Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.409
Filter
1.
Emerg Microbes Infect ; 13(1): 2317909, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39133062

ABSTRACT

Tick-borne encephalitis virus (TBEV) infection may cause acute central nervous system inflammation varying in clinical manifestations and severity. A possible correlation of TBEV-specific antibody and cell-mediated immune responses, shortly after infection, with clinical manifestations, severity and long-term outcome has been poorly investigated. In a cohort of thirty early tick-borne encephalitis (TBE) patients, we assessed the magnitude, specificity and functional properties of TBEV-specific T-cell and antibody responses. These responses early during disease were assessed in view of clinical manifestations, severity and long-term outcome. TBEV-specific T-cell responses to C, E, NS1, and NS5 proteins were significantly lower in patients with severe acute illness than in patients with mild TBE. Lower T-cell responses to E, NS1, and NS5 proteins also correlated with the development of meningoencephalomyelitis. Virus-specific antibody titres early after infection did not correlate with disease severity, clinical manifestations, or long-term outcome in this study, possibly due to the small number of patients of which matching serum and peripheral blood mononuclear cells were available. The findings suggest that virus-specific T cells afford a certain degree of protection against the development of severe TBEV-induced disease.


Subject(s)
Antibodies, Viral , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , T-Lymphocytes , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Encephalitis Viruses, Tick-Borne/immunology , Humans , T-Lymphocytes/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Male , Female , Middle Aged , Adult , Severity of Illness Index , Aged , Viral Nonstructural Proteins/immunology
2.
J Infect Dis ; 230(Supplement_1): S70-S75, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39140722

ABSTRACT

Powassan virus is a tick-borne flavivirus that can cause severe neuroinvasive disease, with areas of endemicity in the Northeast and Midwest United States, Canada, and Russia. Diagnosis is challenging and relies on a high index of suspicion and choosing the right test based on duration of infection and the patient's immune status. This review covers laboratory testing for Powassan virus, including historical considerations, modern options, and methods being developed in the research space.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Clinical Laboratory Techniques/methods , History, 21st Century , History, 20th Century , Animals , Canada/epidemiology , Antibodies, Viral/blood
3.
J Med Virol ; 96(8): e29843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39092814

ABSTRACT

Tick-borne encephalitis (TBE) virus is the most prevalent tick-transmitted orthoflavivirus in Europe. Due to the nonspecific nature of its symptoms, TBE is primarily diagnosed by ELISA-based detection of specific antibodies in the patient serum. However, cross-reactivity between orthoflaviviruses complicates the diagnosis. Specificity issues may be mitigated by serum neutralization assays (SNT), although the handling of clinically relevant orthoflaviviruses requires biosafety level (BSL) 3 conditions and they have highly divergent viral kinetics and cell tropisms. In the present study, we established a reporter virus particle (RVP)-based SNT in which the infectivity is measured by luminescence and that can be performed under BSL-2 conditions. The RVP-based SNT for TBEV exhibited a highly significant correlation with the traditional virus-based SNT (R2 = 0.8637, p < 0.0001). The RVP-based assay demonstrated a sensitivity of 92.3% (95% CI: 79.7%-97.4%) and specificity of 100% (95% CI: 81.6%-100%). We also tested the cross-reactivity of serum samples in RVP-based assays against other orthoflaviviruses (yellow fever virus, dengue virus type 2, Zika virus, West Nile virus and Japanese encephalitis virus). Interestingly, all serum samples which had tested TBEV-positive by ELISA but negative by RVP-based SNT were reactive for antibodies against other orthoflaviviruses. Thus, the RVP-based seroneutralization assay provides an added value in clinical diagnostics as well as in epidemiological studies.


Subject(s)
Antibodies, Viral , Cross Reactions , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Enzyme-Linked Immunosorbent Assay , Neutralization Tests , Sensitivity and Specificity , Encephalitis Viruses, Tick-Borne/immunology , Humans , Antibodies, Viral/blood , Neutralization Tests/methods , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/virology , Enzyme-Linked Immunosorbent Assay/methods , Virion/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Animals
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063134

