Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 260
Filter
1.
Funct Integr Genomics ; 24(5): 148, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39218842

ABSTRACT

A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.


Subject(s)
Eleusine , Genomics , Plant Breeding , Plant Breeding/methods , Eleusine/genetics , Genomics/methods , Gene Editing/methods , Crops, Agricultural/genetics , Genome, Plant , Biotechnology , Multiomics
2.
Planta ; 260(3): 75, 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39153062

ABSTRACT

MAIN CONCLUSION: This review discusses the Finger millet's rich nutritional profile, bioactive potential, and industrial applications, combined with its climate resilience, which make it a promising crop for enhancing food security and promoting sustainable agriculture. This review also highlights its significant potential to address malnutrition and mitigate climate change impacts. The emergence of Finger millet from "poor man's staple food" to "a nutrient rich cereal" has encouraged the need to explore this crop at a wider scale. It is a highly significant crop due to its rich nutritional and bioactive profile, diverse biological activities, and promising industrial applications, along with the high climate resilience. This comprehensive review evaluates its nutritional composition by comparing favorably with other cereals and millets and emphasizing its potential to address malnutrition and enhance food security. Furthermore, it explores the phytochemical/bioactive potential and strategies to enhance their bioavailability followed biological activities of Finger millet by highlighting its various health-promoting properties. The review also discusses industrial potential of finger millet including its role in nutraceutical and functional food production, as well as bioenergy generation. In addition, role of Finger millet as a climate-resilient crop; specifically, the available genetic resources and identification of genes and quantitative trait loci (QTLs) associated with major stress tolerance traits have also been discussed. By providing a comprehensive synthesis of existing knowledge, this study offers valuable insights for researchers, policymakers, and stakeholders engaged in efforts to promote sustainable agriculture, enhance food and nutrition security, and mitigate the impacts of climate change.


Subject(s)
Climate Change , Eleusine , Nutritive Value , Eleusine/genetics , Crops, Agricultural/genetics , Phytochemicals/chemistry , Food Security , Quantitative Trait Loci
3.
Food Res Int ; 190: 114635, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945624

ABSTRACT

Finger millet, like other cereals, contains high amounts of antinutrients that bind minerals, making them unavailable for absorption. This study explores the effect of traditional fermentation on nutritional, antinutritional, and subsequent mineral bioaccessibility (specifically iron, zinc, and calcium) of finger millet based Injera. Samples of fermented dough and Injera prepared from light brown and white finger millet varieties were analyzed for nutritional composition, antinutritional content, and mineral bioaccessibility following standard procedures. With some exceptions, the proximate composition of fermented dough was significantly affected by fermentation time. Compared to unfermented flour, the phytate and condensed tannin content significantly (p < 0.05) decreased for fermented dough and Injera samples. A strong decline in phytate and condensed tannin content was observed in white finger millet Injera as fermentation time increased, compared to light brown finger millet based Injera. The mineral bioaccessibility of Injera prepared from finger millet and maize composite flour increased with fermentation time, leading to a significant increase in bioaccessible iron, zinc, and calcium, ranging from 15.4-40.0 %, 26.8-50.8 %, and 60.9-88.5 %, respectively. The results suggest that traditional fermentation can be an effective method to reduce phytate and condensed tannin content, simultaneously increasing the bioaccessibility of minerals in the preparation of finger millet based Injera.


Subject(s)
Biological Availability , Eleusine , Fermentation , Nutritive Value , Phytic Acid , Phytic Acid/analysis , Flour/analysis , Minerals/analysis , Ethiopia , Food Handling/methods , Proanthocyanidins/analysis , Zinc/analysis
4.
Methods ; 229: 30-40, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38880434

ABSTRACT

The objective of this study was to optimise the millet formulation using Levilactobacillus brevis and to evaluate its anticarcinogenic potential in vitro. The formula was developed in the course of the fermentation of finger millet (Eleusine coracana) using L. brevis MTTC 4460 and optimised by response surface methodology and validation by artificial neural networking (ANN). The optimised millet formulation could be obtained using 2 % of bacterial inoculum, 2 % of glucose, and a fermentation duration of 3.3 days with a yield of 5.98 mg/mL lactic acid and 3.38 log10 (CFU/mL) viable L. brevis with overall desirability value of 1. The fermented millet formulation exhibited antiproliferative and antimigratory effects on MDA-MB-231 and HCT116 cancer cell lines. In addition, the outcomes observed in western blot analysis revealed that the formulation elicited apoptotic responses mediated by the Bcl-2 family of proteins in MDA-MB-231 and HCT116 cell lines while demonstrating no discernible impact on HEK293 normal cells.


