Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22.594
Filter
1.
ACS Appl Mater Interfaces ; 16(33): 43430-43450, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39110913

ABSTRACT

Flocculation is a type of aggregation where the surfaces of approaching droplets are still at distances no closer than a few nanometers while still remaining in close proximity. In a high internal-phase oil-in-water (O/W) emulsion, the state of flocculation affects the bulk flow behavior and viscoelasticity, which can consequently control the three-dimensional (3D)-printing process and printing performance. Herein, we present the assembly of O/W Pickering high-internal-phase emulsions (Pickering-HIPEs) as printing inks and demonstrate how depletion flocculation in such Pickering-HIPE inks can be used as a facile colloidal engineering approach to tailor a porous 3D structure suitable for drug delivery. Pickering-HIPEs were prepared using different levels of cellulose nanocrystals (CNCs), co-stabilized using "raw" submicrometer-sized sustainable particles from a biomass-processing byproduct. In the presence of this sustainable particle, the higher CNC contents facilitated particle-induced depletion flocculation, which led to the formation of a mechanically robust gel-like ink system. Nonetheless, the presence of adsorbed particles on the surface of droplets ensured their stability against coalescence, even in such a highly aggregated system. The gel structures resulting from the depletion phenomenon enabled the creation of high-performance printed objects with tunable porosity, which can be precisely controlled at two distinct levels: first, by introducing voids within the internal structure of filaments, and second, by generating cavities (pore structures) through the elimination of the water phase. In addition to printing efficacy, the HIPEs could be applied for curcumin delivery, and in vitro release kinetics demonstrated that the porous 3D scaffolds engineered for the first time using depletion-flocculated HIPE inks played an important role in 3D scaffold disintegration and curcumin release. Thus, this study offers a unique colloidal engineering approach of using depletion flocculation to template 3D printing of sustainable inks to generate next-generation porous scaffolds for personalized drug deliveries.


Subject(s)
Cellulose , Emulsions , Flocculation , Ink , Printing, Three-Dimensional , Porosity , Emulsions/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Tissue Scaffolds/chemistry , Humans , Colloids/chemistry , Drug Delivery Systems , Particle Size
2.
Langmuir ; 40(33): 17463-17475, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39105736

ABSTRACT

Despite national and international regulations, plastic microbeads are still widely used in personal care and consumer products (PCCPs). These exfoliants and rheological modifiers cause significant microplastic pollution in natural aquatic environments. Microbeads from nonderivatized biomass like cellulose and lignin can offer a sustainable alternative to these nondegradable microplastics, but processing this biomass into microbeads is challenging due to limited viable solvents and high biomass solution viscosities. To produce biomass microbeads of the appropriate size range for PCCPs (ca. 200-800 µm diameter) with shapes and mechanical properties comparable to those of commercial plastic microbeads, we used a surfactant-free emulsion/precipitation method, mixing biomass solutions in 1-ethyl-3-methylimidazolium acetate (EMImAc) with various oils and precipitating with ethanol. While yield of microbeads within the target size range highly depends on purification conditions, optimized protocols led to >90% yield of cellulose microbeads. Kraft lignin was then successfully incorporated into beads at up to 20 wt %; however, higher lignin contents result in emulsion destabilization unless surfactant is added. Finally, the microbead shape and surface morphology can be tuned using oils of varying viscosities and interfacial tensions. Dripping measurements and pendant drop tensiometry confirmed that the higher affinity of cellulose for certain oil/IL interfaces largely controlled the observed surface morphology. This work thus outlines how biomass composition, oil viscosity, and interfacial properties can be altered to produce more sustainable microbeads for use in PCCPs, which have desirable mechanical properties and can be produced over a wide range of shapes and surface morphologies.


Subject(s)
Biomass , Cellulose , Emulsions , Microspheres , Emulsions/chemistry , Cellulose/chemistry , Lignin/chemistry , Imidazoles/chemistry , Particle Size , Surface-Active Agents/chemistry
3.
Food Res Int ; 192: 114779, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147467

