Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.930
Filter
1.
Article in English | MEDLINE | ID: mdl-38949928

ABSTRACT

Brain-computer interfaces (BCIs) provide a communication interface between the brain and external devices and have the potential to restore communication and control in patients with neurological injury or disease. For the invasive BCIs, most studies recruited participants from hospitals requiring invasive device implantation. Three widely used clinical invasive devices that have the potential for BCIs applications include surface electrodes used in electrocorticography (ECoG) and depth electrodes used in Stereo-electroencephalography (SEEG) and deep brain stimulation (DBS). This review focused on BCIs research using surface (ECoG) and depth electrodes (including SEEG, and DBS electrodes) for movement decoding on human subjects. Unlike previous reviews, the findings presented here are from the perspective of the decoding target or task. In detail, five tasks will be considered, consisting of the kinematic decoding, kinetic decoding,identification of body parts, dexterous hand decoding, and motion intention decoding. The typical studies are surveyed and analyzed. The reviewed literature demonstrated a distributed motor-related network that spanned multiple brain regions. Comparison between surface and depth studies demonstrated that richer information can be obtained using surface electrodes. With regard to the decoding algorithms, deep learning exhibited superior performance using raw signals than traditional machine learning algorithms. Despite the promising achievement made by the open-loop BCIs, closed-loop BCIs with sensory feedback are still in their early stage, and the chronic implantation of both ECoG surface and depth electrodes has not been thoroughly evaluated.


Subject(s)
Brain-Computer Interfaces , Electrocorticography , Electrodes, Implanted , Movement , Humans , Electrocorticography/instrumentation , Electrocorticography/methods , Movement/physiology , Deep Brain Stimulation/instrumentation , Biomechanical Phenomena , Electroencephalography/methods , Electroencephalography/instrumentation , Electrodes , Motor Cortex/physiology , Hand/physiology , Algorithms
2.
Biomed Eng Online ; 23(1): 65, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987764

ABSTRACT

BACKGROUND: Cochlear implants (CI) are implantable medical devices that enable the perception of sounds and the understanding of speech by electrically stimulating the auditory nerve in case of inner ear damage. The stimulation takes place via an array of electrodes surgically inserted in the cochlea. After CI implantation, cone beam computed tomography (CBCT) is used to evaluate the position of the electrodes. Moreover, CBCT is used in research studies to investigate the relationship between the position of the electrodes and the hearing outcome of CI user. In clinical routine, the estimation of the position of the CI electrodes is done manually, which is very time-consuming. RESULTS: The aim of this study was to optimize procedures of automatic electrode localization from CBCT data following CI implantation. For this, we analyzed the performance of automatic electrode localization for 150 CBCT data sets of 10 different types of electrode arrays. Our own implementation of the method by Noble and Dawant (Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Springer, pp 152-159, 2015. https://doi.org/10.1007/978-3-319-24571-3_19 ) for automated electrode localization served as a benchmark for evaluation. Differences in the detection rate and the localization accuracy across types of electrode arrays were evaluated and errors were classified. Based on this analysis, we developed a strategy to optimize procedures of automatic electrode localization. It was shown that particularly distantly spaced electrodes in combination with a deep insertion can lead to apical-basal confusions in the localization procedure. This confusion prevents electrodes from being detected or assigned correctly, leading to a deterioration in localization accuracy. CONCLUSIONS: We propose an extended cost function for automatic electrode localization methods that prevents double detection of electrodes to avoid apical-basal confusions. This significantly increased the detection rate by 11.15 percent points and improved the overall localization accuracy by 0.53 mm (1.75 voxels). In comparison to other methods, our proposed cost function does not require any prior knowledge about the individual cochlea anatomy.


Subject(s)
Automation , Cochlear Implants , Cone-Beam Computed Tomography , Electrodes, Implanted , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Cochlear Implantation/instrumentation , Cochlea/diagnostic imaging
3.
Neurosurg Rev ; 47(1): 342, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39031226

ABSTRACT

The use of microelectrode recording (MER) during deep brain stimulation (DBS) for Parkinson Disease is controversial. Furthermore, in asleep DBS anesthesia can impair the ability to record single-cell electric activity.The purpose of this study was to describe our surgical and anesthesiologic protocol for MER assessment during asleep subthalamic nucleus (STN) DBS and to put our findings in the context of a systematic review of the literature. Sixty-three STN electrodes were implanted in 32 patients under general anesthesia. A frameless technique using O-Arm scanning was adopted in all cases. Total intravenous anesthesia, monitored with bispectral index, was administered using a target controlled infusion of both propofol and remifentanil. A systematic review of the literature with metanalysis on MER in asleep vs awake STN DBS for Parkinson Disease was performed. In our series, MER could be reliably recorded in all cases, impacting profoundly on electrode positioning: the final position was located within 2 mm from the planned target only in 42.9% cases. Depth modification > 2 mm was necessary in 21 cases (33.3%), while in 15 cases (23.8%) a different track was used. At 1-year follow-up we observed a significant reduction in LEDD, UPDRS Part III score off-medications, and UPDRS Part III score on medications, as compared to baseline. The systematic review of the literature yielded 23 papers; adding the cases here reported, overall 1258 asleep DBS cases using MER are described. This technique was safe and effective: metanalysis showed similar, if not better, outcome of asleep vs awake patients operated using MER. MER are a useful and reliable tool during asleep STN DBS, leading to a fine tuning of electrode position in the majority of cases. Collaboration between neurosurgeon, neurophysiologist and neuroanesthesiologist is crucial, since slight modifications of sedation level can impact profoundly on MER reliability.


Subject(s)
Deep Brain Stimulation , Microelectrodes , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Middle Aged , Aged , Male , Female , Electrodes, Implanted , Intraoperative Neurophysiological Monitoring/methods
4.
Int J Cardiol ; 412: 132321, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38977225

ABSTRACT

BACKGROUND: Left ventricular lead positioning represents a key step in CRT optimization. However, evidence for its guidance based on specific topographical factors and related imaging techniques is sparse. OBJECTIVE: To analyze reverse remodeling (RR) and clinical events in CRT recipients based on LV cathode (LVC) position relative to latest mechanical activation (LMA) and scar as determined by cardiac magnetic resonance (CMR). METHODS: This is a retrospective single-center study of 68 consecutive Q-LV-guided CRT-D and CRT-P recipients. Through CMR-based 3D reconstructions overlayed on fluoroscopy images, LVCs were stratified as concordant, adjacent, or discordant to LMA (3 segments with latest and greatest radial strain) and scar (segments with >50% scar transmurality). The primary endpoint of RR (expressed as percentage ESV change) and secondary composite endpoint of HF hospitalizations, LVAD/heart transplant, or cardiovascular death were compared across categories. RESULTS: LVC proximity to LMA was associated with a progressive increase in RR (percentage ESV change: concordant -47.0 ± 5.9%, adjacent -31.4 ± 3.1%, discordant +0.4 ± 3.7%), while proximity to scar was associated with sharply decreasing RR (concordant +10.7 ± 12.9%, adjacent +0.3 ± 5.3%, discordant -31.3 ± 4.4%, no scar -35.4 ± 4.8%). 4 integrated classes of LVC position demonstrated a significant positive RR gradient the more optimal the category (class I -47.0 ± 5.9%, class II -34.9 ± 2.8%, class III -5.5 ± 4.3%, class IV + 3.4 ± 5.2%). Freedom from composite secondary endpoint of HF hospitalization, LVAD/heart transplant, or cardiovascular death confirmed these trends demonstrating significant differences across both integrated as well as individual LMA and scar categories. CONCLUSION: Integrated CMR-determined LVC position relative to LMA and scar stratifies response to CRT.


Subject(s)
Magnetic Resonance Imaging, Cine , Humans , Male , Female , Retrospective Studies , Middle Aged , Magnetic Resonance Imaging, Cine/methods , Aged , Cardiac Resynchronization Therapy/methods , Ventricular Remodeling/physiology , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Electrodes, Implanted , Heart Failure/diagnostic imaging , Heart Failure/therapy , Cardiac Resynchronization Therapy Devices , Follow-Up Studies
5.
Sci Rep ; 14(1): 16110, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997318

ABSTRACT

An implantable electrode based on bioresorbable Mg-Nd-Zn-Zr alloy was developed for next-generation radiofrequency (RF) tissue welding application, aiming to reduce thermal damage and enhance anastomotic strength. The Mg alloy electrode was designed with different structural features of cylindrical surface (CS) and continuous long ring (LR) in the welding area, and the electrothermal simulations were studied by finite element analysis (FEA). Meanwhile, the temperature variation during tissue welding was monitored and the anastomotic strength of welded tissue was assessed by measuring the avulsion force and burst pressure. FEA results showed that the mean temperature in the welding area and the proportion of necrotic tissue were significantly reduced when applying an alternating current of 110 V for 10 s to the LR electrode. In the experiment of tissue welding ex vivo, the maximum and mean temperatures of tissues welded by the LR electrode were also significantly reduced and the anastomotic strength of welded tissue could be obviously improved. Overall, an ideal welding temperature and anastomotic strength which meet the clinical requirement can be obtained after applying the LR electrode, suggesting that Mg-Nd-Zn-Zr alloy with optimal structure design shows great potential to develop implantable electrode for next-generation RF tissue welding application.


Subject(s)
Absorbable Implants , Alloys , Electrodes, Implanted , Magnesium , Alloys/chemistry , Magnesium/chemistry , Welding/methods , Finite Element Analysis , Animals , Temperature , Radio Waves , Equipment Design
6.
Nat Commun ; 15(1): 5512, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951525

ABSTRACT

Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.


Subject(s)
Electrodes, Implanted , Microelectrodes , Microglia , Ultrasonic Waves , Microglia/radiation effects , Microglia/metabolism , Animals , Male , Foreign-Body Reaction/prevention & control , Foreign-Body Reaction/etiology , Mice , Cerebral Cortex/radiation effects , Cerebral Cortex/cytology , Brain-Computer Interfaces , Cell Movement/radiation effects , Rats
7.
J Clin Neurophysiol ; 41(5): 399-401, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38935651

ABSTRACT

SUMMARY: It took 50 years for stereoelectroencephalography (SEEG) to cross the Atlantic. Conceived and designed before the advent of computers and modern technology, this method turned out to be perfectly suited to brain imaging and modern video and electrophysiological tools. It eventually benefited from robotics and signal processing. However, a critical step remains accurate electrode implantation, which is based on individual patients' noninvasive phase I data. A limiting factor, especially in MRI-negative cases, is a thorough perictal and postictal clinical testing for ensuring meaningful electroclinical correlations. Adapted epilepsy monitoring units' architecture and specific technicians and nurses training are required to improve the granularity of information needed to generate valid hypotheses on localization. SEEG interpretation is based on a knowledge base in neural networks, cognitive/behavioral neuroscience, and electrophysiology quite distinct from electroencephalography. Tailored to the needs of focal epilepsy complexity exploration, SEEG does not fit well with simplification. Specific teaching and development of clinical research inside the epilepsy monitoring units will help to flatten the team learning curve and to build knowledge base from shared clinical experience.


Subject(s)
Electroencephalography , Epilepsy , Stereotaxic Techniques , Humans , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Electrodes, Implanted
8.
J Clin Neurophysiol ; 41(5): 405-409, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38935653

ABSTRACT

PURPOSE: Stereoelectroencephalography (SEEG) is widely performed on individuals with medically refractory epilepsy for whom invasive seizure localization is desired. Despite increasing adoption in many centers across the world, no standardized electrode naming convention exists, generating confusion among both clinical and research teams. METHODS: We have developed a novel nomenclature, named the Standardized Electrode Nomenclature for SEEG Applications system. Concise, unique, informative, and unambiguous labels provide information about entry point, deep targets, and relationships between electrodes. Inter-rater agreement was evaluated by comparing original electrode names from 10 randomly sampled cases (including 136 electrodes) with those prospectively assigned by four additional blinded raters. RESULTS: The Standardized Electrode Nomenclature for SEEG Application system was prospectively implemented in 40 consecutive patients undergoing SEEG monitoring at our institution, creating unique electrode names in all cases, and facilitating implantation design, SEEG recording and mapping interpretation, and treatment planning among neurosurgeons, neurologists, and neurophysiologists. The inter-rater percent agreement for electrode names among two neurosurgeons, two epilepsy neurologists, and one neurosurgical fellow was 97.5%. CONCLUSIONS: This standardized naming convention, Standardized Electrode Nomenclature for SEEG Application, provides a simple, concise, reproducible, and informative method for specifying the target(s) and relative position of each SEEG electrode in each patient, allowing for successful sharing of information in both the clinical and research settings. General adoption of this nomenclature could pave the way for improved communication and collaboration between institutions.


Subject(s)
Electrodes, Implanted , Electroencephalography , Stereotaxic Techniques , Terminology as Topic , Humans , Electroencephalography/standards , Electroencephalography/methods , Stereotaxic Techniques/standards , Epilepsy/diagnosis , Epilepsy/physiopathology , Female , Male , Brain/physiopathology , Brain/physiology , Drug Resistant Epilepsy/diagnosis , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/classification
9.
Nat Commun ; 15(1): 5253, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897997

ABSTRACT

Stereo-electroencephalography (SEEG) is the gold standard to delineate surgical targets in focal drug-resistant epilepsy. SEEG uses electrodes placed directly into the brain to identify the seizure-onset zone (SOZ). However, its major constraint is limited brain coverage, potentially leading to misidentification of the 'true' SOZ. Here, we propose a framework to assess adequate SEEG sampling by coupling epileptic biomarkers with their spatial distribution and measuring the system's response to a perturbation of this coupling. We demonstrate that the system's response is strongest in well-sampled patients when virtually removing the measured SOZ. We then introduce the spatial perturbation map, a tool that enables qualitative assessment of the implantation coverage. Probability modelling reveals a higher likelihood of well-implanted SOZs in seizure-free patients or non-seizure free patients with incomplete SOZ resections, compared to non-seizure-free patients with complete resections. This highlights the framework's value in sparing patients from unsuccessful surgeries resulting from poor SEEG coverage.


Subject(s)
Brain , Drug Resistant Epilepsy , Electrodes, Implanted , Electroencephalography , Humans , Electroencephalography/methods , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/physiopathology , Brain/surgery , Brain/physiopathology , Female , Male , Adult , Seizures/surgery , Seizures/physiopathology , Young Adult , Epilepsies, Partial/surgery , Epilepsies, Partial/physiopathology , Brain Mapping/methods , Adolescent
10.
Sci Transl Med ; 16(752): eado9003, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896601

ABSTRACT

Current clinically used electronic implants, including cardiac pacing leads for epicardial monitoring and stimulation of the heart, rely on surgical suturing or direct insertion of electrodes to the heart tissue. These approaches can cause tissue trauma during the implantation and retrieval of the pacing leads, with the potential for bleeding, tissue damage, and device failure. Here, we report a bioadhesive pacing lead that can directly interface with cardiac tissue through physical and covalent interactions to support minimally invasive adhesive implantation and gentle on-demand removal of the device with a detachment solution. We developed 3D-printable bioadhesive materials for customized fabrication of the device by graft-polymerizing polyacrylic acid on hydrophilic polyurethane and mixing with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to obtain electrical conductivity. The bioadhesive construct exhibited mechanical properties similar to cardiac tissue and strong tissue adhesion, supporting stable electrical interfacing. Infusion of a detachment solution to cleave physical and covalent cross-links between the adhesive interface and the tissue allowed retrieval of the bioadhesive pacing leads in rat and porcine models without apparent tissue damage. Continuous and reliable cardiac monitoring and pacing of rodent and porcine hearts were demonstrated for 2 weeks with consistent capture threshold and sensing amplitude, in contrast to a commercially available alternative. Pacing and continuous telemetric monitoring were achieved in a porcine model. These findings may offer a promising platform for adhesive bioelectronic devices for cardiac monitoring and treatment.


Subject(s)
Pacemaker, Artificial , Animals , Swine , Rats , Monitoring, Physiologic/methods , Rats, Sprague-Dawley , Electrodes, Implanted , Adhesives , Printing, Three-Dimensional , Models, Animal
11.
J Neural Eng ; 21(4)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38885673

ABSTRACT

Objective. The insertion of penetrating neural probes into the brain is crucial for advancing neuroscience, yet it involves various inherent risks. Prototype probes are typically inserted into hydrogel-based brain phantoms and the mechanical responses are analyzed in order to inform the insertion mechanics duringin vivoimplantation. However, the underlying mechanism of the insertion dynamics of neural probes in hydrogel brain phantoms, particularly the phenomenon of cracking, remains insufficiently understood. This knowledge gap leads to misinterpretations and discrepancies when comparing results obtained from phantom studies to those observed under thein vivoconditions. This study aims to elucidate the impact of probe sharpness and dimensions on the cracking mechanisms and insertion dynamics characterized during the insertion of probes in hydrogel phantoms.Approach. The insertion of dummy probes with different shank shapes defined by the tip angle, width, and thickness is systematically studied. The insertion-induced cracks in the transparent hydrogel were accentuated by an immiscible dye, tracked byin situimaging, and the corresponding insertion force was recorded. Three-dimensional finite element analysis models were developed to obtain the contact stress between the probe tip and the phantom.Main results. The findings reveal a dual pattern: for sharp, slender probes, the insertion forces remain consistently low during the insertion process, owing to continuously propagating straight cracks that align with the insertion direction. In contrast, blunt, thick probes induce large forces that increase rapidly with escalating insertion depth, mainly due to the formation of branched crack with a conical cracking surface, and the subsequent internal compression. This interpretation challenges the traditional understanding that neglects the difference in the cracking modes and regards increased frictional force as the sole factor contributing to higher insertion forces. The critical probe sharpness factors separating straight and branched cracking is identified experimentally, and a preliminary explanation of the transition between the two cracking modes is derived from three-dimensional finite element analysis.Significance. This study presents, for the first time, the mechanism underlying two distinct cracking modes during the insertion of neural probes into hydrogel brain phantoms. The correlations between the cracking modes and the insertion force dynamics, as well as the effects of the probe sharpness were established, offering insights into the design of neural probes via phantom studies and informing future investigations into cracking phenomena in brain tissue during probe implantations.


Subject(s)
Brain , Hydrogels , Phantoms, Imaging , Hydrogels/chemistry , Brain/physiology , Finite Element Analysis , Stress, Mechanical , Electrodes, Implanted
12.
Nat Commun ; 15(1): 4822, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844769

ABSTRACT

We introduce Ultra-Flexible Tentacle Electrodes (UFTEs), packing many independent fibers with the smallest possible footprint without limitation in recording depth using a combination of mechanical and chemical tethering for insertion. We demonstrate a scheme to implant UFTEs simultaneously into many brain areas at arbitrary locations without angle-of-insertion limitations, and a 512-channel wireless logger. Immunostaining reveals no detectable chronic tissue damage even after several months. Mean spike signal-to-noise ratios are 1.5-3x compared to the state-of-the-art, while the highest signal-to-noise ratios reach 89, and average cortical unit yields are ~1.75/channel. UFTEs can track the same neurons across sessions for at least 10 months (longest duration tested). We tracked inter- and intra-areal neuronal ensembles (neurons repeatedly co-activated within 25 ms) simultaneously from hippocampus, retrosplenial cortex, and medial prefrontal cortex in freely moving rodents. Average ensemble lifetimes were shorter than the durations over which we can track individual neurons. We identify two distinct classes of ensembles. Those tuned to sharp-wave ripples display the shortest lifetimes, and the ensemble members are mostly hippocampal. Yet, inter-areal ensembles with members from both hippocampus and cortex have weak tuning to sharp wave ripples, and some have unusual months-long lifetimes. Such inter-areal ensembles occasionally remain inactive for weeks before re-emerging.


Subject(s)
Brain , Electrodes, Implanted , Hippocampus , Neurons , Animals , Neurons/physiology , Brain/physiology , Brain/cytology , Hippocampus/physiology , Hippocampus/cytology , Male , Rats , Signal-To-Noise Ratio , Action Potentials/physiology , Mice , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology
13.
J Neural Eng ; 21(4)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38885680

ABSTRACT

Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.


Subject(s)
Electrodes, Implanted , Microelectrodes , Equipment Design/methods , Implantable Neurostimulators , Electric Stimulation/methods , Electric Stimulation/instrumentation
14.
Europace ; 26(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38874449

ABSTRACT

Ventricular backup leads may be considered in selected patients with His bundle pacing (HBP), but it remains unknown to what extent this is useful. A total of 184 HBP patients were studied. At last follow-up, 147 (79.9%) patients retained His bundle capture at programmed output. His bundle pacing lead revision was performed in 5/36 (13.9%) patients without a backup lead and in 3/148 (2.0%) patients with a backup lead (P = 0.008). One patient without a backup lead had syncope due to atrial oversensing. Thus, implantation of ventricular backup leads may avoid lead revision and adverse events in selected HBP patients.


Subject(s)
Bundle of His , Cardiac Pacing, Artificial , Pacemaker, Artificial , Humans , Bundle of His/physiopathology , Male , Female , Cardiac Pacing, Artificial/methods , Aged , Treatment Outcome , Middle Aged , Aged, 80 and over , Retrospective Studies , Time Factors , Electrodes, Implanted
15.
J Neural Eng ; 21(4)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38885677

ABSTRACT

Objective.Peripheral nerve stimulation (PNS) has been demonstrated as an effective way to selectively activate muscles and to produce fine hand movements. However, sequential multi-joint upper limb movements, which are critical for paralysis rehabilitation, has not been tested with PNS. Here, we aimed to restore multiple upper limb joint movements through an intraneural interface with a single electrode, achieving coherent reach-grasp-pull movement tasks through sequential stimulation.Approach.A transverse intrafascicular multichannel electrode was implanted under the axilla of the rat's upper limb, traversing the musculocutaneous, radial, median, and ulnar nerves. Intramuscular electrodes were implanted into the biceps brachii (BB), triceps brachii (TB), flexor carpi radialis (FCR), and extensor carpi radialis (ECR) muscles to record electromyographic (EMG) activity and video recordings were used to capture the kinematics of elbow, wrist, and digit joints. Charge-balanced biphasic pulses were applied to different channels to recruit distinct upper limb muscles, with concurrent recording of EMG signals and joint kinematics to assess the efficacy of the stimulation. Finally, a sequential stimulation protocol was employed by generating coordinated pulses in different channels.Main results.BB, TB, FCR and ECR muscles were selectively activated and various upper limb movements, including elbow flexion, elbow extension, wrist flexion, wrist extension, digit flexion, and digit extension, were reliably generated. The modulation effects of stimulation parameters, including pulse width, amplitude, and frequency, on induced joint movements were investigated and reach-grasp-pull movement was elicited by sequential stimulation.Significance.Our results demonstrated the feasibility of sequential intraneural stimulation for functional multi-joint movement restoration, providing a new approach for clinical rehabilitation in paralyzed patients.


Subject(s)
Hand Strength , Movement , Peripheral Nerves , Rats, Sprague-Dawley , Animals , Rats , Peripheral Nerves/physiology , Movement/physiology , Hand Strength/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation , Male , Electric Stimulation Therapy/methods , Electrodes, Implanted , Electromyography/methods
16.
J Neural Eng ; 21(3)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38862007

ABSTRACT

Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.


Subject(s)
Electrodes, Implanted , Macaca mulatta , Animals , Male , Electric Impedance , Microelectrodes , Electric Stimulation/methods , Electric Stimulation/instrumentation , Signal-To-Noise Ratio
17.
J Neural Eng ; 21(3)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38861967

ABSTRACT

Objective. We intend to chronically restore somatosensation and provide high-fidelity myoelectric control for those with limb loss via a novel, distributed, high-channel-count, implanted system.Approach.We have developed the implanted Somatosensory Electrical Neurostimulation and Sensing (iSens®) system to support peripheral nerve stimulation through up to 64, 96, or 128 electrode contacts with myoelectric recording from 16, 8, or 0 bipolar sites, respectively. The rechargeable central device has Bluetooth® wireless telemetry to communicate to external devices and wired connections for up to four implanted satellite stimulation or recording devices. We characterized the stimulation, recording, battery runtime, and wireless performance and completed safety testing to support its use in human trials.Results.The stimulator operates as expected across a range of parameters and can schedule multiple asynchronous, interleaved pulse trains subject to total charge delivery limits. Recorded signals in saline show negligible stimulus artifact when 10 cm from a 1 mA stimulating source. The wireless telemetry range exceeds 1 m (direction and orientation dependent) in a saline torso phantom. The bandwidth supports 100 Hz bidirectional update rates of stimulation commands and data features or streaming select full bandwidth myoelectric signals. Preliminary first-in-human data validates the bench testing result.Significance.We developed, tested, and clinically implemented an advanced, modular, fully implanted peripheral stimulation and sensing system for somatosensory restoration and myoelectric control. The modularity in electrode type and number, including distributed sensing and stimulation, supports a wide variety of applications; iSens® is a flexible platform to bring peripheral neuromodulation applications to clinical reality. ClinicalTrials.gov ID NCT04430218.


Subject(s)
Electromyography , Humans , Electromyography/methods , Electrodes, Implanted , Wireless Technology/instrumentation , Telemetry/instrumentation , Telemetry/methods , Equipment Design/methods , Muscle, Skeletal/physiology , Muscle, Skeletal/innervation
18.
Int J Pediatr Otorhinolaryngol ; 182: 112015, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878450

ABSTRACT

BACKGROUND: Incomplete partition type III (IP III) represents a rare malformation of the inner ear, posing challenges during cochlear implantation due to inevitable cerebrospinal fluid (CSF) leaks and the potential misplacement of electrodes within the internal auditory canal (IAC). Despite the absence of a consensus on electrode selection, literature suggests both straight and perimodiolar electrodes as viable options for proper insertion. Limited implantation series contribute to the ambiguity in electrode choice. In this study, we evaluated the insertion performance of three electrode types in a 3D model simulating an IP III patient's inner ear. METHODS: A 3D model replicating the inner ear of a patient with IP III undergoing surgery was created, incorporating a canal wall up mastoidectomy and an enlarged round window approach. Insertions were carried out using a straight electrode, a perimodiolar electrode, and a slim perimodiolar electrode, inserted through a sheath in the basal turn of the cochlea. Electrode positions were assessed after each insertion, with each type being tested 20 times. RESULTS: Successful insertion rates were 95 % for the slim perimodiolar electrode, 85 % for the perimodiolar electrode, and 75 % for the slim straight electrode. Notably, the slim perimodiolar electrode required an adapted insertion technique due to the altered cochlear position in IP III cases. Statistical analysis revealed the slim perimodiolar electrode's superiority over the slim straight electrode in achieving successful insertions. CONCLUSIONS: The 3D model of the IP III inner ear proved to be an effective tool for electrode testing and insertion training prior to surgery. Following multiple insertions in the 3D model, the slim perimodiolar electrode demonstrated the highest success rate, emphasizing its potential as the preferred choice for cochlear implantation in IP III cases.


Subject(s)
Cochlear Implantation , Cochlear Implants , Ear, Inner , Models, Anatomic , Humans , Cochlear Implantation/methods , Ear, Inner/abnormalities , Ear, Inner/surgery , Electrodes, Implanted , Imaging, Three-Dimensional
19.
World Neurosurg ; 188: e546-e554, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823445

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy in ameliorating the motor symptoms of Parkinson disease. However, postoperative optimal contact selection is crucial for achieving the best outcome of deep brain stimulation of the subthalamic nucleus surgery, but the process is currently a trial-and-error and time-consuming procedure that relies heavily on surgeons' clinical experience. METHODS: In this study, we propose a structural brain connectivity guided optimal contact selection method for deep brain stimulation of the subthalamic nucleus. Firstly, we reconstruct the DBS electrode location and estimate the stimulation range using volume of tissue activated from each DBS contact. Then, we extract the structural connectivity features by concatenating fractional anisotropy and the number of streamlines features of activated regions and the whole brain regions. Finally, we use a convolutional neural network with convolutional block attention module to identify the structural connectivity features for the optimal contact selection. RESULTS: We review the data of 800 contacts from 100 patients with Parkinson disease for the experiment. The proposed method achieves promising results, with the average accuracy of 97.63%, average precision of 94.50%, average recall of 94.46%, and average specificity of 98.18%, respectively. Our method can provide the suggestion for optimal contact selection. CONCLUSIONS: Our proposed method can improve the efficiency and accuracy of DBS optimal contact selection, reduce the dependence on surgeons' experience, and has the potential to facilitate the development of advanced DBS technology.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Parkinson Disease/therapy , Electrodes, Implanted , Male , Female , Middle Aged , Neural Networks, Computer
20.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38918051

ABSTRACT

Measuring the dynamic relationship between neuromodulators, such as dopamine, and neuronal action potentials is imperative to understand how these fundamental modes of neural signaling interact to mediate behavior. We developed methods to measure concurrently dopamine and extracellular action potentials (i.e., spikes) in monkeys. Standard fast-scan cyclic voltammetric (FSCV) electrochemical (EChem) and electrophysiological (EPhys) recording systems are combined and used to collect spike and dopamine signals, respectively, from an array of carbon fiber (CF) sensors implanted in the monkey striatum. FSCV requires the application of small voltages at the implanted sensors to measure redox currents generated from target molecules, such as dopamine. These applied voltages create artifacts at neighboring EPhys measurement sensors which may lead to misclassification of these signals as physiological spikes. Therefore, simple automated temporal interpolation algorithms were designed to remove these artifacts and enable accurate spike extraction. We validated these methods using simulated artifacts and demonstrated an average spike recovery rate of 84.5%. We identified and discriminated cell type-specific units in the monkey striatum that were shown to correlate to specific behavioral task parameters related to reward size and eye movement direction. Synchronously recorded spike and dopamine signals displayed contrasting relations to the task variables, suggesting a complex relationship between these two modes of neural signaling. Future application of our methods will help advance our understanding of the interactions between neuromodulator signaling and neuronal activity, to elucidate more detailed mechanisms of neural circuitry and plasticity mediating behaviors in health and in disease.


Subject(s)
Action Potentials , Carbon Fiber , Dopamine , Macaca mulatta , Animals , Action Potentials/physiology , Dopamine/metabolism , Male , Neurons/physiology , Neurons/metabolism , Electrodes, Implanted , Corpus Striatum/physiology , Corpus Striatum/metabolism , Artifacts , Electrochemical Techniques/methods , Eye Movements/physiology , Reward
SELECTION OF CITATIONS
SEARCH DETAIL