Subject(s)
Apoptosis , Eleusine , Fermentation , Levilactobacillus brevis , Humans , HCT116 Cells , Levilactobacillus brevis/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Movement/drug effects
5.
Plant Physiol Biochem ; 211: 108613, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696868

ABSTRACT

Ionic and metal toxicity in plants is still a global problem for the environment, agricultural productivity and ultimately poses human health threats when these metal ions accumulate in edible organs of plants. Metal and ion transport from cytosol to the vacuole is considered an important component of metal and ion tolerance and a plant's potential utility in phytoremediation. Finger millet (Eleusine coracana) is an orphan crop but has prominent nutritional value in comparison to other cereals. Previous transcriptomic studies suggested that one of the calcium/proton exchanger (EcCAX3) is strongly upregulated during different developmental stages of spikes development in plant. This finding led us to speculate that high calcium accumulation in the grain might be because of CAX3 function. Moreover, phylogenetic analysis shows that EcCAX3 is more closely related to foxtail millet, sorghum and rice CAX3 protein. To decipher the functional role of EcCAX3, we have adopted complementation of yeast triple mutant K677 (Δpmc1Δvcx1Δcnb1), which has defective calcium transport machinery. Furthermore, metal tolerance assay shows that EcCAX3 expression conferred tolerance to different metal stresses in yeast. The gain-of-function study suggests that EcCAX3 overexpressing Arabidopsis plants shows better tolerance to higher concentration of different metal ions as compared to wild type Col-0 plants. EcCAX3-overexpression transgenic lines exhibits abundance of metal transporters and cation exchanger transporter transcripts under metal stress conditions. Furthermore, EcCAX3-overexpression lines have higher accumulation of macro- and micro-elements under different metal stress. Overall, this finding highlights the functional role of EcCAX3 in the regulation of metal and ion homeostasis and this could be potentially utilized to engineer metal fortification and generation of stress tolerant crops in near future.


Subject(s)
Arabidopsis , Eleusine , Plants, Genetically Modified , Stress, Physiological , Eleusine/genetics , Eleusine/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/drug effects , Phylogeny , Antiporters/metabolism , Antiporters/genetics , Metals/metabolism , Calcium/metabolism , Cation Transport Proteins , Arabidopsis Proteins
6.
Plant Foods Hum Nutr ; 79(2): 482-488, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38748356

ABSTRACT

Hypertension remains a significant global health concern, contributing significantly to cardiovascular diseases and mortality rates. The inhibition of angiotensin-converting enzyme (ACE) plays a crucial role in alleviating high blood pressure. We investigated the potential of finger millets (Eleusine coracana) as a natural remedy for hypertension by isolating and characterizing its ACE-inhibitory compound. First, we evaluated the ACE-inhibitory activity of the finger millet ethanol extract and subsequently proceeded with solvent fractionation. Among the solvent fractions, the ethyl acetate fraction exhibited the highest ACE inhibitory activity and was further fractionated. Using preparative high-performance liquid chromatography, the ethyl acetate fraction was separated into four subfractions, with fraction 2 (F2) exhibiting the highest ACE inhibitory activity. Subsequent 1 H-nuclear magnetic resonance (NMR) and 13 C-NMR analyses confirmed that the isolated compound from F2 was catechin. Furthermore, molecular docking studies indicated that catechin has the potential to act as an ACE inhibitor. These findings suggest that finger millets, particularly as a source of catechin, have the potential to be used as a natural antihypertensive.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors , Antihypertensive Agents , Eleusine , Molecular Docking Simulation , Plant Extracts , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/chemistry , Eleusine/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antihypertensive Agents/pharmacology , Antihypertensive Agents/chemistry , Chromatography, High Pressure Liquid , Peptidyl-Dipeptidase A/metabolism , Hypertension/drug therapy , Magnetic Resonance Spectroscopy
7.
Food Res Int ; 187: 114418, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763668