ABSTRACT

Rice bran protein fibril (RBPF)-high internal phase Pickering emulsions (HIPPEs) loaded with ß-carotene (CE) were constructed to enhance stability and bioavailability of CE. Rice bran (RB) protein with varying oxidation degrees was extracted from RB with varying storage period (0-10 days) to prepare RBPF by acid-heating (90 °C, 2-12 h) to stabilize HIPPEs. The influence of protein oxidation on the encapsulation properties of RBPF-HIPPEs was studied. The results showed that CE-HIPPEs could be stably stored for 56 days at 25 °C. When RB storage time was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs and the CE degradation rate initially fell, and then grew as the acid-heating time prolonged, while the ζ-potential value, viscosity, viscoelasticity, free fatty acid (FFA) release rate, and bioaccessibility first rose, and subsequently fell. When acid-heating time of RBPF was the same, the average particle size, lipid hydroperoxide content, and malondialdehyde content of CE-HIPPEs initially fell, and subsequently increased with RB storage time extended, while the ζ-potential value, viscosity, viscoelasticity, FFA release rate, and bioaccessibility initially increased, and then decreased. Overall, Moderate oxidation and moderate acid-heating enhanced the stability as well as rheological properties of CE-HIPPEs, thus improving the stability and bioaccessibility of CE. This study offered a new insight into the delivery of bioactive substances by protein fibril aggregates-based HIPPEs.


Subject(s)
Emulsions , Oryza , Oxidation-Reduction , Particle Size , beta Carotene , beta Carotene/chemistry , Oryza/chemistry , Biological Availability , Plant Proteins/chemistry , Viscosity , Malondialdehyde
4.
Food Res Int ; 192: 114807, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147471

ABSTRACT

Alternative protein sources have been required to meet the significant plant protein demand. Agro-industrial by-products such as leaves have considerable potential as a source of macromolecules once they are mostly discarded as waste. The current study evaluated dried cassava leaves as a protein source. First, alkaline extraction parameters (solid-liquid ratio, pH, and temperature) were optimized and the run that result in the highest protein yield were acidified at pH 2.5 or 4. The influence of carbohydrate solubilized on protein precipitation was also evaluated by removing it via alcoholic extraction prior to precipitation. The experimental design showed that high pH and temperature conditions associated with a low solid-liquid ratio led to increased protein yields. The presence of carbohydrates in the supernatant significantly influenced protein precipitation. The protein concentrate had around 17.51% protein when it was obtained from a supernatant with carbohydrates, while protein content increased to 26.88% when it was obtained from carbohydrate-free supernatant. The precipitation pH also influenced protein content, whereas protein content significantly decreased when pH increased from 2.5 to 4. The natural interaction between carbohydrates and proteins from cassava leaves positively influenced the emulsion stability index and the foaming capacity and stability. Thus, the presented results bring insights into challenges in extracting and precipitation proteins from agro-industrial by-products.


Subject(s)
Chemical Precipitation , Manihot , Plant Leaves , Plant Proteins , Temperature , Manihot/chemistry , Plant Leaves/chemistry , Hydrogen-Ion Concentration , Plant Proteins/isolation & purification , Plant Proteins/chemistry , Emulsions/chemistry
5.
Food Res Int ; 192: 114810, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147505

ABSTRACT

Using green techniques to convert native starches into nanoparticles is an interesting approach to producing stabilizers for Pickering emulsions, aiming at highly stable emulsions in clean label products. Nanoprecipitation was used to prepare the Pickering starch nanoparticles, while ultrasound technique has been used to modulate the size of these nanoparticles at the same time as the emulsion was developed. Thus, the main objective of this study was to evaluate the stabilizing effect of cassava starch nanoparticles (SNP) produced by the nanoprecipitation technique combined with ultrasound treatment carried out in the presence of water and oil (more hydrophobic physicochemical environment), different from previous studies that carry out the mechanical treatment only in the presence of water. The results showed that the increased ultrasound energy input could reduce particle size (117.58 to 55.75 nm) and polydispersity (0.958 to 0.547) in aqueous dispersions. Subsequently, Pickering emulsions stabilized by SNPs showed that increasing emulsification (ultrasonication) time led to smaller droplet sizes and monomodal size distribution. Despite flocculation, long-term ultrasonication (6 and 9 min) caused little variation in the droplet size after 7 days of storage. The cavitation effects favored the interaction between oil droplets through weak attraction forces and particle sharing, favoring the Pickering stabilization against droplet coalescence. Our results show the potential to use only physical modifications to obtain nanoparticles that can produce coalescence-stable emulsions that are environmentally friendly.


Subject(s)
Emulsions , Manihot , Nanoparticles , Particle Size , Starch , Manihot/chemistry , Starch/chemistry , Emulsions/chemistry , Nanoparticles/chemistry , Water/chemistry , Sonication/methods , Flocculation
6.
Food Res Int ; 192: 114822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147514

ABSTRACT

In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.


Subject(s)
Emulsions , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Magnetic Fields , Polyphenols , Tannins , Polyphenols/chemistry , Tannins/chemistry , Emulsions/chemistry , Globulins/chemistry , Plant Proteins/chemistry , Emulsifying Agents/chemistry
7.
Food Res Int ; 192: 114830, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147519

ABSTRACT

The natural dual nanofibril system consisting of the rigid semicrystalline nanofibrils disintegrated from citrus fiber (CF) and soft semiflexible nanofibrils self-assembled from glycyrrhizic acid (GA) has been recently shown to be effective structural building blocks for fabrication of emulsion gels. In this work, the effect of the CF nanofibrils prepared by different mechanical disintegration approaches (i.e., high-pressure microfluidization and hydrodynamic cavitation) on the interfibrillar CF-GA interactions and the subsequent formation and properties of emulsion gels were investigated, with the aim of evaluating the potential of the dual nanofibril-stabilized emulsion gels as templates for synthesizing all-natural edible oleogels. The obtained results demonstrate that compared to the cavitation, the high-pressure microfluidization is more capable of generating CF nanofibrils with a higher degree of nanofibrillation and individualization, thus forming a denser CF-GA gel network with higher viscoelasticity and structural stability due to the stronger multiple intrafibrillar and interfibrillar interactions. The emulsion gels stabilized by the dual nanofibril system are demonstrated to be an efficient template to fabricate solid-like oleogels, and the structural properties of the oleogels can be well tuned by the mechanical disintegration of CF and the GA nanofibril concentration. The prepared oleogels possess high oil loading capacity, dense network microstructure, superior rheological and large deformation compression performances, and satisfactory thermal stability, which is attributed to the compact and ordered CF-GA dual nanofibrillar network via multiple hydrogen-bonding interactions in the continuous phase as well as at the droplet surface. This study highlights the unique use of all-natural dual nanofibrils to develop oil structured soft materials for sustainable applications.


Subject(s)
Citrus , Emulsions , Gels , Glycyrrhizic Acid , Nanofibers , Organic Chemicals , Emulsions/chemistry , Glycyrrhizic Acid/chemistry , Citrus/chemistry , Nanofibers/chemistry , Organic Chemicals/chemistry , Gels/chemistry , Rheology , Viscosity
8.
Food Res Int ; 192: 114681, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147541

ABSTRACT

This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.


Subject(s)
Antioxidants , Hot Temperature , Maillard Reaction , Solubility , Soybean Proteins , Soybean Proteins/chemistry , Antioxidants/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Gums/chemistry , Emulsions , Microscopy, Electron, Scanning , Circular Dichroism , Hydrogen-Ion Concentration , Electrophoresis, Polyacrylamide Gel , Water/chemistry , Heating , Food Handling/methods
9.
Food Res Int ; 192: 114743, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147549

ABSTRACT

Oil-in-water emulsions (EM) have been extensively used for the encapsulation of lipophilic bioactive compounds and posterior incorporation into food matrices to obtain functional foods. Conversely, novel excipient oil-in-water emulsions (EXC) present identical composition and structure as EM, albeit are not bioactive by themselves since no bioactive compound is encapsulated. Instead, EXC aims at improving the bioavailability of foods' natural bioactive compounds upon co-ingestion with nutrient-rich foods. In this work, EM and EXC were produced and their stability and functionality as delivery systems for α-tocopherol compared. Emulsions were formulated with corn oil and lecithin, and their composition was optimized using experimental designs. Formulations produced with 3 % lecithin and 5 % oil attained smallest particles sizes with the lowest polydispersity index of all tested formulations and remained stable up to 60 days. Encapsulation of α-tocopherol did not have a significative impact on the structural properties of the particles produced with the same composition. α-tocopherol stability during in vitro digestion was superior in EM regardless the processing methodology (EM stability < 50 %, EXC stability < 29 %), indicating that EM offered greater protection against the digestive environment. α-tocopherol's bioaccessibility was significantly increased when encapsulated or when digested with added excipient emulsions (82-92 % and 87-90 % for EM and EXC, respectively). In conclusion, EM were more efficient vehicles for the selected bioactive compound, however, the good results obtained with EXC imply that excipient emulsions have a great potential for applications on foods to improve their natural bioactive compounds' bioavailability without the need of further processing.


Subject(s)
Biological Availability , Digestion , Emulsions , Excipients , Particle Size , alpha-Tocopherol , Emulsions/chemistry , alpha-Tocopherol/chemistry , Excipients/chemistry , Lecithins/chemistry , Corn Oil/chemistry , Drug Delivery Systems
10.
Food Res Int ; 192: 114722, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147546

ABSTRACT

Peanut protein isolate (PPI) has high nutritional value, but its poor function limits its application in the food industry. In this study, peanut protein isolate was modified by enzymatic hydrolysis combined with glycation. The structure, emulsification and interface properties of peanut protein isolate hydrolysate (HPPI) and dextran (Dex) conjugate (HPPI-Dex) were studied. In addition, the physicochemical properties, rheological properties, and stability of the emulsion were also investigated. The results showed that the graft degree increased with the increase of Dex ratio. Fourier transform infrared spectroscopy (FTIR) confirmed that the glycation of HPPI and Dex occurred. The microstructure showed that the structure of HPPI-Dex was expanded, and the molecular flexibility was enhanced. When the ratio of HPPI to Dex was 1:3, the emulsifying activity and the interface pressure of glycated HPPI reached the highest value, and the emulsifying activity (61.08 m2/g) of HPPI-Dex was 5.28 times that of PPI. The HPPI-Dex stabilized emulsions had good physicochemical properties and rheological properties. In addition, HPPI-Dex stabilized emulsions had high stability under heat treatment, salt ion treatment and freeze-thaw cycle. According to confocal laser scanning microscopy (CLSM), the dispersion of HPPI-Dex stabilized emulsions was better after 28 days of storage. This study provides a theoretical basis for developing peanut protein emulsifier and further expanding the application of peanut protein in food industry.


Subject(s)
Arachis , Dextrans , Emulsions , Plant Proteins , Rheology , Emulsions/chemistry , Arachis/chemistry , Hydrolysis , Dextrans/chemistry , Plant Proteins/chemistry , Glycosylation , Spectroscopy, Fourier Transform Infrared , Emulsifying Agents/chemistry , Protein Hydrolysates/chemistry
11.
Food Res Int ; 192: 114764, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147556

ABSTRACT

Protein emulsion gels, as potential novel application ingredients in the food industry, are very unstable in their formation. However, the incorporation of sour substances (phosphoric acid, lactic acid, acetic acid, malic acid, glutamic acid, tartaric acid and citric acid) would potentially contribute to the stable formation of whey protein isolate (WPI) emulsion as well as its gel. Thus, in this work, physical stability of seven acid-treated WPI emulsions, and microstructures, rheological properties, water distribution of its emulsion gels were characterized and compared. Initially, the absolute zeta-potential, interfacial protein adsorption, and emulsifying characteristics of acid-induced WPI emulsions were higher in contrast to acid-untreated WPI emulsions. Moreover, acid-induced WPI emulsions were thermally induced (95 ℃, 30 min) to form its emulsion gel networks via disulfide bonds as the main force (acid-untreated WPI emulsions were unable to form gels). High-resolution microscopic observation revealed that acid-induced WPI in emulsion gel network showed the morphology of aggregates. Dynamic oscillatory rheology results indicated that acid-induced emulsion gel exhibited highly elastic behavior and its viscoelasticity was associated with the generation of protein gel networks and aggregates. In addition, PCA and heatmap results further illustrated that malic acid-induced WPI emulsion gels had the best water holding capacity and gel characteristics. Therefore, this study could provide an effective way for the foodstuffs industry to open up new texture and healthy emulsion gels as fat replaces and loading systems of bioactive substances.


Subject(s)
Emulsions , Gels , Hot Temperature , Rheology , Whey Proteins , Whey Proteins/chemistry , Emulsions/chemistry , Gels/chemistry , Viscosity
12.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 40: e20240021, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39147577

ABSTRACT

BACKGROUND AND OBJECTIVES: Nanosponges are one of the most innovative ways to use the newest developments in nanodrugs delivery. Nanosponges can catch drugs that dissolve in water or ones that don't. This work uses statistical design to find the best nanosponges for drugs that don't dissolve easily and make them. MATERIAL AND METHODS: It was looked into how to statistically make the most of the effects of independent factors. The ethyl cellulose ratio and stirring rate were chosen based on how they affected the dependent variables, such as particle size and how well they were trapped. FTIR, SEM, zeta potential, entrapment efficiency, and particle size data were used to test the nanosponges that were made. Using carbopol, the best lot of nanosponges was added to the gel. RESULTS: Using ethyl cellulose and polyvinyl alcohol as stabilizers in the emulsion liquid diffusion method, it was possible to make drug-loaded nanosponges. It was possible to make the nanosponges composition work better by using Central Composite Design. It has been seen that making drug-filled nanosponges improves stability. CONCLUSION: The study showcased the enhanced capacity of a formulation with decreased particle size and high entrapment efficiency to disseminate effectively.


Subject(s)
Particle Size , Cellulose/chemistry , Cellulose/analogs & derivatives , Solubility , Nanoparticles/chemistry , Water/chemistry , Drug Delivery Systems , Emulsions/chemistry
13.
Carbohydr Polym ; 343: 122499, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39174108

ABSTRACT

3D printing technology, especially coaxial 3D mode of multiple-component shaping, has great potential in the manufacture of personalized nutritional foods. However, integrating and stabilizing functional objectives of different natures remains a challenge for 3D customized foods. Here, we used starch nanoparticle (SNP) to assisted soy protein (SPI) emulsion to load hydrophilic and hydrophobic bioactives (anthocyanin, AC, and curcumin, Cur). The addition of SNP significantly improved the storage stability of the emulsion. Xanthan gum (XG) was also added to the SNP/SPI system to enhance its rheology and form an emulsion gel as inner core of coaxial 3D printing. Low field nuclear magnetic resonance and emulsification analyses showed that AC/Cur@SNP/SPI/XG functional inner core had a strong water binding state and good stability. After printing with outer layer, the SNP/SPI coaxial sample had the lowest deviation rate of 0.8 %. Also, SNP/SPI coaxial sample showed higher AC (90.2 %) and Cur (90.8 %) retention compared to pure starch (S), pure SNP, pure SPI, and S/SPI samples as well as SNP/SPI sample printed without outer layer. In summary, this study provides a new perspective for the manufacture of customized products as multifunctional foods, feeds and even potential delivery of drugs.


Subject(s)
Curcumin , Emulsions , Hydrophobic and Hydrophilic Interactions , Nanoparticles , Polysaccharides, Bacterial , Printing, Three-Dimensional , Soybean Proteins , Starch , Emulsions/chemistry , Soybean Proteins/chemistry , Starch/chemistry , Curcumin/chemistry , Nanoparticles/chemistry , Polysaccharides, Bacterial/chemistry , Gels/chemistry , Rheology
14.
Biomed Pharmacother ; 178: 117253, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39111084

ABSTRACT

Malignant ascites effusion (MAE) is a common complication of advanced malignant tumors with limited treatments. Euphorbia lathyris (EL) has a long history of application in patients with edema and ascites. Herein, we reported for the first time a mode in which EL and EL Pulveratum (PEL) spontaneously formed natural microemulsions (ELM and PELM) without the addition of any carriers and excipients, and found that the protein and phospholipid contained in them encapsulated fatty oil and diterpenoid esters through non-covalent interactions. The denaturation and degradation of protein in PELM resulted in stronger binding of diterpenoid esters to the hydrophobic region of protein, which facilitated the sustained and slow release of diterpenoid esters and improved their bioavailability in vivo, thereby retaining the efficacy of preventing MAE while alleviating the irritation of intestinal mucosa. The mechanism by which PELM retained efficacy might be related to increased feces moisture and urine volume, and decreased expression of AVPR2, cAMP, PKA and AQP3 in MAE mice. And its mechanism of reducing intestinal mucosal irritation was related to decreased cell apoptosis, amelioration of oxidative stress, elevation of mitochondrial membrane potential, and up-regulation of Occludin and Claudin-1 expression in IEC-6 cells. This nano-adjuvant-free natural microemulsions may be a promising therapeutic strategy in the field of phytochemistry for promoting the application of natural and efficient nano-aggregates spontaneously formed by medicinal plants in MAE, and provide a new perspective for advancing the development of the fusion of Chinese herbal medicine and nanomedicine and its clinical translation.


Subject(s)
Emulsions , Euphorbia , Intestinal Mucosa , Euphorbia/chemistry , Animals , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ascites/drug therapy , Ascites/pathology , Male , Apoptosis/drug effects , Plant Extracts/pharmacology , Oxidative Stress/drug effects
15.
Eur J Dermatol ; 34(4): 416-424, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39193679

ABSTRACT

Atopic dermatitis (AD) is a highly prevalent chronic skin disease. Anti-inflammatory and antipruritic emollients (emollients plus) with excellent cosmetic properties may alleviate AD-related symptoms and reduce the number of exacerbations. To screen for herbal extracts with potent anti-inflammatory and antioxidative potential in human skin cell cultures. Ginger extract and synthetic cannabidiol (CBD) were identified and combined in the cosmetic product BNO 3731, which was evaluated in a randomized clinical trial. Preclinical: anti-inflammatory effects of ginger extract, synthetic CBD and a combination thereof were evaluated in human skin cell cultures by analysing nuclear factor κB activation, release of inflammatory cytokines and endocannabinoid production. Clinical: BNO 3731 was studied in a clinical trial comprising 44 AD patients (adults and children) and compared to a benchmark product over a treatment duration of five days. Symptom severity was evaluated by objective and subjective dermatological assessments as well as physiological skin parameters. Itch intensity was assessed using a numerical rating scale (NRS-11). Preclinical: Ginger extract and synthetic CBD exhibited potent anti-inflammatory and antioxidative effects in vitro which were associated with elevated concentrations of the endocannabinoid, anandamide. Clinical: BNO 3731 significantly alleviated symptoms of AD and improved physiological skin parameters. Itch intensity decreased significantly by 55%, and in 75% of subjects, itch improved ≥2 points on the NRS-11 scale. No adverse events were reported. BNO 3731, containing a unique synergistic combination of ginger extract and synthetic CBD, is an effective and safe treatment option for dry and eczema-prone skin, providing rapid and substantial relief of pruritus.


Subject(s)
Anti-Inflammatory Agents , Cannabidiol , Dermatitis, Atopic , Emulsions , Plant Extracts , Zingiber officinale , Humans , Cannabidiol/pharmacology , Zingiber officinale/chemistry , Dermatitis, Atopic/drug therapy , Plant Extracts/pharmacology , Adult , Female , Anti-Inflammatory Agents/pharmacology , Male , Child , Pruritus/drug therapy , Adolescent , Middle Aged , Severity of Illness Index , Antioxidants/pharmacology , Young Adult , Cells, Cultured
16.
Sci Rep ; 14(1): 18841, 2024 08 14.
Article in English | MEDLINE | ID: mdl-39138188

ABSTRACT

Pomegranate (Punica granatum) is a tree of the Punicaceae family that is widespread all over the world and has several types and therapeutic uses. The current study aimed to investigate the phytochemical compounds by GC analysis and carried out physical characterization of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The pomegranate seed oil was extracted, and its self-nanoemulsifying system was then prepared. Phytochemical compounds were analyzed by GC, and physical characterization was established of the pomegranate seed oil and its self-nanoemulsifying system. Then antioxidant, anti-diabetic, and anti-lipase activities were investigated for both.The GC-MS analysis revealed that punicic acid, ß-eleosteric acid, catalpic acid, α-eleosteric acid, and oleic acid were the most predominant compounds in pomegranate seed oil. Other active compounds like linoleic acid, palmitic acid, stearic acid, and α-linolenic acid were detected in trace percentages. The self-nanoemulsifying system was prepared using various concentrations of surfactant (Tween 80), co-surfactant (Span 80), and pomegranate seed oil. The selected formulation had a PDI of 0.229 ± 0.09 and a droplet size of 189.44 ± 2.1 nm. The free radical scavenging activity of pomegranate seed oil, the self-emulsifying system, and Trolox was conducted using DPPH. The oil-self-nanoemulsifying system showed potent antioxidant activity compared to Trolox. Also, pomegranate oil inhibited α-amylase with a weak IC50 value of 354.81 ± 2.3 µg/ml. The oil self-nanoemulsifying system showed potent activity compared to acarbose and had a weaker IC50 value (616.59 ± 2.1 µg/ml) and a potent IC50 value (43.65 ± 1.9 µg/ml) compared to orlistat.Pomegranate seed oil self-nanoemulsifying system could be applied in the future for the preparation of possible oral medications for the prevention and treatment of oxidative stress, diabetes, and obesity due to its high activity against free radical, amylase, and lipase enzymes compared to pomegranate seed oil itself and the references used. This study reveals that self-nanoemulsion systems can enhance oil drug formulations by improving pharmacokinetics and pharmacodynamics, acting as drug reservoirs, and facilitating efficient oil release.


Subject(s)
Antioxidants , Emulsions , Hypoglycemic Agents , Plant Oils , Pomegranate , Seeds , Pomegranate/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Seeds/chemistry , Emulsions/chemistry , Plant Oils/chemistry , Plant Oils/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Lipase/antagonists & inhibitors , Lipase/metabolism , Nanoparticles/chemistry
17.
Int J Biol Macromol ; 277(Pt 2): 134314, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094879

ABSTRACT

To develop novel food-grade Pickering emulsion stabilizers, insoluble rice bran protein-polysaccharide-phenol natural complex (IRBPPP) was prepared into Pickering emulsion stabilizers after different mechanical pretreatments (shear, high-pressure homogenization, ultrasonic, and combined mechanical pretreatment). With the increase in mechanical pretreatment types, the covalent binding of proteins and polysaccharides in IRBPPP gradually enhanced, the breakage efficiency of IRBPPP gradually increased (IRBPPP particle size decreased from 220.54 to 67.89 µm, the specific surface area of IRBPPP particle increased from 993.47 to 2033.86 cm-1/g), and the microstructure of IRBPPP gradually showed an orderly network structure, which enhanced the IRBPPP dispersion stability and the Pickering emulsion stability. Pickering emulsion stability was highly correlated (P < 0.01) with the breakage efficiency of IRBPPP particles. Overall, the combined mechanical pretreatment improved the stability of the IRBPPP-stabilized Pickering emulsion. The study added value to rice bran products and offered a new way to create stable food-grade Pickering emulsions for functional foods using natural protein-polysaccharide-phenol complex particles.


Subject(s)
Emulsions , Oryza , Particle Size , Polysaccharides , Oryza/chemistry , Emulsions/chemistry , Polysaccharides/chemistry , Phenols/chemistry , Plant Proteins/chemistry , Phenol/chemistry
18.
Int J Biol Macromol ; 277(Pt 2): 134246, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39098461

ABSTRACT

A novel nanoparticle screening technique was established to mostly enhance the aqueous solubility and oral bioavailability of aceclofenac using nanoparticle systems. Among the polymers investigated, sodium carboxymethylcellulose (Na-CMC) showed the greatest increase in drug solubility. Utilizing spray-drying technique, the solvent-evaporated solid dispersion (SESD), surface-attached solid dispersion (SASD), and solvent-wetted solid dispersion (SWSD) were prepared using aceclofenac and Na-CMC at a weight ratio of 1:1 in 50 % ethanol, distilled water, and ethanol, respectively. Using Na-CMC as a solid carrier, an aceclofenac-loaded liquid self-emulsifying drug delivery system was spray-dried and fluid-bed granulated together with microcrystalline cellulose, producing a solid self-nanoemulsifying drug delivery system (SNEDDS) and solid self-nanoemulsifying granule system (SNEGS), respectively. Their physicochemical properties and preclinical assessments in rats were performed. All nanoparticles exhibited very different properties, including morphology, crystallinity, and size. As a result, they significantly enhanced the solubility, dissolution, and oral bioavailability in the following order: SNEDDS ≥ SNEGS > SESD ≥ SASD ≥ SWSD. Based on our screening technique, the SNEDDS was selected as the optimal nanoparticle with the highest bioavailability of aceclofenac. Thus, our nanoparticle screening technique should be an excellent guideline for solubilization research to improve the solubility and bioavailability of many poorly water-soluble bioactive materials.


Subject(s)
Biological Availability , Carboxymethylcellulose Sodium , Diclofenac , Nanoparticles , Solubility , Water , Diclofenac/pharmacokinetics , Diclofenac/analogs & derivatives , Diclofenac/chemistry , Diclofenac/administration & dosage , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Animals , Rats , Administration, Oral , Water/chemistry , Male , Emulsions/chemistry , Drug Carriers/chemistry , Particle Size , Rats, Sprague-Dawley
19.
Biomed Mater ; 19(5)2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39121887

ABSTRACT

Guided bone regeneration (GBR) membranes play an important role in oral bone regeneration. However, enhancing their bone regeneration potential and antibacterial properties is crucial. Herein, silk fibroin (SF)/polycaprolactone (PCL) core-shell nanofibers loaded with epigallocatechin gallate (EGCG) were prepared using emulsion electrospinning. The nanofibrous membranes were characterized via scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, water contact angle (CA) measurement, mechanical properties testing, drug release kinetics, and 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) free radical scavenging assay. Mouse pre-osteoblast MC3T3-E1 cells were used to assess the biological characteristics, cytocompatibility, and osteogenic differentiation potential of the nanofibrous membrane. Additionally, the antibacterial properties againstStaphylococcus aureus (S. aureus)andEscherichia coli (E. coli)were evaluated. The nanofibers prepared by emulsion electrospinning exhibited a stable core-shell structure with a smooth and continuous surface. The tensile strength of the SF/PCL membrane loaded with EGCG was 3.88 ± 0.15 Mpa, the water CA was 50°, and the DPPH clearance rate at 24 h was 81.73% ± 0.07%. The EGCG release rate of membranes prepared by emulsion electrospinning was reduced by 12% within 72 h compared to that of membranes prepared via traditional electrospinning.In vitroexperiments indicate that the core-shell membranes loaded with EGCG demonstrated good cell compatibility and promoted adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. Furthermore, the EGCG-loaded membranes exhibited inhibitory effects onE. coliandS. aureus. These findings indicate that core-shell nanofibrous membranes encapsulated with EGCG prepared using emulsion electrospinning possess good antioxidant, osteogenic, and antibacterial properties, making them potential candidates for research in GBR materials.


Subject(s)
Anti-Bacterial Agents , Bone Regeneration , Catechin , Emulsions , Escherichia coli , Fibroins , Nanofibers , Osteogenesis , Polyesters , Staphylococcus aureus , Animals , Fibroins/chemistry , Polyesters/chemistry , Mice , Bone Regeneration/drug effects , Catechin/analogs & derivatives , Catechin/chemistry , Nanofibers/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Emulsions/chemistry , Staphylococcus aureus/drug effects , Osteogenesis/drug effects , Escherichia coli/drug effects , Osteoblasts/cytology , Osteoblasts/drug effects , Guided Tissue Regeneration/methods , Tissue Scaffolds/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Cell Differentiation/drug effects , Materials Testing , Membranes, Artificial , Tensile Strength , Drug Liberation , Spectroscopy, Fourier Transform Infrared , 3T3 Cells , Cell Line
20.
J Texture Stud ; 55(4): e12855, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992897

ABSTRACT

The effects of oil type, emulsifier type, and emulsion particle size on the texture, gel strength, and rheological properties of SPI emulsion-filled gel (SPI-FG) and TFSP emulsion-filled gel (TFSP-FG) were investigated. Using soybean protein isolate or sodium caseinate as emulsifiers, emulsions with cocoa butter replacer (CBR), palm oil (PO), virgin coconut oil (VCO), and canola oil (CO) as oil phases were prepared. These emulsions were filled into SPI and TFSP gel substrates to prepare emulsion-filled gels. Results that the hardness and gel strength of both gels increased with increasing emulsion content when CBR was used as the emulsion oil phase. However, when the other three liquid oils were used as the oil phase, the hardness and gel strength of TFSP-FG decreased with the increasing of emulsion content, but those of SPI-FG increased when SPI was used as emulsifier. Additionally, the hardness and gel strength of both TFSP-FG and SPI-FG increased with the decreasing of mean particle size of emulsions. Rheological measurements were consistent with textural measurements and found that compared with SC, TFSP-FG, and SPI-FG showed higher G' values when SPI was used as emulsifier. Confocal laser scanning microscopy (CLSM) observation showed that the distribution and stability of emulsion droplets in TFSP-FG and SPI-FG were influenced by the oil type, emulsifier type and emulsion particle size. SPI-stabilized emulsion behaved as active fillers in SPI-FG reinforcing the gel matrix; however, the gel matrix of TFSP-FG still had many void pores when SPI-stabilized emulsion was involved. In conclusion, compared to SPI-FG, the emulsion filler effect that could reinforce gel networks became weaker in TFSP-FG.


Subject(s)
Emulsifying Agents , Emulsions , Gels , Particle Size , Rheology , Soybean Proteins , Soybean Proteins/chemistry , Emulsions/chemistry , Emulsifying Agents/chemistry , Gels/chemistry , Plant Oils/chemistry , Palm Oil/chemistry , Rapeseed Oil/chemistry , Coconut Oil/chemistry , Hardness , Caseins/chemistry , Dietary Fats
SELECTION OF CITATIONS
SEARCH DETAIL