ABSTRACT

Tick-borne encephalitis virus (TBEV) targets the central nervous system (CNS), leading to potentially severe neurological complications. The neurovascular unit plays a fundamental role in the CNS and in the neuroinvasion of TBEV. However, the role of human brain pericytes, a key component of the neurovascular unit, during TBEV infection has not yet been elucidated. In this study, TBEV infection of the primary human brain perivascular pericytes was investigated with highly virulent Hypr strain and mildly virulent Neudoerfl strain. We used Luminex assay to measure cytokines/chemokines and growth factors. Both viral strains showed comparable replication kinetics, peaking at 3 days post infection (dpi). Intracellular viral RNA copies peaked at 6 dpi for Hypr and 3 dpi for Neudoerfl cultures. According to immunofluorescence staining, only small proportion of pericytes were infected (3% for Hypr and 2% for Neudoerfl), and no cytopathic effect was observed in the infected cells. In cell culture supernatants, IL-6 production was detected at 3 dpi, together with slight increases in IL-15 and IL-4, but IP-10, RANTES and MCP-1 were the main chemokines released after TBEV infection. These chemokines play key roles in both immune defense and immunopathology during TBE. This study suggests that pericytes are an important source of these signaling molecules during TBEV infection in the brain.


Subject(s)
Brain , Chemokine CCL5 , Chemokine CXCL10 , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Pericytes , Pericytes/virology , Pericytes/metabolism , Humans , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Viruses, Tick-Borne/pathogenicity , Brain/virology , Brain/metabolism , Brain/pathology , Chemokine CXCL10/metabolism , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/metabolism , Chemokine CCL5/metabolism , Cells, Cultured , Virus Replication , Cytokines/metabolism
5.
J Med Virol ; 96(7): e29763, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949193

ABSTRACT

Tick-borne encephalitis (TBE) is one of the main diseases transmitted by ticks, the incidence of which is increasing. Moreover, its diagnosis and therapy are often long and difficult according to nonspecific symptoms and complex etiology. This study aimed to observe changes in the proteome of cerebrospinal fluid from TBE patients. Cerebrospinal fluid (CSF) of TBE patients (n = 20) and healthy individuals (n = 10) was analyzed using a proteomic approach (QExactiveHF-Orbitrap mass spectrometer) and zymography. Obtained results show that in CSF of TBE patients, the top-upregulated proteins are involved in pro-inflammatory reaction (interleukins), as well as antioxidant/protective response (peroxiredoxins, heat shock proteins). Moreover, changes in the proteome of CSF are not only the result of this disease development, but they can also be an indicator of its course. This mainly applies to proteins involved in proteolysis including serpins and metalloproteinases, whose activity is proportional to the length of patients' convalescence. The obtained proteomic data strongly direct attention to the changes caused by the development of TBE to antioxidant, pro-inflammatory, and proteolytic proteins, knowledge about which can significantly contribute to faster and more accurate diagnosis of various clinical forms of TBE.


Subject(s)
Encephalitis, Tick-Borne , Proteome , Humans , Encephalitis, Tick-Borne/cerebrospinal fluid , Encephalitis, Tick-Borne/diagnosis , Proteome/analysis , Male , Female , Adult , Middle Aged , Proteomics/methods , Young Adult , Aged
6.
Sci Adv ; 10(27): eadl1888, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959313

ABSTRACT

We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.


Subject(s)
Encephalitis Viruses, Tick-Borne , Viral Envelope Proteins , Encephalitis Viruses, Tick-Borne/physiology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Models, Molecular , Flavivirus/physiology , Animals , Virion , Encephalitis, Tick-Borne/virology , Humans
7.
Infect Immun ; 92(8): e0024924, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38990046

ABSTRACT

Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.


Subject(s)
Coinfection , Disease Models, Animal , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Lyme Disease , Mice, Inbred C3H , Animals , Coinfection/microbiology , Coinfection/virology , Mice , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Viruses, Tick-Borne/pathogenicity , Lyme Disease/microbiology , Encephalitis, Tick-Borne/virology , Borrelia burgdorferi Group , Female
8.
Int J Biol Macromol ; 275(Pt 2): 133720, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987000

ABSTRACT

Tick-borne encephalitis virus (TBEV), a zoonotic pathogen, can cause severe neurological complications and fatal outcomes in humans. Early diagnosis of TBEV infection is crucial for clinical practice. Although serological assays are frequently employed for detection, the lack of antibodies in the early stages of infection and the cross-reactivity of antibodies limit their efficacy. Conventional molecular diagnostic methods such as RT-qPCR can achieve early and accurate identification but require specialized instrumentation and professionals, hindering their application in resource-limited areas. Our study developed a rapid and visual TBEV molecular detection method by combining RT-recombinase-aided amplification, the CRISPR/Cas13a system, and lateral flow dipsticks. The diagnostic sensitivity of this method is 50 CFU/ml, with no cross-reactivity with a variety of viruses. The detection can be carried out within 1 h at a temperature between 37 and 42 °C, and the results can be visually determined without the need for complex instruments and professionals. Subsequently, this assay was used to analyze clinical samples from 15 patients suspected of TBEV infection and 10 healthy volunteers, and its sensitivity and specificity reached 100 %, which was consistent with the results of RT-qPCR. These results indicate that this new method can be a promising point-of-care test for the diagnosis of tick-borne encephalitis.


Subject(s)
CRISPR-Cas Systems , Encephalitis Viruses, Tick-Borne , Recombinases , Encephalitis Viruses, Tick-Borne/genetics , Humans , Recombinases/metabolism , Nucleic Acid Amplification Techniques/methods , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/blood , Sensitivity and Specificity , RNA, Viral/genetics , Molecular Diagnostic Techniques/methods
9.
Viruses ; 16(7)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39066195

ABSTRACT

Omsk hemorrhagic fever virus (OHFV) is a member of the tick-borne encephalitis virus (TBEV) complex of the Flaviviridae family. Currently, there are no data on the cross-reactivity of antibodies to the NS1 proteins of OHFV and TBEV. Such data are of major interest for monitoring viral encephalitis of unknown etiology due to the increasing geographical distribution of OHFV. In this study, a recombinant OHFV NS1 protein was produced using the Escherichia coli expression system and purified. The recombinant OHFV NS1 protein was recognized by specific mice immune ascetic fluids to the native OHFV NS1 protein. A Western blot analysis and ELISA of the recombinant NS1 proteins of OHFV and TBEV were used to study the cross-reactivity of antibodies from immune ascites fluid obtained from OHFV-infected mice and mAbs against TBEV NS1. Anti-TBEV NS1 mouse monoclonal antibodies (mAbs) have been shown to not be cross-reactive to the OHFV NS1 protein. Sera from patients with confirmed tick-borne encephalitis (TBE) were examined by ELISA using recombinant OHFV NS1 and TBEV NS1 proteins as antigens. It was shown for the first time that cross-reactive antibodies to the OHFV NS1 protein were not detected in the sera of TBE patients, whereas the sera contained antibodies to the TBEV NS1 protein.


Subject(s)
Antibodies, Viral , Cross Reactions , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Recombinant Proteins , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Encephalitis, Tick-Borne/immunology , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/blood , Cross Reactions/immunology , Encephalitis Viruses, Tick-Borne/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Animals , Humans , Mice , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Mice, Inbred BALB C , Female
10.
Viruses ; 16(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39066217

ABSTRACT

Tick-borne Encephalitis (TBE) is a zoonotic disease caused by the Tick-borne Encephalitis virus (TBEV), which affects the central nervous system of both humans and animals. Currently, there is no specific therapy for patients with TBE, with symptomatic treatment being the primary approach. In this study, the effects of minocycline (MIN), which is a kind of tetracycline antibiotic, on TBEV propagation and cellular protection in TBEV-infected cell lines were evaluated. Indirect immunofluorescence, virus titers, and RT-qPCR results showed that 48 h post-treatment with MIN, TBEV replication was significantly inhibited in a dose-dependent manner. In addition, the inhibitory effect of MIN on different TBEV multiplicities of infection (MOIs) in Vero cells was studied. Furthermore, the transcriptomic analysis and RT-qPCR results indicate that after incubation with MIN, the levels of TBEV and CALML4 were decreased, whereas the levels of calcium channel receptors, such as RYR2 and SNAP25, were significantly increased. MIN also regulated MAPK-ERK-related factors, including FGF2, PDGFRA, PLCB2, and p-ERK, and inhibited inflammatory responses. These data indicate that administering MIN to TBEV-infected cells can reduce the TBEV level, regulate calcium signaling pathway-associated proteins, and inhibit the MAPK-ERK signaling pathway and inflammatory responses. This research offers innovative strategies for the advancement of anti-TBEV therapy.