ABSTRACT

Interest in exploring alternative starch sources like finger millet is rising due to wide starch applications. However, native starch often lacks desired qualities, including rheological properties. Modification is thus necessary for specific end uses. Plasma treatment as a greener and sustainable method for starch modification was therefore, studied for its ability to impact rheological properties of finger millet starch (FMS). Considerable changes in the rheological properties on FMS was noted, a significant decrease and increase (p < 0.05) in the peak viscosity (from 3.35 to 0.553 Pa.s) and paste clarity respectively was observed, indicating occurrence of depolymerization. However, intermediate plasma-treated samples (200 V) observed a decrease in paste clarity attributed to aggregate formation and cross-linking. Cross-linking was also confirmed by findings of frequency sweep where a continuous decrease in G' values of plasma treated FMS gel was interrupted by sudden increase. Despite depolymerization causing alteration of rheological behaviour such as decrease in shear thinning properties, gel strength observed a contradictory increase. This was attributed to incorporation of functional group and absence of shear responsible for network formation giving higher gel strength to FMS gels. This is elaborated in detail in the study. The study thus concluded that cold plasma significantly impacted all the rheological properties of the FMS and hence can prove to be beneficial for modification of starch rheological parameters.


Subject(s)
Eleusine , Gels , Plasma Gases , Rheology , Starch , Starch/chemistry , Plasma Gases/chemistry , Viscosity , Eleusine/chemistry , Gels/chemistry , Atmospheric Pressure , Food Handling/methods
8.
PLoS One ; 19(5): e0296547, 2024.
Article in English | MEDLINE | ID: mdl-38753661

ABSTRACT

Endophytic bacteria, recognized as eco-friendly biofertilizers, have demonstrated the potential to enhance crop growth and yield. While the plant growth-promoting effects of endophytic bacteria have been extensively studied, the impact of weed endophytes remains less explored. In this study, we aimed to isolate endophytic bacteria from native weeds and assess their plant growth-promoting abilities in rice under varying chemical fertilization. The evaluation encompassed measurements of mineral phosphate and potash solubilization, as well as indole-3-acetic acid (IAA) production activity by the selected isolates. Two promising strains, tentatively identified as Alcaligenes faecalis (BTCP01) from Eleusine indica (Goose grass) and Metabacillus indicus (BTDR03) from Cynodon dactylon (Bermuda grass) based on 16S rRNA gene phylogeny, exhibited noteworthy phosphate and potassium solubilization activity, respectively. BTCP01 demonstrated superior phosphate solubilizing activity, while BTDR03 exhibited the highest potassium (K) solubilizing activity. Both isolates synthesized IAA in the presence of L-tryptophan, with the detection of nifH and ipdC genes in their genomes. Application of isolates BTCP01 and BTDR03 through root dipping and spraying at the flowering stage significantly enhanced the agronomic performance of rice variety CV. BRRI dhan29. Notably, combining both strains with 50% of recommended N, P, and K fertilizer doses led to a substantial increase in rice grain yields compared to control plants receiving 100% of recommended doses. Taken together, our results indicate that weed endophytic bacterial strains BTCP01 and BTDR03 hold promise as biofertilizers, potentially reducing the dependency on chemical fertilizers by up to 50%, thereby fostering sustainable rice production.


Subject(s)
Alcaligenes faecalis , Endophytes , Fertilizers , Oryza , Phosphates , Plant Weeds , Oryza/microbiology , Oryza/growth & development , Endophytes/metabolism , Alcaligenes faecalis/metabolism , Alcaligenes faecalis/growth & development , Plant Weeds/microbiology , Plant Weeds/growth & development , Phosphates/metabolism , Indoleacetic Acids/metabolism , RNA, Ribosomal, 16S/genetics , Phylogeny , Plant Roots/microbiology , Plant Roots/growth & development , Eleusine/microbiology , Eleusine/growth & development , Cynodon/microbiology , Cynodon/growth & development , Potassium/metabolism
9.
Theor Appl Genet ; 137(6): 139, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771345

ABSTRACT

Climate change and population growth pose challenges to food security. Major crops such as maize, wheat, and rice are expected to face yield reductions due to warming in the coming years, highlighting the need for incorporating climate-resilient crops in agricultural production systems. Finger millet (Eleusine coracana (L.) Gaertn) is a nutritious cereal crop adapted to arid regions that could serve as an alternative crop for sustaining the food supply in low rainfall environments where other crops routinely fail. Despite finger millet's nutritional qualities and climate resilience, it is deemed an "orphan crop," neglected by researchers compared to major crops, which has hampered breeding efforts. However, in recent years, finger millet has entered the genomics era. Next-generation sequencing resources, including a chromosome-scale genome assembly, have been developed to support trait characterization. This review discusses the current genetic and genomic resources available for finger millet while addressing the gaps in knowledge and tools that are still needed to aid breeders in bringing finger millet to its full production potential.


Subject(s)
Crops, Agricultural , Eleusine , Plant Breeding , Eleusine/genetics , Eleusine/growth & development , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Food Insecurity , Genomics , Genome, Plant , Climate Change
10.
Planta ; 259(6): 139, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687379

ABSTRACT

Finger millet (Eleusine coracana) is an essential staple crop in many regions of Africa and Asia, valued for its nutritional content and resilience in challenging agro-ecological conditions. The enhancement of finger millet through genomic resources and breeding methods represents a promising avenue for addressing food and nutritional security. Current efforts in this field have harnessed genomic technologies to decipher the crop's genetic diversity and identify key traits related to yield, disease resistance, and nutritional content. These insights have facilitated the development of improved varieties through selective breeding, accelerating the crop's adaptation to changing environmental conditions. In the future, continued advancements in genomics and breeding methodologies hold the potential to further enhance finger millet's resilience, nutritional value, and productivity, ultimately benefiting both farmers and consumers. This review article synthesizes the current state of research and development in finger millet enhancement through the integration of genomic resources and innovative breeding methods. The utilization of these insights in selective breeding has already yielded promising results in developing improved finger millet varieties that meet the evolving needs of farmers and consumers. Moreover, this article discusses potential future interventions, including the continued advancement of genomics, precision breeding, and sustainable agricultural practices. These interventions hold the promise of further enhancing finger millet's adaptability to changing climates, its nutritional quality, and its overall productivity, thereby contributing to food security and improved livelihoods in finger millet-dependent regions.


Subject(s)
Eleusine , Genomics , Plant Breeding , Eleusine/genetics , Plant Breeding/methods , Genomics/methods , Crops, Agricultural/genetics , Genome, Plant , Nutritive Value , Genetic Variation , Disease Resistance/genetics
11.
Planta ; 259(6): 136, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38679693

ABSTRACT

MAIN CONCLUSION: Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.


Subject(s)
CCAAT-Binding Factor , Eleusine , Gene Expression Regulation, Plant , Stress, Physiological , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Dehydration/genetics , Droughts , Eleusine/genetics , Eleusine/metabolism , Eleusine/physiology , Gene Expression Profiling , Genes, Plant/genetics , Genotype , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Salt Stress/genetics , Salt Tolerance/genetics , Stress, Physiological/genetics
12.
Int J Biol Macromol ; 268(Pt 1): 131615, 2024 May.
Article in English | MEDLINE | ID: mdl-38631580

ABSTRACT

This research was conducted to evaluate the effects of cold plasma (CP) on finger millet starch (FMS). FMS was exposed to partially ionized gas at varying voltages (170, 200, and 230 Volt) for varied time (10, 20, and 30 mins). The impact of treatment was studied using physico-chemical, and functional properties, and the mechanisms of starch modification occurring were stated. A significant reduction in the degree of polymerization was noticed based on parameters like reducing sugar, amylose content, solubility, and molecular weight. However, in certain voltage and time combinations, crosslinking was also confirmed by analysis such as XRD, FTIR, DSC, etc. The properties of starch were altered such as remarkable increase in water solubility by 6.7 times for highest voltage and longest time (230 V/30 min) was registered. NMR data suggested valuable findings- oxidation of OH group at C6 position of starch led to formation of carbonyl group followed by carboxyl group. NMR also showed a decrease in OH protons confirming crosslinking and hence all these analyses helped to conclude findings about the quality changes using CP. It was observed that the highest voltage and considerably longer exposure time of 20 and 30 min induced significant changes in the FMS.


Subject(s)
Amylose , Eleusine , Plasma Gases , Solubility , Starch , Starch/chemistry , Plasma Gases/chemistry , Eleusine/chemistry , Amylose/chemistry , Molecular Weight , Spectroscopy, Fourier Transform Infrared
13.
J Food Sci ; 89(4): 2096-2109, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462850

ABSTRACT

Millets are gaining attention as a superfood due to their higher nutritional value and cost-effectiveness. In this regard, extraction condition for the development of finger millet-based beverage was optimized using a central composite design. Soaking time (X1) and temperature (X2) in the range of 5-10 h and 40-60°C, respectively, were the independent variables taken for three responses, namely, yield, total solids, and sedimentation index. The optimized conditions are best fitted in quadratic model (R2 0.91) for all the dependent variables. Accordingly, the optimized levels selected for soaking time and temperature were 10 h and 60°C respectively, resulting in the yield (Y1) of 91.86% ± 0.94%, total solids (Y2) of 17.72% ± 0.56%, and sedimentation index (Y3) of 12.18% ± 0.06%. Further, xanthan gum (0.5%) and jaggery powder (5%) were added in the optimized beverage to improve its physicochemical and functional properties. Xanthan gum improved the physical stability and rheological properties of the beverage, whereas jaggery improved the flavor and phenolic content of the same. The optimized beverage had a good amount of phenolic content (53.70 µg GAE/mL), antioxidant activity (DPPH 13.76 µmol/mL), zeta potential (-19.8 mV), and glycemic index (57). The flow curve of beverages was obtained using power law model, and result indicated good consistency index (k = 0.7716 Pa s) with flow behavior (n = 0.3411) depicted its pseudoplastic nature. The optimized extraction condition significantly reduced the antinutrients, tannin, and phytic content by 47% and 14%, respectively, in optimized beverage than control.


Subject(s)
Antioxidants , Eleusine , Antioxidants/chemistry , Glycemic Index , Beverages/analysis , Temperature , Phenols
14.
Environ Res ; 251(Pt 1): 118632, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38467361

ABSTRACT

Visual impairment due to corneal keratitis-causing bacteria is becoming a matter of health concern. The bacterial colonization and their resistance to multiple drugs need imperative attention. To overcome the issue of alternative remedial therapeutic agents, particularly for topical application, a study was carried out to synthesize calcium oxide nanoparticles (CaO NPs) using the biomaterial Eleusine coracana seed aqueous extract. The biosynthesized calcium oxide nanoparticles (CaO NPs) are non-toxic or less-toxic chemical precursors. Moreover, CaO NPs are eco-friendly and are used for several industrial, biomedical, and environmental applications. Biosynthesized CaO NPs were characterized using ultraviolet-visible spectroscopy, Fourier transform-infrared spectroscopy, scanning electron microscopy, and dynamic light scattering study. The synthesized CaO NPs exhibit with good anti-inflammatory activities with dose dependant (50-250 µg/mL). Moreover, Eleusine coracana-mediated CaO NPs significantly inhibited the multiple drug-resistant Gram-positive Staphylococci epidermidis and Enterococcus faecalis and Gram-negative Escherichia coli and Klebsiella pneumoniae that were isolated from the corneal ulcer. This study provides a potential therapeutic option for multiple drug-resistant corneal pathogens that cause vision impairment.


Subject(s)
Anti-Bacterial Agents , Calcium Compounds , Eleusine , Nanoparticles , Plant Extracts , Seeds , Plant Extracts/chemistry , Plant Extracts/pharmacology , Calcium Compounds/chemistry , Calcium Compounds/pharmacology , Seeds/chemistry , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Eleusine/chemistry , Oxides/chemistry , Oxides/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Microbial Sensitivity Tests
15.
Int J Biol Macromol ; 261(Pt 2): 129919, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309404

ABSTRACT

The effect of high-pressure processing (HPP) modification (200, 400, and 600 MPa for 10 min) on the physico-chemical, functional, structural, and rheological properties of white finger millet starch (WFMS) was studied. Measured amylose content, water, and oil absorption capacity, alkaline water retention, and pasting temperature increased significantly with the intensity of pressure. All color parameters (L, a, b values, and ΔC) were affected by HPP treatment, and paste clarity of modified starch decreased significantly with an increase in storage time. The samples' least gelation concentration (LGC) is in the range of 8-14 %. An increasing solubility and swelling power are noted, further intensifying at the elevated temperature (90 °C). The structural changes of WFMS were characterized by XRD, SEM, and FTIR spectroscopy. Starch modified at 600 MPa showed a similar pattern as 'B'-type crystalline, and the surfaces of starch deformed because of the gelatinization. Applied pressure of 600 MPa affected the FTIR characteristic bands at 3330, 2358, and 997 cm-1, indicating a lower crystallinity of the HPP-600 modified sample. According to DSC analysis, even at 600 MPa, WFMS is only partially gelatinized. This work provides insights for producing modified WFM starches by a novel physical modification method.


Subject(s)
Eleusine , Starch , Starch/chemistry , Amylose/chemistry , Chemical Phenomena , Solubility , Water/chemistry
16.
Mol Biol Rep ; 51(1): 283, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324135

ABSTRACT

BACKGROUND: Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS: In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION: These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.


Subject(s)
Eleusine , Thermotolerance , Genotype , Gene Expression Profiling , Heat-Shock Proteins
17.
Pest Manag Sci ; 80(7): 3293-3300, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38372415

ABSTRACT

BACKGROUND: In temperate regions, aphid biological control in greenhouses is mostly achieved by the regular release of biocontrol agents. Due to the rapid growth rate of the aphid population, biocontrol agents must be released frequently in order to be present before pest outbreaks and to act rapidly to prevent exceeding the economic threshold. Banker plants reduce these numerous releases by providing natural enemies with a high-quality environment to develop and reproduce. Optimally, banker plants should be easy to produce, resistant to environmental conditions, provide a large amount of suitable banker prey in order to produce a high number of biocontrol agents, and resist the herbivory pressure of the banker prey. The present study aimed to compare the value of three banker plant candidates of the Poaceae family under laboratory and greenhouse conditions: barley (Hordeum vulgare L.), finger millet (Eleusine coracana (L.) Gaertn), and corn (Zea mays L.). RESULTS: Our results show that the three plants were suitable for different contexts. Finger millet yielded the biggest fresh plant biomass, supported the highest load of banker prey, and resisted aphid feeding longer than the other plant species. Corn was the cheapest to produce, and barley was the fastest to grow. CONCLUSIONS: Overall, finger millet could be more fitted for long crop cycles, pests with rapid population growth rates, and voracious or fast-reproducing biocontrol agents. Meanwhile, barley and corn may be better suited for rapid crop cycles, pests with slow population growth rates, and biocontrol agents that are not too voracious or have low reproductive rates. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aphids , Eleusine , Hordeum , Pest Control, Biological , Zea mays , Animals , Aphids/physiology , Pest Control, Biological/methods , Herbivory
18.
Sci Rep ; 14(1): 803, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38191652

ABSTRACT

This study investigated the antihypertensive effects of the combined extract of sorghum, adzuki bean, and finger millet (SAFE) on spontaneously hypertensive rats. The rats were divided into four groups (n = 8): WKY, SHR, SAFE (500 mg/kg SAFE), and CAP (50 mg/kg captopril). SAFE significantly decreased the lean-to-fat mass ratio with no notable changes in body weight, food intake, or food efficiency ratio, and it effectively lowered both systolic and diastolic blood pressures, comparable to CAP. Moreover, it significantly reduced the cardiac mass index and alleviated cardiac fibrosis. SAFE did not induce hepatotoxicity, as indicated by the maintenance of aspartate aminotransferase and alanine aminotransferase levels in the normal range, confirming its safety. Taken together, these findings suggested that SAFE can be used as a dietary supplement for blood pressure regulation and cardiovascular disease prevention.


Subject(s)
Eleusine , Sorghum , Vigna , Rats , Animals , Rats, Inbred WKY , Rats, Inbred SHR , Antihypertensive Agents/pharmacology , Dietary Supplements , Plant Extracts/pharmacology
19.
Sci Rep ; 14(1): 460, 2024 01 03.
Article in English | MEDLINE | ID: mdl-38172143

ABSTRACT

Improved crop genotypes are constantly introduced. However, information on their nutritional quality is generally limited. The present study reports the proximate composition and the concentration and relative bioavailability of minerals of improved finger millets of different genotypes. Grains of finger millet genotypes (n = 15) grown in research station during 2019 and 2020 in Ethiopia, and replicated three times in a randomized complete block design, were analysed for proximate composition, mineral concentration (iron, zinc, calcium, selenium), and antinutritional factors (phytate, tannin and oxalate). Moreover, the antinutritional factors to mineral molar ratio method was used to estimate mineral bioavailability. The result shows a significant genotypic variation in protein, fat and fibre level, ranging from 10% to 14.6%, 1.0 to 3.8%, and 1.4 to 4.6%, respectively. Similarly, different finger millets genotypes had significantly different mineral concentrations ranging from 3762 ± 332 to 5893 ± 353 mg kg-1 for Ca, 19.9 ± 1.6 to 26.2 ± 2.7 mg kg-1 for Zn, 36.3 ± 4.6 to 52.9 ± 9.1 mg kg-1 for Fe and 36.6 ± 11 to 60.9 ± 22 µg kg-1 for Se. Phytate (308-360 µg g-1), tannin (0.15-0.51 mg g-1) and oxalate (1.26-4.41 mg g-1) concentrations were also influenced by genotype. Antinutritional factors to minerals molar ratio were also significantly different by genotypes but were below the threshold for low mineral bioavailability. Genotype significantly influenced mineral and antinutritional concentrations of finger millet grains. In addition, all finger millet genotypes possess good mineral bioavailability. Especially, the high Ca concentration in finger millet, compared to in other cereals, could play a vital role to combating Ca deficiency. The result suggests the different finger millet genotypes possess good nutrient content and may contribute to the nutrition security of the local people.


Subject(s)
Eleusine , Selenium , Humans , Eleusine/genetics , Ethiopia , Nutritive Value , Oxalates , Phytic Acid/analysis , Selenium/analysis , Tannins/analysis
20.
BMC Plant Biol ; 24(1): 75, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38281915

ABSTRACT

BACKGROUND: The nucleotide binding site leucine rich repeat (NBLRR) genes significantly regulate defences against phytopathogens in plants. The genome-wide identification and analysis of NBLRR genes have been performed in several species. However, the detailed evolution, structure, expression of NBLRRs and functional response to Magnaporthe grisea are unknown in finger millet (Eleusine coracana (L.) Gaertn.). RESULTS: The genome-wide scanning of the finger millet genome resulted in 116 NBLRR (EcNBLRRs1-116) encompassing 64 CC-NB-LRR, 47 NB-LRR and 5 CCR-NB-LRR types. The evolutionary studies among the NBLRRs of five Gramineae species, viz., purple false brome (Brachypodium distachyon (L.) P.Beauv.), finger millet (E. coracana), rice (Oryza sativa L.), sorghum (Sorghum bicolor L. (Moench)) and foxtail millet (Setaria italica (L.) P.Beauv.) showed the evolution of NBLRRs in the ancestral lineage of the target species and subsequent divergence through gene-loss events. The purifying selection (Ka/Ks < 1) shaped the expansions of NBLRRs paralogs in finger millet and orthologs among the target Gramineae species. The promoter sequence analysis showed various stress- and phytohormone-responsive cis-acting elements besides growth and development, indicating their potential role in disease defence and regulatory mechanisms. The expression analysis of 22 EcNBLRRs in the genotypes showing contrasting responses to Magnaporthe grisea infection revealed four and five EcNBLRRs in early and late infection stages, respectively. The six of these nine candidate EcNBLRRs proteins, viz., EcNBLRR21, EcNBLRR26, EcNBLRR30, EcNBLRR45, EcNBLRR55 and EcNBLRR76 showed CC, NB and LRR domains, whereas the EcNBLRR23, EcNBLRR32 and EcNBLRR83 showed NB and LRR somains. CONCLUSION: The identification and expression analysis of EcNBLRRs showed the role of EcNBLRR genes in assigning blast resistance in finger millet. These results pave the foundation for in-depth and targeted functional analysis of EcNBLRRs through genome editing and transgenic approaches.


Subject(s)
Eleusine , Eleusine/genetics , Pyricularia grisea , Nucleotides/metabolism , Genotype , Binding Sites , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL