid Venoms/genetics , Elapid Venoms/chemistry , Antivenins/immunology , Antivenins/chemistry , Neurotoxins/immunology , Neurotoxins/genetics , Neurotoxins/chemistry , Antibodies, Neutralizing/immunology , Rabbits , Amino Acid Sequence
18.
Toxicon ; 245: 107792, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38838860

ABSTRACT

African cobras (Naja species) represent one of the most encountered medically important snakes in Africa. They are classified as African spitting (Afronaja subgenus) and non-spitting cobras (Uraeus and Boulengerina subgenera) with similar and different characteristics. Snake venom toxins including three-finger toxin (3FTx), phospholipase A2 (PLA2), and snake venom metalloproteinase (SVMP) cause snakebite envenomation leading to morbidity and mortality. The profile of the proteome of African cobra venoms will help to develop safer and more effective antivenoms. The approval of Captopril by the US Food and Drug Administration (FDA) for the treatment of cardiovascular diseases, has led to intensified research towards possible use of venom toxins as therapeutics. In this review, we compare the venom proteome profile of 3 African Naja subgenera. In both Afronaja and Boulengerina subgenera, 3FTx (Afronaja-69.79%; Boulengerina-60.56%) followed by PLA2 (Afronaja-21.15%; Boulengerina-20.21%) dominated the venoms compared to the Uraeus subgenus dominated by 3FTx (84.55%) with little to no PLA2 abundance (0.8%). The venom of subgenus Uraeus was distinct from the other two subgenera by the almost total absence of PLA2, thus indicating little or no contribution of PLA2 in the envenomation caused by Uraeus compared to Afronaja and Boulengerina. Furthermore, we report studies on the experimental testing of African cobra venoms and toxins against diseases including anti-cancer properties.


Subject(s)
Elapid Venoms , Proteome , Animals , Elapid Venoms/chemistry , Antivenins/therapeutic use , Naja , Phospholipases A2
19.
Int J Nanomedicine ; 19: 5381-5395, 2024.
Article in English | MEDLINE | ID: mdl-38859950

ABSTRACT

Background: Current immunotherapies with unexpected severe side effects and treatment resistance have not resulted in the desired outcomes for patients with melanoma, and there is a need to discover more effective medications. Cytotoxin (CTX) from Cobra Venom has been established to have favorable cytolytic activity and antitumor efficacy and is regarded as a promising novel anticancer agent. However, amphiphilic CTX with excellent anionic phosphatidylserine lipid-binding ability may also damage normal cells. Methods: We developed pH-responsive liposomes with a high CTX load (CTX@PSL) for targeted acidic-stimuli release of drugs in the tumor microenvironment. The morphology, size, zeta potential, drug-release kinetics, and preservation stability were characterized. Cell uptake, apoptosis-promoting effects, and cytotoxicity were assessed using MTT assay and flow cytometry. Finally, the tissue distribution and antitumor effects of CTX@PSL were systematically assessed using an in vivo imaging system. Results: CTX@PSL exhibited high drug entrapment efficiency, drug loading, stability, and a rapid release profile under acidic conditions. These nanoparticles, irregularly spherical in shape and small in size, can effectively accumulate at tumor sites (six times higher than free CTX) and are rapidly internalized into cancer cells (2.5-fold higher cell uptake efficiency). CTX@PSL displayed significantly stronger cytotoxicity (IC50 0.25 µg/mL) and increased apoptosis in than the other formulations (apoptosis rate 71.78±1.70%). CTX@PSL showed considerably better tumor inhibition efficacy than free CTX or conventional liposomes (tumor inhibition rate 79.78±5.93%). Conclusion: Our results suggest that CTX@PSL improves tumor-site accumulation and intracellular uptake for sustained and targeted CTX release. By combining the advantages of CTX and stimuli-responsive nanotechnology, the novel CTX@PSL nanoformulation is a promising therapeutic candidate for cancer treatment.


Subject(s)
Antineoplastic Agents , Elapid Venoms , Liposomes , Liposomes/chemistry , Hydrogen-Ion Concentration , Animals , Elapid Venoms/chemistry , Elapid Venoms/pharmacology , Humans , Cell Line, Tumor , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/pharmacokinetics , Mice , Apoptosis/drug effects , Drug Liberation , Cytotoxins/chemistry , Cytotoxins/pharmacology , Cytotoxins/pharmacokinetics , Drug Delivery Systems/methods , Tissue Distribution , Tumor Microenvironment/drug effects , Nanoparticles/chemistry
20.
Biomed Pharmacother ; 177: 116967, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908206

ABSTRACT

Snakebite envenomation often induces acute kidney injury (AKI) and acute liver injury (ALI), leading to augmented injuries and poor rehabilitation. Phospholipase A2 (PLA2) and metalloproteinase (SVMP) present in venom are responsible for the envenomation-associated events. In this study, mice envenomed with Deinagkistrodon acutus, Naja atra, or Agkistrodon halys pallas venom exhibited typical AKI and ALI symptoms, including significantly increased plasma levels of myoglobin, free hemoglobin, uric acid, aspartate aminotransferase, and alanine aminotransferase and upregulated expression of kidney NGAL and KIM-1. These effects were significantly inhibited when the mice were pretreated with natural inhibitors of PLA2 and SVMP isolated from Sinonatrix annularis (SaPLIγ and SaMPI). The inhibitors protected the physiological structural integrity of the renal tubules and glomeruli, alleviating inflammatory infiltration and diffuse hemorrhage in the liver. Furthermore, the dual therapy alleviated oxidative stress and apoptosis in the kidneys and liver by mitigating mitochondrial damage, thereby effectively reducing the lethal effect of snake venom in the inhibitor-treated mouse model. This study showed that dual therapy with inhibitors of metalloproteinase and phospholipase can effectively prevent ALI and AKI caused by snake bites. Our findings suggest that intrinsic inhibitors present in snakes are prospective therapeutic agents for multi-organ injuries caused by snake envenoming.


Subject(s)
Acute Kidney Injury , Metalloproteases , Snake Bites , Animals , Acute Kidney Injury/drug therapy , Acute Kidney Injury/pathology , Mice , Male , Metalloproteases/antagonists & inhibitors , Metalloproteases/metabolism , Snake Bites/drug therapy , Snake Bites/complications , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Crotalinae , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/etiology , Oxidative Stress/drug effects , Kidney/drug effects , Kidney/pathology , Crotalid Venoms/toxicity , Snake Venoms , Apoptosis/drug effects , Elapid Venoms
SELECTION OF CITATIONS
SEARCH DETAIL