Subject(s)
Encephalitis Viruses, Tick-Borne , Minocycline , Virus Replication , Animals , Encephalitis Viruses, Tick-Borne/drug effects , Encephalitis Viruses, Tick-Borne/physiology , Minocycline/pharmacology , Chlorocebus aethiops , Vero Cells , Virus Replication/drug effects , Humans , Antiviral Agents/pharmacology , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/drug therapy , Cell Line , Signal Transduction/drug effects
11.
PLoS One ; 19(6): e0305120, 2024.
Article in English | MEDLINE | ID: mdl-38848332

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is a human viral infectious disease involving the central nervous system (CNS). It is caused by the tick-borne encephalitis virus (TBEV). At present, there is very limited information regarding the clinical importance and health burden of TBE infections without signs of CNS inflammation. Moreover, such cases are omitted from official TBE surveillances and there are no reports of population-based studies. METHODS AND FINDINGS: A nationwide population-based study was conducted in Latvia by intensively searching for symptomatic TBEV infections recorded in outpatient and hospital settings between 2007 and 2022. In total, 4,124 symptomatic TBEV infections were identified, of which 823 (20.0%) had no CNS involvement. Despite the lack of neurological symptoms, non-CNS TBE patients still experienced severe health conditions that required management in a hospital setting for a median duration of 7 days. Furthermore, lumbar puncture information was available for 708 of these patients, with 100 (14.1%) undergoing the procedure, suggesting a high suspicion of CNS involvement. CONCLUSIONS: Clearly, non-CNS TBE has the potential to negatively impact the health of patients. The actual burden of non-CNS TBEV cases may be higher than we think as these cases are omitted from official TBE surveillances and are challenging to recognize.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Humans , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Latvia/epidemiology , Male , Female , Middle Aged , Adult , Aged , Adolescent , Young Adult , Child , Child, Preschool , Central Nervous System/virology , Central Nervous System/pathology , Aged, 80 and over
12.
Viruses ; 16(6)2024 May 22.
Article in English | MEDLINE | ID: mdl-38932113

ABSTRACT

Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus.


Subject(s)
Brain , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Mice, Inbred BALB C , Animals , Mice , Encephalitis Viruses, Tick-Borne/pathogenicity , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/pathology , Brain/virology , Brain/pathology , Inflammation/virology , Disease Models, Animal , Female , Transcriptome
13.
Viruses ; 16(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38932123

ABSTRACT

Powassan virus (POWV) is an emerging tick-borne encephalitic virus in Lyme disease-endemic sites in North America. Due to range expansion and local intensification of blacklegged tick vector (Ixodes scapularis) populations in the northeastern and upper midwestern U.S., human encephalitis cases are increasingly being reported. A better understanding of the transmission cycle between POWV and ticks is required in order to better predict and understand their public health burden. Recent phylogeographic analyses of POWV have identified geographical structuring, with well-defined northeastern and midwestern clades of the lineage II subtype. The extent that geographic and genetically defined sublineages differ in their ability to infect and be transmitted by blacklegged ticks is unclear. Accordingly, we determined whether there are strain-dependent differences in the transmission of POWV to ticks at multiple life stages. Five recent, low-passage POWV isolates were used to measure aspects of vector competence, using viremic and artificial infection methods. Infection rates in experimental ticks remained consistent between all five isolates tested, resulting in a 12-20% infection rate and some differences in viral load. We confirm that these differences are likely not due to differences in host viremia. Our results demonstrate that blacklegged ticks are susceptible to, and capable of transmitting, all tested strains and suggest that the tick-virus association is stable across diverse viral genotypes.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Animals , Ixodes/virology , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/classification , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Humans , Female , Arachnid Vectors/virology
14.
PLoS One ; 19(6): e0305603, 2024.
Article in English | MEDLINE | ID: mdl-38913668

ABSTRACT

Tick-borne encephalitis (TBE) is usually diagnosed based on the presence of TBE virus (TBEV)-specific IgM and IgG antibodies in serum. However, antibodies induced by vaccination or cross-reactivity to previous flavivirus infections may result in false positive TBEV serology. Detection of TBEV RNA may be an alternative diagnostic approach to detect viral presence and circumvent the diagnostic difficulties present when using serology. Viral RNA in blood is commonly detectable only in the first viremic phase usually lasting up to two weeks, and not in the second neurologic phase, when the patients contact the health care system and undergo diagnostic work-up. TBEV RNA has previously been detected in urine in a few retrospective TBE cases in the neurologic phase, and furthermore RNA of other flaviviruses has been detected in patient saliva. In this study, blood, saliva and urine were collected from 31 hospitalised immunocompetent patients with pleocytosis and symptoms of aseptic meningitis and/or encephalitis, suspected to have TBE. We wanted to pursue if molecular testing of TBEV RNA in these patient materials may be useful in the diagnostics. Eleven of the 31 study patients were diagnosed with TBE based on ELISA detection of TBEV specific IgG and IgM antibodies. None of the study patients had TBEV RNA detectable in any of the collected patient material.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Immunoglobulin M , RNA, Viral , Saliva , Humans , Encephalitis, Tick-Borne/diagnosis , Encephalitis, Tick-Borne/urine , Encephalitis, Tick-Borne/blood , Encephalitis, Tick-Borne/virology , Encephalitis, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/genetics , Saliva/virology , RNA, Viral/urine , Male , Female , Middle Aged , Adult , Aged , Immunoglobulin M/blood , Immunoglobulin M/urine , Immunoglobulin G/blood , Immunoglobulin G/urine , Antibodies, Viral/blood , Aged, 80 and over , Immunocompetence , Hospitalization
15.
Vet Med Sci ; 10(4): e1477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896036

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a significant cause of flaviviral infections affecting the human central nervous system, primarily transmitted through tick bites and the consumption of unpasteurized milk. This study aimed to assess the prevalence of TBEV and identify new natural foci of TBEV in livestock milk. In this cross-sectional study, unpasteurized milk samples were collected from livestock reared on farms and analysed for the presence and subtyping of TBEV using nested reverse transcription-polymerase chain reaction , alongside the detection of anti-TBEV total IgG antibodies using ELISA. The findings revealed that the highest prevalence of TBEV was observed in goat and sheep milk combined, whereas no TBEV was detected in cow milk samples. All identified strains were of the Siberian subtype. Moreover, the highest prevalence of anti-TBEV antibodies was detected in sheep milk. These results uncover new foci of TBEV in Iran, underscoring the importance of thermal processing (pasteurization) of milk prior to consumption to mitigate the risk of TBEV infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Goats , Milk , Animals , Milk/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Iran/epidemiology , Sheep , Cross-Sectional Studies , Cattle , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Prevalence , Female , Sheep, Domestic
16.
Parasit Vectors ; 17(1): 259, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879603

ABSTRACT

BACKGROUND: Powassan virus, a North American tick-borne flavivirus, can cause severe neuroinvasive disease in humans. While Ixodes scapularis are the primary vectors of Powassan virus lineage II (POWV II), also known as deer tick virus, recent laboratory vector competence studies showed that other genera of ticks can horizontally and vertically transmit POWV II. One such tick is the Haemaphysalis longicornis, an invasive species from East Asia that recently established populations in the eastern USA and already shares overlapping geographic range with native vector species such as I. scapularis. Reports of invasive H. longicornis feeding concurrently with native I. scapularis on multiple sampled hosts highlight the potential for interspecies co-feeding transmission of POWV II. Given the absence of a clearly defined vertebrate reservoir host for POWV II, it is possible that this virus is sustained in transmission foci via nonviremic transmission between ticks co-feeding on the same vertebrate host. The objective of this study was to evaluate whether uninfected H. longicornis co-feeding in close proximity to POWV II-infected I. scapularis can acquire POWV independent of host viremia. METHODS: Using an in vivo tick transmission model, I. scapularis females infected with POWV II ("donors") were co-fed on mice with uninfected H. longicornis larvae and nymphs ("recipients"). The donor and recipient ticks were infested on mice in various sequences, and mouse infection status was monitored by temporal screening of blood for POWV II RNA via quantitative reverse transcription polymerase chain reaction (q-RT-PCR). RESULTS: The prevalence of POWV II RNA was highest in recipient H. longicornis that fed on viremic mice. However, nonviremic mice were also able to support co-feeding transmission of POWV, as demonstrated by the detection of viral RNA in multiple H. longicornis dispersed across different mice. Detection of viral RNA at the skin site of tick feeding but not at distal skin sites indicates that a localized skin infection facilitates transmission of POWV between donor and recipient ticks co-feeding in close proximity. CONCLUSIONS: This is the first report examining transmission of POWV between co-feeding ticks. Against the backdrop of multiple unknowns related to POWV ecology, findings from this study provide insight on possible mechanisms by which POWV could be maintained in nature.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Ixodes , Ixodidae , Animals , Encephalitis Viruses, Tick-Borne/genetics , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/physiology , Encephalitis, Tick-Borne/transmission , Encephalitis, Tick-Borne/virology , Ixodes/virology , Ixodes/physiology , Mice , Ixodidae/virology , Ixodidae/physiology , Female , Feeding Behavior , Introduced Species , Haemaphysalis longicornis , East Asian People
17.
Antiviral Res ; 228: 105941, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38901737

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a tick-borne flavivirus that induces severe central nervous system disorders. It has recently raised concerns due to an expanding geographical range and increasing infection rates. Existing vaccines, though effective, face low coverage rates in numerous TBEV endemic regions. Our previous work demonstrated the immunogenicity and full protection afforded by a TBEV vaccine based on virus-like particles (VLPs) produced in Leishmania tarentolae cells in immunization studies in a mouse model. In the present study, we explored the impact of adjuvants (AddaS03™, Alhydrogel®+MPLA) and administration routes (subcutaneous, intramuscular) on the immune response. Adjuvanted groups exhibited significantly enhanced antibody responses, higher avidity, and more balanced Th1/Th2 response. IFN-γ responses depended on the adjuvant type, while antibody levels were influenced by both adjuvant and administration routes. The combination of Leishmania-derived TBEV VLPs with Alhydrogel® and MPLA via intramuscular administration emerged as a highly promising prophylactic vaccine candidate, eliciting a robust, balanced immune response with substantial neutralization potential.


Subject(s)
Adjuvants, Immunologic , Antibodies, Viral , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Leishmania , Vaccines, Synthetic , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Encephalitis Viruses, Tick-Borne/immunology , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Adjuvants, Immunologic/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Leishmania/immunology , Female , Adjuvants, Vaccine/administration & dosage , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Immunogenicity, Vaccine , Injections, Intramuscular , Mice, Inbred BALB C , Interferon-gamma/immunology , Th1 Cells/immunology
18.
BMC Vet Res ; 20(1): 228, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796429

ABSTRACT

BACKGROUND: Tick-borne encephalitis (TBE) is a severe human neuroinfection caused by TBE virus (TBEV). TBEV is transmitted by tick bites and by the consumption of unpasteurized dairy products from infected asymptomatic ruminants. In France, several food-borne transmission events have been reported since 2020, raising the question of the level of exposure of domestic ungulates to TBEV. In this study, our objectives were (i) to estimate TBEV seroprevalence and quantify antibodies titres in cattle in the historical endemic area of TBEV in France using the micro virus neutralisation test (MNT) and (ii) to compare the performance of two veterinary cELISA kits with MNT for detecting anti-TBEV antibodies in cattle in various epidemiological contexts. A total of 344 cattle sera from four grid cells of 100 km² in Alsace-Lorraine (endemic region) and 84 from western France, assumed to be TBEV-free, were investigated. RESULTS: In Alsace-Lorraine, cattle were exposed to the virus with an overall estimated seroprevalence of 57.6% (95% CI: 52.1-62.8%, n = 344), varying locally from 29.9% (95% CI: 21.0-40.0%) to 92.1% (95% CI: 84.5-96.8%). Seroprevalence did not increase with age, with one- to three-year-old cattle being as highly exposed as older ones, suggesting a short-life duration of antibodies. The proportion of sera with MNT titres lower than 1:40 per grid cell decreased with increased seroprevalence. Both cELISA kits showed high specificity (> 90%) and low sensitivity (less than 78.1%) compared with MNT. Sensitivity was lower for sera with neutralising antibodies titres below 1:40, suggesting that sensitivity of these tests varied with local virus circulation intensity. CONCLUSIONS: Our results highlight that cattle were highly exposed to TBEV. Screening strategy and serological tests should be carefully chosen according to the purpose of the serological study and with regard to the limitations of each method.


Subject(s)
Antibodies, Viral , Cattle Diseases , Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Animals , Cattle , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/virology , Encephalitis Viruses, Tick-Borne/immunology , Encephalitis Viruses, Tick-Borne/isolation & purification , France/epidemiology , Seroepidemiologic Studies , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood , Female , Male , Neutralization Tests/veterinary , Endemic Diseases/veterinary
19.
Euro Surveill ; 29(18)2024 May.
Article in English | MEDLINE | ID: mdl-38699900

ABSTRACT

BackgroundTick-borne encephalitis (TBE) is a severe, vaccine-preventable viral infection of the central nervous system. Symptoms are generally milder in children and adolescents than in adults, though severe disease does occur. A better understanding of the disease burden and duration of vaccine-mediated protection is important for vaccination recommendations.AimTo estimate TBE vaccination coverage, disease severity and vaccine effectiveness (VE) among individuals aged 0-17 years in Switzerland.MethodsVaccination coverage between 2005 and 2022 was estimated using the Swiss National Vaccination Coverage Survey (SNVCS), a nationwide, repeated cross-sectional study assessing vaccine uptake. Incidence and severity of TBE between 2005 and 2022 were determined using data from the Swiss disease surveillance system and VE was calculated using a case-control analysis, matching TBE cases with SNVCS controls.ResultsOver the study period, vaccination coverage increased substantially, from 4.8% (95% confidence interval (CI): 4.1-5.5%) to 50.1% (95% CI: 48.3-52.0%). Reported clinical symptoms in TBE cases were similar irrespective of age. Neurological involvement was less likely in incompletely (1-2 doses) and completely (≥ 3 doses) vaccinated cases compared with unvaccinated ones. For incomplete vaccination, VE was 66.2% (95% CI: 42.3-80.2), whereas VE for complete vaccination was 90.8% (95% CI: 87.7-96.4). Vaccine effectiveness remained high, 83.9% (95% CI: 69.0-91.7) up to 10 years since last vaccination.ConclusionsEven children younger than 5 years can experience severe TBE. Incomplete and complete vaccination protect against neurological manifestations of the disease. Complete vaccination offers durable protection up to 10 years against TBE.


Subject(s)
Encephalitis, Tick-Borne , Vaccination Coverage , Vaccination , Viral Vaccines , Humans , Encephalitis, Tick-Borne/prevention & control , Encephalitis, Tick-Borne/epidemiology , Adolescent , Case-Control Studies , Switzerland/epidemiology , Child , Cross-Sectional Studies , Male , Female , Child, Preschool , Infant , Vaccination/statistics & numerical data , Vaccination Coverage/statistics & numerical data , Viral Vaccines/administration & dosage , Incidence , Vaccine Efficacy/statistics & numerical data , Encephalitis Viruses, Tick-Borne/immunology , Infant, Newborn , Population Surveillance
20.
Eur J Clin Microbiol Infect Dis ; 43(7): 1355-1366, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38801484

ABSTRACT

PURPOSE: To describe the clinical characteristics and factors associated with disease severity in a Norwegian cohort of hospitalized patients with tick-borne encephalitis (TBE). METHODS: This observational multicenter study included hospitalized patients with TBE in the endemic area in the southeastern region of Norway from 2018 to 2022. Clinical signs and findings from laboratory tests, EEG, CT and MRI scans were recorded. Patient characteristics were compared among those with mild, moderate, and severe TBE, and factors associated with disease severity were identified. RESULTS: Nearly all eligible patients were included in the final cohort (153/189 participants, 81%). The median age was 56 years, 63% were men, and 7% were vaccinated against TBE; no participants were fully vaccinated. TBE presented as mild (meningeal) disease in 31% of patients and as moderate or severe (encephalitic) disease in 54% and 14% of patients, respectively. We found that 46% of the patients had a monophasic course, 64% had hyponatremia, and 7% presented with central nervous system (CNS) symptoms without pleocytosis in cerebrospinal fluid (CSF). Dysesthesia, a symptom previously not described, was reported in 10% of the patients. Most objective findings were related to the CNS. Preexisting comorbidities, CRP and CSF protein levels were predictors of more severe disease. CONCLUSION: This novel presentation of a large Norwegian cohort supports TBE as a serious disease in the southeastern region of Norway. The majority of hospitalized patients presented with encephalitis, and fewer presented with meningitis. Comorbidities, CRP and CSF protein levels were associated with more severe disease. TRIAL REGISTRATION: Prosjekt #2,296,959 - The Norwegian Tick-borne Encephalitis Study - NOTES. Acute phase characteristics and long-term outcomes. - Cristin.


Subject(s)
Encephalitis, Tick-Borne , Hospitalization , Severity of Illness Index , Humans , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/diagnosis , Male , Norway/epidemiology , Middle Aged , Female , Aged , Adult , Hospitalization/statistics & numerical data , Encephalitis Viruses, Tick-Borne , Aged, 80 and over , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL