Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 19.424
1.
J Zoo Wildl Med ; 55(2): 330-340, 2024 Jun.
Article En | MEDLINE | ID: mdl-38875190

The white stork (Ciconia ciconia) is a ciconiiform species widely represented in zoological institutions. Plasma protein electrophoresis is widely used in avian patients for assessment of inflammatory conditions, but reference intervals for this testing modality are lacking for the white stork. The two main electrophoretic methods are agarose gel electrophoresis (AGE) and capillary zone electrophoresis (CZE). This study assessed fresh plasma samples of healthy adult white storks (n = 30). Statistical analyses were performed to evaluate agreement between AGE and CZE. Typical electrophoretic fractions were obtained from both methods (prealbumin, albumin, α1, α2, ß, γ1, and γ2). The AGE and CZE methods were not equivalent for determining major electrophoretic fractions (except ß-globulins) and albumin:globulin ratio on plasma samples. An additional prealbumin fraction was seen with CZE. Reference intervals were established for each method as the smallest n group was 27 individuals for a given value; most values had normal distribution, and robust or parametric methods were used on the data.


Birds , Blood Proteins , Electrophoresis, Agar Gel , Electrophoresis, Capillary , Animals , Reference Values , Birds/blood , Blood Proteins/analysis , Electrophoresis, Capillary/veterinary , Electrophoresis, Capillary/methods , Electrophoresis, Agar Gel/veterinary , Female , Blood Protein Electrophoresis/veterinary , Blood Protein Electrophoresis/methods , Male
2.
J Sep Sci ; 47(11): e2400170, 2024 Jun.
Article En | MEDLINE | ID: mdl-38863084

The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.


Electrophoresis, Capillary , Glycomics , Polysaccharides , Glycomics/methods , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/analysis , Humans , Chromatography, Liquid , Electrophoresis, Microchip/methods
3.
Se Pu ; 42(6): 590-598, 2024 Jun.
Article Zh | MEDLINE | ID: mdl-38845520

Fluorescent whitening agents (FWAs) are dyes that emit visible blue or blue-purple fluorescence upon ultraviolet-light absorption. Taking advantage of light complementarity, FWAs can compensate for the yellow color of many substances to achieve a whitening effect; thus, they are used extensively in various applications. FWAs are generally stable, but their presence in the environment can lead to pollution and accumulation in the body through the food chain. Recent studies have revealed that some types of FWAs, such as coumarin-based FWAs, may exhibit photo-induced mutagenic effects that can trigger allergic reactions in humans and even pose carcinogenic risks. Hence, the development of an accurate and highly sensitive method for detecting FWAs in food-related samples is a crucial endeavor. Owing to the high polarity and structural similarity of FWAs, the accurate determination of these substances in complex food samples requires an analytical method that offers both efficient separation and sensitive detection. Capillary electrophoresis (CE) exhibits essential features such as high separation efficiency, short analysis times, very small sample injection requirements, minimal use of organic solvents, and simple operation. Thus, it is often used as an effective alternative to liquid chromatographic techniques. Over the past few decades, electrospray ionization mass spectrometry (ESI-MS) has been utilized as a highly sensitive and accurate detection method in numerous chemical analytical fields because it enables the analysis of molecular structures. By combining the high separation efficiency of CE with the high sensitivity of ESI-MS, a powerful tool for identifying and quantifying trace amounts of FWAs in food samples may be obtained. In this study, we present a method based on sheathless CE coupled with electrospray ionization tandem mass spectrometry (ESI-MS/MS) for the simultaneous detection of six trace FWAs in flour. In the proposed method, the CE separation device is directly coupled to the mass spectrometer through a sheathless interface without the need for a sheath liquid for electric contact, thereby avoiding the dilution of the analytes and improving detection sensitivity. Various conditions that could affect extraction recovery, separation efficiency, and detection sensitivity were evaluated and optimized. The FWAs were effectively extracted from the sample matrix with reduced matrix effects by ultrasonic-assisted extraction at a temperature of 30 ℃ for 20 min using CHCl3-MeOH (3∶2, v/v) as the extraction solvent. The extract was centrifuged, dried under N2, and reconstituted in CHCl3-MeOH (1∶4, v/v) for subsequent analysis. During the detection process, the CE device was coupled to the ESI-MS/MS instrument via a highly sensitive porous spray needle, which served as the sheathless electrospray interface. The target FWAs were scanned in positive-ion mode (ESI+) to ensure the stability and intensity of the obtained signals. Additionally, multiple-reaction monitoring (MRM) mode and MS/MS analysis were used to simultaneously quantify the six targets with high selectivity. The developed sheathless CE-ESI-MS/MS method detected the FWAs with high sensitivity over wide linear ranges with low method limits of detection (0.04-0.67 ng/g). The recoveries of the six target FWAs at three spiked levels were between 77.5% and 97.2%, with good interday (RSD≤11.5%) and intraday (RSD≤10.2%) precision. Analyses of the six target FWAs in eight commercial flour samples were performed using this method, and four positive samples were identified. These results demonstrate that the proposed CE-ESI-MS/MS method is a promising strategy for the determination of trace FWAs in complex food sample matrices with efficient separation and high sensitivity.


Electrophoresis, Capillary , Flour , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Electrophoresis, Capillary/methods , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Flour/analysis , Fluorescent Dyes/chemistry , Food Contamination/analysis
4.
Int J Biol Macromol ; 272(Pt 1): 132624, 2024 Jun.
Article En | MEDLINE | ID: mdl-38838594

In this work, the interaction of chondroitin sulfate (CS) and dermatan sulfate (DS) with plant lectins was studied by affinity capillary electrophoresis (ACE), surface plasmon resonance (SPR) technology, molecular docking simulation, and circular dichroism spectroscopy. The ACE method was used for the first time to study the interaction of Ricinus Communis Agglutinin I (RCA I), Wisteria Floribunda Lectin (WFA), and Soybean Agglutinin (SBA) with CS and DS, and the results were in good agreement with those of the SPR method. The results of experiments indicate that RCA I has a strong binding affinity with CS, and the sulfated position does not affect the relationship, but the degree of sulfation can affect the combination of RCA I with CS to some extent. However, the binding affinity with DS is very weak. This study lays the foundation for developing more specialized analysis methods for CS and DS based on RCA I.


Chondroitin Sulfates , Dermatan Sulfate , Molecular Docking Simulation , Plant Lectins , Protein Binding , Chondroitin Sulfates/chemistry , Dermatan Sulfate/chemistry , Dermatan Sulfate/metabolism , Plant Lectins/chemistry , Plant Lectins/metabolism , Surface Plasmon Resonance , Agglutinins/chemistry , Agglutinins/metabolism , Circular Dichroism , Electrophoresis, Capillary
5.
J Sep Sci ; 47(11): e2400174, 2024 Jun.
Article En | MEDLINE | ID: mdl-38867483

The review provides an overview of recent developments and applications of capillary electromigration (CE) methods for the determination of important physicochemical parameters of various (bio)molecules and (bio)particles. These parameters include actual and limiting (absolute) ionic mobilities, effective electrophoretic mobilities, effective charges, isoelectric points, electrokinetic potentials, hydrodynamic radii, diffusion coefficients, relative molecular masses, acidity (ionization) constants, binding constants and stoichiometry of (bio)molecular complexes, changes of Gibbs free energy, enthalpy and entropy and rate constants of chemical reactions and interactions, retention factors and partition and distribution coefficients. For the determination of these parameters, the following CE methods are employed: zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography. In the individual sections, the procedures for the determination of the above parameters by the particular CE methods are described.


Electrophoresis, Capillary , Proteins/analysis , Proteins/chemistry , Thermodynamics , Isoelectric Focusing/methods , Molecular Weight , Humans
6.
Clin Lab ; 70(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38747917

BACKGROUND: Hyperthyroidism can lead to diverse hematological disorders, such as microcytosis and a mild increase in hemoglobin A2 fraction. METHODS: This study reported a 31-year-old woman of Moroccan origin recently diagnosed with Graves' disease. Her blood tests revealed microcytosis, hypochromia, and a normal ferritin level. A phenotypic analysis of hemo-globin was performed using two techniques: capillary electrophoresis and reversed-phase high performance liquid chromatography. RESULTS: Both techniques indicated a slight increase in hemoglobin A2 level. These results initially suggested het-erozygous beta-thalassemia, eventually correlating with the concurrent presence of Graves' disease, as evidenced by the normalization of hemoglobin A2 level following treatment. CONCLUSIONS: This case highlights the importance of having clinical, biological, and therapeutic data for a relevant interpretation of a phenotypic hemoglobin study.


Graves Disease , Hemoglobin A2 , Humans , Graves Disease/blood , Graves Disease/diagnosis , Graves Disease/complications , Female , Adult , Hemoglobin A2/analysis , beta-Thalassemia/blood , beta-Thalassemia/complications , beta-Thalassemia/diagnosis , Electrophoresis, Capillary/methods , Chromatography, High Pressure Liquid , Phenotype
7.
Anal Chim Acta ; 1311: 342736, 2024 Jul 04.
Article En | MEDLINE | ID: mdl-38816165

BACKGROUND: Capillary electrophoresis is a powerful analytical method featured with high separation efficiency, minimal sample requirements, and reduced organic solvents consumption. However, its low sensitivity hinders its wide application in determination of trace analytes especially for the weakly ionized hydrophobic compounds. Offline and Online capillary electrophoresis stacking methods are more favored to enhance detection sensitivity of analytes. The determination of two sesquiterpenes and an alkaloid from the dried root of Lindera aggregata merged as an example for developing a simple, sensitive and green method for the simultaneous determination of two hydrophobic compounds in complicated matrix samples. RESULTS: An offline-online capillary electrophoresis stacking strategy by integrating micro matrix solid phase dispersion with field-amplified sample stacking and micelle to cyclodextrin stacking has been developed for the simultaneous determination of dehydrocostus lactone, linderane, norisoboldine in complex matrices. The optimized parameters were set at 65 mM sodium dihydrogen phosphate, 35 % methanol, 180 s for sample injection and 210 s for cyclodextrin injection, 20 mM sodium dodecyl sulfate of sample matrix for online stacking; 1:1 sample to MCM-48, 180 s grinding time, and 1000 µL of 20 mM sodium dodecyl sulfate elution for offline procedure. Under the optimum conditions, the method showed good linearity with correlation coefficients (R2 ≥ 0.9927), low limits of detection within the range of 25-50 ng mL-1, satisfactory repeatability and reproducibility below 3.98 %, and acceptable recoveries between 94 % and 97 %. The developed method was successfully applied to two real samples, the root of L. aggregata and rat feces. SIGNIFICANCE: Sodium dodecyl sulfate is firstly used as an eluent in micro matrix solid phase dispersion and plays a dual role throughout the analytical procedure, including extraction solvent in sample preparation and micelle pseudophase during online stacking. It brings great procedure convenience to the method. The sensitivity of this method can improve up to 1283-folds compared with the normal mode. Moreover, the overall strategy indicates satisfied green potential evaluated by greenness assessment tools.


Electrophoresis, Capillary , Hydrophobic and Hydrophilic Interactions , Sodium Dodecyl Sulfate , Electrophoresis, Capillary/methods , Sodium Dodecyl Sulfate/chemistry , Animals , Rats , Green Chemistry Technology , Limit of Detection , Cyclodextrins/chemistry , Sesquiterpenes/analysis , Alkaloids/analysis , Plant Roots/chemistry
8.
J Sep Sci ; 47(9-10): e2400122, 2024 May.
Article En | MEDLINE | ID: mdl-38772731

In this study, several amino acids deep eutectic solvents were prepared using L-valine and L-leucine as hydrogen bond acceptors, and L-lactic acid and glycerol as hydrogen bond donors. These amino acids' deep eutectic solvents were first used as buffer additives to construct several synergistic systems along with maltodextrin in capillary electrophoresis for the enantioseparations of four racemic drugs. Compared with single maltodextrin system, the separations of model drugs in the synergistic systems were significantly improved. Some key parameters affecting chiral separation such as maltodextrin concentration, deep eutectic solvent concentration, buffer pH, and applied voltage were optimized. In order to further understand the specific mechanism of the amino acids deep eutectic solvents in improving chiral separation, we first calculated the binding constants of maltodextrin with enantiomers using the capillary electrophoresis method in the two separation modes, respectively. We also used molecular simulation to calculate the binding free energy of maltodextrin with enantiomers. It is the first time that amino acids deep eutectic solvents were used for enantioseparation in capillary electrophoresis, which will greatly promote the development of deep eutectic solvents in the field of chiral separation.


Amino Acids , Electrophoresis, Capillary , Polysaccharides , Stereoisomerism , Amino Acids/chemistry , Amino Acids/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Deep Eutectic Solvents/chemistry , Hydrogen Bonding
9.
Anal Chim Acta ; 1310: 342718, 2024 Jun 29.
Article En | MEDLINE | ID: mdl-38811137

BACKGROUND: Dried blood spot (DBS) sampling on cellulose cards suffers from varying blood haematocrit levels and from chromatographic effects, which have a direct impact on quantitative DBS analyses. Commercial volumetric microsampling devices were, therefore, introduced to mitigate these effects, however, these devices are not compatible with automated DBS processing systems and must be processed manually. RESULTS: Capillary electrophoresis (CE) instruments use fused-silica (FS) capillaries for precise and accurate liquid handling as well as for injection, separation, and quantitative analyses of liquid samples. These inherent features of an Agilent 7100 CE instrument were employed for the automated processing (elution and homogenization) of DBSs collected by hemaPEN® volumetric devices (2.74 µL of capillary blood per spot). The hemaPEN® samples were processed directly in CE vials by consecutive transfers of 56 µL of methanol and 14 µL of deionized water through the FS capillary in a sequence of 39 DBSs with repeatability of the liquid transfers better than 1.4 %. The resulting DBS eluates were homogenized by a quick air flush through the capillary and analyzed by the same capillary and CE instrument. Creatinine was selected as a clinically relevant model analyte and its endogenous concentrations in DBSs were determined by CE with capacitively coupled contactless conductivity detection (CE-C4D) in a background electrolyte solution consisting of 50 mM acetic acid and 0.1 % (v/v) Tween 20 (pH 3.0). The overall repeatability of the automated DBS processing and CE-C4D analyses of 39 DBSs was ≤7.1 % (peak areas) and ≤0.6 % (migration times), the calibration curve was linear in the 25-500 µM range (R2 = 0.9993) and covered all endogenous blood creatinine levels, the limit of detection was 5.0 µM, and sample throughput was >12 DBSs per hour. DBS ageing for 60 days and varying blood haematocrit levels (20-70 %) did not affect creatinine quantitative results (≤6.9 % for peak areas). Inter-capillary and inter-instrument repeatability was ≤7.7 % (peak areas) and ≤3.4 % (migration times) and demonstrated an excellent transferability of the proposed analytical concept among laboratories. SIGNIFICANCE AND NOVELTY: This contribution is the first-ever report on the use of a single off-the-shelf analytical instrument for fully automated analyses of DBSs collected by commercial volumetric microsampling devices and holds great promise for future unmanned quantitative DBS analyses.


Dried Blood Spot Testing , Electrophoresis, Capillary , Dried Blood Spot Testing/methods , Dried Blood Spot Testing/instrumentation , Humans , Electrophoresis, Capillary/methods , Automation , Creatinine/blood
10.
J Sep Sci ; 47(11): e2400092, 2024 Jun.
Article En | MEDLINE | ID: mdl-38819776

This paper presents an approach based on triple injection capillary zone electrophoresis for identification of monoclonal antibodies. The analyte to be identified is injected between two zones of a known reference. The distances between the reference zones (plug I and III) and the target zone (plug II) are adjusted by partial electrophoresis of the first and second injection plugs. The full migration time of the target analyte is calculated from the observed migration time by considering the migration times of the reference in the first and third injection plugs. The relative migration time, that is, the ratio between the full migration time of the analyte and the migration time of the reference in the third injection plug provides the basis for identification. Here, eight monoclonal antibodies, including a pair of biosimilars, were used interchangeably as both analyte and reference to investigate potential of the method. The relative migration time for a preliminary positive identification were found to vary between 0.994 and 1.006 (1.000 ± 0.006, p = 95%). Beside the relative migration time, isoform distribution, peak profiles, and early migrating peaks, originating from components in the pharmaceutical formulations, were successfully used to verify the identity of all tested monoclonal antibodies.


Antibodies, Monoclonal , Electrophoresis, Capillary , Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry
11.
J Chromatogr A ; 1727: 464990, 2024 Jul 19.
Article En | MEDLINE | ID: mdl-38744188

An approach for the controllable separation and concentration of nucleic acid using a circular nonuniform electric field was proposed and developed. Using six different lengths of DNA molecules as standard samples, the distribution of the gradient electric field was increased from the outer circular electrode to the inner rod-shaped electrode, contributing to the migration of DNA molecules at a velocity gradient towards the region with the strongest inner electric field. The DNA molecules were arranged in a distribution of concentric circles that aligned with the distribution of concentric equipotential lines. The concentration of DNA multiplied with the alternation of radius. As a result, this platform allowed simultaneous DNA separation, achieving a resolution range of 1.17-3.03 through an extended electrophoresis time, resulting in enhanced concentration factors of 1.08-6.27. Moreover, the manipulation of the relative height of the inner and outer electrodes enabled precise control over the distribution and the deflection degree of electric field lines, leading to accurate control over DNA deflection.


DNA , DNA/isolation & purification , DNA/analysis , DNA/chemistry , Electrodes , Electricity , Electrophoresis, Capillary/methods
12.
Anal Chem ; 96(21): 8763-8771, 2024 May 28.
Article En | MEDLINE | ID: mdl-38722793

Proteomics analysis of mass-limited samples has become increasingly important for understanding biological systems in physiologically relevant contexts such as patient samples, multicellular organoids, spheroids, and single cells. However, relatively low sensitivity in top-down proteomics methods makes their application to mass-limited samples challenging. Capillary electrophoresis (CE) has emerged as an ideal separation method for mass-limited samples due to its high separation resolution, ultralow detection limit, and minimal sample volume requirements. Recently, we developed "spray-capillary", an electrospray ionization (ESI)-assisted device, that is capable of quantitative ultralow-volume sampling (e.g., pL-nL level). Here, we developed a spray-capillary-CE-MS platform for ultrasensitive top-down proteomics analysis of intact proteins in mass-limited complex biological samples. Specifically, to improve the sensitivity of the spray-capillary platform, we incorporated a polyethylenimine (PEI)-coated capillary and optimized the spray-capillary inner diameter. Under optimized conditions, we successfully detected over 200 proteoforms from 50 pg of E. coli lysate. To our knowledge, the spray-capillary CE-MS platform developed here represents one of the most sensitive detection methods for top-down proteomics. Furthermore, in a proof-of-principle experiment, we detected 261 ± 65 and 174 ± 45 intact proteoforms from fewer than 50 HeLa and OVCAR-8 cells, respectively, by coupling nanodroplet-based sample preparation with our optimized CE-MS platform. Overall, our results demonstrate the capability of the modified spray-capillary CE-MS platform to perform top-down proteomics analysis on picogram amounts of samples. This advancement presents the possibility of meaningful top-down proteomics analysis of mass-limited samples down to the level of single mammalian cells.


Electrophoresis, Capillary , Proteomics , Electrophoresis, Capillary/methods , Proteomics/methods , Humans , Escherichia coli/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Mass Spectrometry/methods
13.
Clin Chim Acta ; 560: 119749, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38796052

Thalassemia is one of the most common and damaging monogenic diseases in the world. It is caused by pathogenic variants of α- and/or ß-globin genes, which disrupt the balance of these two protein chains and leads to α-thalassemia or ß-thalassemia, respectively. Patients with α-thalassemia or ß-thalassemia could exhibit a severe phenotype, with no simple and effective treatment. A three-tiered strategy of carrier screening, prenatal diagnosis and newborn screening has been established in China for the prevention and control of thalassemia, of which the first two parts have been studied thoroughly. The implementation of neonatal thalassemia screening is lagging, and the effectiveness of various screening programs has not yet been demonstrated. In this study, hemoglobin capillary electrophoresis (CE), hotspot testing method, and third-generation sequencing (TGS) were used in the variant detection of 2000 newborn samples, to assess the efficacy of these methods in neonatal thalassemia screening. Compared with CE (249, 12.45 %) and hotspot analysis (424, 21.2 %), CATSA detected the largest number of thalassemia variants (535, 26.75 %), which included 24 hotspot variants, increased copy number of α-globin gene, rare pathogenic variants, and three unreported potentially disease-causing variants. More importantly, CATSA directly determined the cis-trans relationship of variants in three newborns, which greatly shortens the clinical diagnosis time of thalassemia. CATSA showed a great advantage over other genetic tests and could become the most powerful technical support for the three-tiered prevention and control strategy of thalassemia.


Alleles , Neonatal Screening , Thalassemia , Humans , Infant, Newborn , Thalassemia/genetics , Thalassemia/diagnosis , Electrophoresis, Capillary , alpha-Globins/genetics , High-Throughput Nucleotide Sequencing
14.
Anal Methods ; 16(23): 3675-3683, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38804529

Determination of digoxin through in-capillary derivatisation based on the formation of o-tolyl- and 2-naphthyl-anionic boronate esters in combination with large volume sample stacking-capillary electrophoresis is proposed. The derivatisation reaction was performed at basic pH values to obtain compounds with a charge and chromophore group during the stacking process. After stacking, the species were separated and detected at 225 nm using p-nitrophenol as an internal standard. Stacking and derivatisation parameters such as pre-concentration time, preconcentration voltage and injection time (relation between the analyte and the derivatisation agent) were evaluated using a Box-Behnken design. Under optimal conditions, the proposed method exhibits a linear range of 1.08-50.00 µM with a limit of detection of 0.36 µM; additionally, adequate repeatability and reproducibility was obtained (%RSD ≤ 5.0%). The methodology was validated by comparing it to an HPLC-UV established methodology and was successfully applied for the determination of digoxin in pharmaceutical tablets and blood serum samples, showing a positive performance for these matrices.


Boronic Acids , Digoxin , Electrophoresis, Capillary , Digoxin/blood , Digoxin/analysis , Digoxin/chemistry , Electrophoresis, Capillary/methods , Boronic Acids/chemistry , Humans , Esters/chemistry , Limit of Detection , Reproducibility of Results , Tablets
15.
Se Pu ; 42(5): 401-409, 2024 Apr 08.
Article Zh | MEDLINE | ID: mdl-38736383

This paper serves as an annual review of capillary electrophoresis (CE) technology for 2023. The journals were selected based on their impact factor (IF), a universally recognized academic performance metric, combined with experimental work closely related to CE technology, to facilitate the rapid acquisition of significant research and application advancements in CE technology in 2023. A thematic search of the ISI Web of Science database yielded 669 research papers on CE technology published in 2023. This review highlights five experimental papers published in journals with IFs greater than 10.0, including Nature Communications, Nucleic Acids Research, Engineering, Journal of Medical Virology, and Carbohydrate Polymers, and 31 experimental papers from representative journals with IFs between 5.0 and 10.0, such as Analytical Chemistry, Analytica Chimica Acta, Talanta, and Food Chemistry. It also provides an overview of experimental research in journals with focused reporting on CE technology but with IFs less than 5.0, such as Journal of Chromatography A and Electrophoresis, as well as significant experimental research from key domestic Chinese core journals (Peking University). In 2023, all the latest scientific advancements reported in journals with an IF greater than 10.0 utilized previously reported CE methods, offering new breakthroughs for the promotion and application of CE technology. Additionally, new applications of CE in conjunction with mass spectrometry remained a hot topic. An increase in reports on the hardware aspects of CE, such as 3D printing and underwater systems, and significant breakthroughs in the analysis of non-solution samples, such as solid particles, cell vesicles, cells, viruses, and bacteria, was noted. CE is advantageous for the analysis of drugs and their components. In Chinese journals, the number of papers on CE applications exceeded that in previous years, with particular focus on the field of printing for new applications.


Electrophoresis, Capillary , Electrophoresis, Capillary/methods
16.
Methods Mol Biol ; 2804: 53-64, 2024.
Article En | MEDLINE | ID: mdl-38753139

The µLAS technology enables in-line DNA concentration and separation in a microchannel. Here, we describe its operation to analyze the size profile of cell-free DNA (cfDNA) extracted from blood plasma. Operated on commercial systems for capillary electrophoresis, we provide the size distribution of healthy individuals or patients using an input of 10 µL.


Cell-Free Nucleic Acids , Electrophoresis, Capillary , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/isolation & purification , Cell-Free Nucleic Acids/genetics , Humans , Electrophoresis, Capillary/methods
17.
Methods Mol Biol ; 2804: 117-125, 2024.
Article En | MEDLINE | ID: mdl-38753144

Several glycoproteins are validated biomarkers of various diseases such as cancer, cardiovascular diseases, chronic alcohol abuse, or congenital disorders of glycosylation (CDG). In particular, CDG represent a group of more than 150 inherited diseases with varied symptoms affecting multiple organs. The distribution of glycans from target glycoprotein(s) can be used to extract information to help the diagnosis and possibly differentiate subtypes of CDG. Indeed, depending on the glycans and the proteins to which they are attached, glycans can play a very broad range of roles in both physical and biological properties of glycoproteins. For glycans in general, capillary electrophoresis with laser-induced fluorescence detection (CE-LIF) has become a staple. Analysis of glycans with CE-LIF requires several sample preparation steps, including release of glycans from the target glycoprotein, fluorescent labeling of glycans, and purification of labeled glycans. Here, we describe the protocol for glycan sample treatment in a microfluidic droplet system prior to CE-LIF of labeled glycans. The microfluidic droplet approach offers full automation, sample, and reagent volume reduction and elimination of contamination from external environment.


Biomarkers , Electrophoresis, Capillary , Polysaccharides , Electrophoresis, Capillary/methods , Biomarkers/analysis , Polysaccharides/analysis , Humans , Glycoproteins/analysis , Glycoproteins/metabolism , Microfluidics/methods , Microfluidics/instrumentation , Glycosylation
18.
J Sep Sci ; 47(9-10): e2300668, 2024 May.
Article En | MEDLINE | ID: mdl-38699940

Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.


Electrophoresis, Capillary , Mass Spectrometry , Humans , Carbohydrates/chemistry , Chromatography, Liquid , Hydrophobic and Hydrophilic Interactions
19.
Nat Commun ; 15(1): 3847, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719792

The development of reliable single-cell dispensers and substantial sensitivity improvement in mass spectrometry made proteomic profiling of individual cells achievable. Yet, there are no established methods for single-cell glycome analysis due to the inability to amplify glycans and sample losses associated with sample processing and glycan labeling. In this work, we present an integrated platform coupling online in-capillary sample processing with high-sensitivity label-free capillary electrophoresis-mass spectrometry for N-glycan profiling of single mammalian cells. Direct and unbiased quantitative characterization of single-cell surface N-glycomes are demonstrated for HeLa and U87 cells, with the detection of up to 100 N-glycans per single cell. Interestingly, N-glycome alterations are unequivocally detected at the single-cell level in HeLa and U87 cells stimulated with lipopolysaccharide. The developed workflow is also applied to the profiling of ng-level amounts (5-500 ng) of blood-derived protein, extracellular vesicle, and total plasma isolates, resulting in over 170, 220, and 370 quantitated N-glycans, respectively.


Electrophoresis, Capillary , Glycomics , Mass Spectrometry , Polysaccharides , Single-Cell Analysis , Humans , Electrophoresis, Capillary/methods , Polysaccharides/metabolism , Polysaccharides/blood , Single-Cell Analysis/methods , HeLa Cells , Mass Spectrometry/methods , Glycomics/methods , Proteomics/methods , Extracellular Vesicles/metabolism , Lipopolysaccharides , Blood Proteins/analysis , Blood Proteins/metabolism
20.
J Parkinsons Dis ; 14(4): 681-692, 2024.
Article En | MEDLINE | ID: mdl-38578903

Background: Alpha-synuclein (aSyn) is a key player in neurodegenerative diseases such as Parkinson's disease (PD), dementia with Lewy bodies, or multiple system atrophy. aSyn is expressed throughout the brain, and can also be detected in various peripheral tissues. In fact, initial symptoms of PD are non-motoric and include autonomic dysfunction, suggesting that the periphery might play an important role in early development of the disease. aSyn is expressed at relatively low levels in non-central tissues, which brings challenges for its detection and quantification in different tissues. Objective: Our goal was to assess the sensitivity of aSyn detection in central and peripheral mouse tissues through capillary electrophoresis (CE) immunoblot, considering the traditional SDS-PAGE immunoblot as the current standard. Methods: Tissues from central and non-central origin from wild type mice were extracted, and included midbrain, inner ear, and esophagus/stomach. aSyn detection was assessed through immunoblotting using Simple Western size-based CE and SDS-PAGE. Results: CE immunoblots show a consistent detection of aSyn in central and peripheral tissues. Through SDS-PAGE, immunoblots revealed a reliable signal corresponding to aSyn, particularly following membrane fixation. Conclusion: Our results suggest a reliable detection of aSyn in central and peripheral tissues using the CE Simple Western immunoblot system. These observations can serve as preliminary datasets when aiming to formally compare CE with SDS-PAGE, as well as for further characterization of aSyn using this technique.


Electrophoresis, Capillary , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Mice , Electrophoresis, Capillary/methods , Mice, Inbred C57BL , Immunoblotting/methods , Esophagus/metabolism , Mesencephalon/metabolism
...