ABSTRACT
The interaction of Plasmodium falciparum-infected red blood cells (iRBCs) with the vascular endothelium plays a crucial role in malaria pathology and disease. KAHRP is an exported P. falciparum protein involved in iRBC remodelling, which is essential for the formation of protrusions or "knobs" on the iRBC surface. These knobs and the proteins that are concentrated within them allow the parasites to escape the immune response and host spleen clearance by mediating cytoadherence of the iRBC to the endothelial wall, but this also slows down blood circulation, leading in some cases to severe cerebral and placental complications. In this work, we have applied genetic and biochemical tools to identify proteins that interact with P. falciparum KAHRP using enhanced ascorbate peroxidase 2 (APEX2) proximity-dependent biotinylation and label-free shotgun proteomics. A total of 30 potential KAHRP-interacting candidates were identified, based on the assigned fragmented biotinylated ions. Several identified proteins have been previously reported to be part of the Maurer's clefts and knobs, where KAHRP resides. This study may contribute to a broader understanding of P. falciparum protein trafficking and knob architecture and shows for the first time the feasibility of using APEX2-proximity labelling in iRBCs.
Subject(s)
Erythrocytes , Plasmodium falciparum , Proteomics , Protozoan Proteins , Erythrocytes/parasitology , Erythrocytes/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism , Humans , Proteomics/methods , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Ascorbate Peroxidases/metabolism , Protein Binding , Biotinylation , Endonucleases , Peptides , Proteins , Multifunctional EnzymesABSTRACT
APE1/REF-1 (apurinic/apyrimidinic endonuclease 1 / redox factor-1) is a protein with two domains, with endonuclease function and redox activity. Its main activity described is acting in DNA repair by base excision repair (BER) pathway, which restores DNA damage caused by oxidation, alkylation, and single-strand breaks. In contrast, the APE1 redox domain is responsible for regulating transcription factors, such as AP-1 (activating protein-1), NF-κB (Nuclear Factor kappa B), HIF-1α (Hypoxia-inducible factor 1-alpha), and STAT3 (Signal Transducers and Activators of Transcription 3). These factors are involved in physiological cellular processes, such as cell growth, inflammation, and angiogenesis, as well as in cancer. In human malignant tumors, APE1 overexpression is associated with lung, colon, ovaries, prostate, and breast cancer progression, more aggressive tumor phenotypes, and worse prognosis. In this review, we explore APE1 and its domain's role in cancer development processes, highlighting the role of APE1 in the hallmarks of cancer. We reviewed original articles and reviews from Pubmed related to APE1 and cancer and found that both domains of APE1/REF-1, but mainly its redox activity, are essential to cancer cells. This protein is often overexpressed in cancer, and its expression and activity are correlated to processes such as proliferation, invasion, inflammation, angiogenesis, and resistance to cell death. Therefore, APE1 participates in essential processes of cancer development. Then, the activity of APE1/REF-1 in these hallmarks suggests that targeting this protein could be a good therapeutic approach.
Subject(s)
Neoplasms , Humans , Male , Neoplasms/genetics , Cell Cycle , Cell Death , Endonucleases , InflammationABSTRACT
The phylum Cressdnaviricota comprises viruses with single-stranded, circular DNA genomes that encode an HUH-type endonuclease (known as Rep). The phylum includes two classes, eight orders, and 11 families. Here, we report the creation of a twelfth family in the order Mulpavirales, class Arfiviricetes of the phylum Cressdnaviricota. The family Amesuviridae comprises viruses that infect plants and is divided into two genera: Temfrudevirus, including the species Temfrudevirus temperatum (with temperate fruit decay-associated virus as a member), and Yermavirus, including the species Yermavirus ilicis (with yerba mate-associated circular DNA virus as a member). Both viruses encode Rep proteins with HUH endonuclease and SH3 superfamily helicase domains. Phylogenetic analysis indicates that the replicative module of amesuviruses constitutes a well-supported monophyletic clade related to Rep proteins from viruses in the order Mulpavirales. Furthermore, both viruses encode a single capsid protein (CP) related to geminivirus CPs. Phylogenetic incongruence between the replicative and structural modules of amesuviruses suggests a chimeric origin resulting from remote recombination events between ancestral mulpavirales and geminivirids. The creation of the family Amesuviridae has been ratified by the International Committee on Taxonomy of Viruses (ICTV).
Subject(s)
DNA Viruses , Plant Viruses , DNA Viruses/classification , DNA Viruses/isolation & purification , DNA, Circular/genetics , DNA, Single-Stranded/genetics , Endonucleases/genetics , Geminiviridae/genetics , Genome, Viral/genetics , Phylogeny , Plant Viruses/geneticsABSTRACT
The type VI secretion system (T6SS) secretes antibacterial effectors into target competitors. Salmonella spp. encode five phylogenetically distinct T6SSs. Here, we characterize the function of the SPI-22 T6SS of Salmonella bongori showing that it has antibacterial activity and identify a group of antibacterial T6SS effectors (TseV1-4) containing an N-terminal PAAR-like domain and a C-terminal VRR-Nuc domain encoded next to cognate immunity proteins with a DUF3396 domain (TsiV1-4). TseV2 and TseV3 are toxic when expressed in Escherichia coli and bacterial competition assays confirm that TseV2 and TseV3 are secreted by the SPI-22 T6SS. Phylogenetic analysis reveals that TseV1-4 are evolutionarily related to enzymes involved in DNA repair. TseV3 recognizes specific DNA structures and preferentially cleave splayed arms, generating DNA double-strand breaks and inducing the SOS response in target cells. The crystal structure of the TseV3:TsiV3 complex reveals that the immunity protein likely blocks the effector interaction with the DNA substrate. These results expand our knowledge on the function of Salmonella pathogenicity islands, the evolution of toxins used in biological conflicts, and the endogenous mechanisms regulating the activity of these toxins.
Subject(s)
Bacterial Proteins , Type VI Secretion Systems , Phylogeny , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Anti-Bacterial Agents/pharmacology , Genomic Islands , Escherichia coli/genetics , Escherichia coli/metabolism , Endonucleases/metabolismABSTRACT
PURPOSE: The identification of subpopulations harboring druggable targets has become a major step forward in the subclassification of solid tumors into small groups suitable for specific therapies. BRAF fusions represent a paradigm of uncommon and targetable oncogenic events and have been widely correlated to the development of specific malignancies. However, they are only present in a limited frequency across most common tumor types. At this regard, we performed a genomic screening aimed to identifying rare variants associated to advanced prostate cancer development. METHODS: Tumoral tissue genomic screening of 41 patients developing advanced prostate cancer was performed at our center as part of the GETHI XX study. The project, sponsored by the Spanish Collaborative Group in Rare Cancers (GETHI), aims to analyze the molecular background of rare tumors and to discover unfrequent molecular variants in common tumors. RESULTS: Here we present the clinical outcome and an in-deep molecular analysis performed in a case harboring a SND1-BRAF fusion gene. The identification of such rearrangement in a patient refractory to standard therapies led to the administration of trametinib (MEK inhibitor). Despite unsensitive to standard therapies, the patient achieved a dramatic response to trametinib. A comprehensive study of the tumor demonstrated this event to be a trunk alteration with higher expression of MEK in areas of tumor invasion. CONCLUSIONS: Our study describes the patient-driven discovery of the first BRAF fusion-driven prostate cancer effectively treated with trametinib. Consequently, MAPK pathway activation could define a new subtype of prostate cancer susceptible to a tailored management.
Subject(s)
Prostatic Neoplasms , Proto-Oncogene Proteins B-raf , Endonucleases , Humans , Male , Mitogen-Activated Protein Kinase Kinases , Mutation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/geneticsABSTRACT
RAG1/RAG2 (RAG) endonuclease-mediated assembly of diverse lymphocyte Ag receptor genes by V(D)J recombination is critical for the development and immune function of T and B cells. The RAG1 protein contains a ubiquitin ligase domain that stabilizes RAG1 and stimulates RAG endonuclease activity in vitro. We report in this study that mice with a mutation that inactivates the Rag1 ubiquitin ligase in vitro exhibit decreased rearrangements and altered repertoires of TCRß and TCRα genes in thymocytes and impaired thymocyte developmental transitions that require the assembly and selection of functional TCRß and/or TCRα genes. These Rag1 mutant mice present diminished positive selection and superantigen-mediated negative selection of conventional αß T cells, decreased genesis of invariant NK T lineage αß T cells, and mature CD4+ αß T cells with elevated autoimmune potential. Our findings reveal that the Rag1 ubiquitin ligase domain functions in vivo to stimulate TCRß and TCRα gene recombination and influence differentiation of αß T lineage cells, thereby establishing replete diversity of αß TCRs and populations of αß T cells while restraining generation of potentially autoreactive conventional αß T cells.
Subject(s)
Homeodomain Proteins , Receptors, Antigen, T-Cell, alpha-beta , Ubiquitin , Animals , Cell Lineage , Endonucleases/genetics , Homeodomain Proteins/genetics , Ligases/genetics , Mice , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Superantigens , V(D)J Recombination/geneticsABSTRACT
The efficiency of RNAi technology in insects varies considerably, particularly in lepidopterans. An important limiting factor of RNAi-mediated gene silencing is the degradation of dsRNA by insect nucleases before cellular uptake. To date, few studies have reported effective gene knockdown in the sugarcane borer Diatraea saccharalis. However, yielding contradictory results when using oral delivery. Further, the RNAi efficiency in D. saccharalis and presumed activity of gut nucleases remain poorly understood. Therefore, we investigated whether gene silencing was feasible via dsRNA feeding in D. saccharalis. Two different genes were tested, juvenile hormone esterase (DsJHE) and chitin synthase 1 (DsCHS1). Discrete knockdown was verified only for DsCHS1 with high dsRNA dosages and long exposure times. Neither mortality nor abnormal phenotypes were observed after treatment with any tested dsRNA. It was also verified that dsRNAs were quickly degraded when incubated with gut juice. Furthermore, we identified four possible nucleases that could reduce the knockdown efficiency in D. saccharalis. Three of them had the endonuclease_NS domain (DsNucleases), and one had the PIN domain (DsREase), with REase-like genes being scarcely represented in databanks. We further remark that DsNuclease1 and DsREase are highly expressed in the larval gut, and DsREase was upregulated as insects were fed with artificial diet (without dsRNA), and also when injected with dsRNA. Conversely, no nuclease was triggered when insects were fed with a sucrose droplet containing dsRNA. Thus, our findings suggest that nuclease activity within the gut is one of the possible reasons for the inefficiency of RNAi in D. saccharalis. Our data may shed light on the challenges to overcome when introducing RNAi as a strategy for controlling lepidopteran pests.
Subject(s)
Moths , RNA, Double-Stranded , Animals , Endonucleases/genetics , Gene Knockdown Techniques , Moths/genetics , RNA Interference , RNA, Double-Stranded/geneticsABSTRACT
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme that is essential for maintaining cellular homeostasis. APE1 is the major apurinic/apyrimidinic endonuclease in the base excision repair pathway and acts as a redox-dependent regulator of several transcription factors, including NF-κB, AP-1, HIF-1α, and STAT3. These functions render APE1 vital to regulating cell signaling, senescence, and inflammatory pathways. In addition to regulating cytokine and chemokine expression through activation of redox sensitive transcription factors, APE1 participates in other critical processes in the immune response, including production of reactive oxygen species and class switch recombination. Furthermore, through participation in active chromatin demethylation, the repair function of APE1 also regulates transcription of some genes, including cytokines such as TNFα. The multiple functions of APE1 make it an essential regulator of the pathogenesis of several diseases, including cancer and neurological disorders. Therefore, APE1 inhibitors have therapeutic potential. APE1 is highly expressed in the central nervous system (CNS) and participates in tissue homeostasis, and its roles in neurodegenerative and neuroinflammatory diseases have been elucidated. This review discusses known roles of APE1 in innate and adaptive immunity, especially in the CNS, recent evidence of a role in the extracellular environment, and the therapeutic potential of APE1 inhibitors in infectious/immune diseases.
Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase , Neoplasms , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Endonucleases/metabolism , Humans , Immunity , Inflammation , Neoplasms/metabolism , Oxidation-ReductionABSTRACT
A infecção pelo Parvovírus B19 (B19V) pode ocorrer em indivíduos imunocompetentes e imunocomprometidos, de todas as faixas etárias, e se caracteriza por ser aguda e autolimitada, podendo levar a quadros de doença exantemática (DE), doença febril aguda (DFA), doença renal crônica (DRC) e falência hepática aguda (FHA). O diagnóstico diferencial de B19V nessas populações, muitas vezes, não ocorre e estudos sobre a prevalência do B19V são antigos e escassos, não refletindo a atualidade. Marcadores da infecção podem ser detectados na circulação e em diferentes tipos de tecidos, inclusive em tecidos não eritroides, por meses ou anos. A infecção pode levar a manifestações clínicas graves, que requer tratamento hospitalar, e a doenças inflamatórias atípicas, como: cardiomiopatia, artrite reumatoide, hepatite e vasculite. No entanto, a detecção de B19V DNA não implica necessariamente na presença de vírions infecciosos e na associação do B19V com essas manifestações atípicas. Dessa forma, o objetivo do trabalho foi otimizar técnicas de PCR em tempo real para quantificação do B19V DNA e de detecção de partículas virais infecciosas, a fim de realizar o diagnóstico diferencial da infecção pelo B19V em pacientes com DE, DFA, DRC e FHA. Para o diagnóstico da infecção, amostras de diferentes populações foram testadas: DE (n=54), DFA (n=60), DRC (n=221), e FHA (n=30). Amostras de soro (e de tecido hepático para FHA) foram submetidas a avaliação de marcadores sorológicos (IgM e IgG anti-B19V) e moleculares do B19V, a fim de determinar a fase da infecção em que o paciente se encontrava. Para a avaliação de marcadores moleculares, a metodologia de PCR quantitativo e em tempo real foi otimizada e permitiu um diagnóstico sensível e específico do B19V DNA. Além disso, a presença de vírions em amostras de pacientes com B19V (n=10) e de macacos cynomolgus (n=4) infectados experimentalmente foram avaliadas por meio da técnica de pré-tratamento das amostras com uma enzima endonuclease. O teste molecular (qPCR) otimizado durante o estudo, apresentou sensibilidade e especificidade de 100%. O ensaio com a endonuclease revelou que a maioria das amostras de soro humano tornou-se B19V DNA negativa após o pré-tratamento, indicando que não eram infecciosas. Foi observado prevalências do B19V DNA em 5,5% dos pacientes com DE; 6,6% em DFA; 65,6% em DRC, e 23,3% em FHA. Como conclusão a técnica de qPCR otimizada no presente estudo foi efetiva para o esclarecimento de casos da infecção por B19V e é adequada para diagnóstico diferencial. Além disso, o teste laboratorial baseado em endonuclease possibilitou a discriminação do B19V DNA (se encapsidado em vírions ou não). Portanto, estes testes podem ser utilizados para esclarecer o papel do B19V como agente etiológico associado a diversas manifestações clínicas. As prevalências encontradas nesse estudo indicam que o B19V está circulando entre os diversos grupos populacionais estudados e deve ser feita uma melhor vigilância da infecção, pois está presente tanto em indivíduos imunocompetentes como em imunocomprometidos. Além disso, os resultados sugerem a importância da inclusão de B19V no diagnóstico laboratorial diferencial, não apenas para fins epidemiológicos, mas também para o manejo adequado do paciente.
Parvovirus B19 (B19V) infection can occur in immunocompetent and immunocompromised individuals of all group ages and is characterized as acute and self limiting, which can lead to rash disease (RD), acute febrile illness (AFI), chronic kidney disease (CKD), and acute liver failure (ALF). Differential diagnosis of B19V in these populations often does not occur and studies on the prevalence of B19V are scarce, outdated, and do not reflect the current situation. B19V markers of acute infection can be detected in the circulation and in different tissue types, including non-erythroid tissues, for months to years and may lead to severe clinical manifestations, requiring hospital treatment, and to atypical inflammatory diseases, such as cardiomyopathy, rheumatoid arthritis, hepatitis, and vasculitis. However, the detection of B19V DNA does not necessarily imply the presence of infectious virions and the causal relation between B19V and atypical manifestations could not be proved yet. Thus, the aim of this study was to standardize the real-time PCR for quantification of B19V DNA and detection of infectious viral particles in order to perform the differential diagnosis of the B19V infection in RD, AFI, CKD, and ALF patients. For the diagnosis of the infection, samples from different populations were tested: RD (n=54), AFI (n=60), CKD (n=221), and ALF (n=30). Serum samples (and hepatic tissue for ALF) were submitted to the evaluation of B19V serological status (anti-B19V IgM and IgG antibodies) and molecular markers, in order to determine the stage of infection in which the patient is. For the evaluation of molecular markers, a quantitative real-time PCR methodology was optimized and allowed a sensitive and specific diagnosis of B19V DNA. In addition, the presence of virions in samples from patients with B19V (n=10) and from cynomolgus monkeys (n=4) experimentally infected were evaluated by endonuclease enzyme pretreatment. The molecular test optimized during the study showed 100% sensitivity and specificity. The endonuclease treatment assay revealed that most human serum samples became negative after pretreatment, as indicative of non-infective particles. Concerning the prevalence of B19V DNA: 5.5% were obtained in patients with RD; 6.6% in AFI; 65.6% in CKD, and 23.3% in ALF. In conclusion, the qPCR technique optimized in the present study was effective for clarifying cases of B19V infection and is suitable for differential diagnosis. In addition, the endonuclease-based laboratory test made it possible to discriminate B19V DNA (whether encapsidated in virions or not). Therefore, these tests can be used to clarify the role of B19V as an etiologic agent associated with several clinical manifestations. The prevalence found in this study indicate that B19V is circulating among the different populational groups that have been studied and better surveillance of the infection should be carried out, as it is present in both immunocompetent and immunocompromised individuals. In addition, the results suggest the importance of including B19V in the differential laboratory diagnosis, not only for epidemiological purposes but also for the proper management of the patient.
Subject(s)
Virion , Parvovirus B19, Human , Diagnosis, Differential , Endonucleases , Laboratory Test , Real-Time Polymerase Chain Reaction , InfectionsABSTRACT
OBJECTIVE: This study aims to explore the role of ERCC5 genetic polymorphisms in gastric cancer and their relationship with metastasis and recurrence of gastric cancer. METHODS: A total of 200 patients with gastric cancer and 133 healthy subjects were enrolled. MassARRAY iPLEX® technology was used to genotype ERCC5 rs2016073, rs751402, rs2094258, rs2296147, and rs2296148 between the control group and the gastric cancer group. The relationship of ERCC5 genetic polymorphisms with metastasis and recurrence of gastric cancer was explored. The differences in sociodemographic characteristics between patients with gastric cancer and control subjects were compared using the chi-square test. The genetic loci between the control group and the gastric cancer group were analyzed by the chi-square test. RESULTS: There was no significant difference in the metastasis of gastric cancer between males and females (p=0.628), but there was a significant difference in the metastasis of gastric cancer (p=0.005). Patients aged ≤60 years and >60 years showed no significant difference in the metastasis of gastric cancer (p=0.420), but there was a significant difference in the recurrence of gastric cancer (p<0.001). The loci rs2016073, rs751402, and rs2094258 in the gastric cancer group showed no significant differences compared with the control group (p=0.194), and the loci rs2296147 and rs2296148 showed significant differences. CONCLUSIONS: The results suggested that ERCC5 polymorphisms (e.g., rs201607, rs751402, rs2094258, rs2296147, and rs2296148) may be associated with metastasis and recurrence of gastric cancer.
Subject(s)
DNA-Binding Proteins , Endonucleases , Nuclear Proteins , Stomach Neoplasms , Transcription Factors , DNA-Binding Proteins/genetics , Endonucleases/genetics , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Nuclear Proteins/genetics , Polymorphism, Single Nucleotide , Stomach Neoplasms/genetics , Transcription Factors/geneticsABSTRACT
BACKGROUND: Fluoropyrimidine plus platinum chemotherapy remains the standard first line treatment for gastric cancer (GC). Guidelines exist for the clinical interpretation of four DPYD genotypes related to severe fluoropyrimidine toxicity within European populations. However, the frequency of these single nucleotide polymorphisms (SNPs) in the Latin American population is low (< 0.7%). No guidelines have been development for platinum. Herein, we present association between clinical factors and common SNPs in the development of grade 3-4 toxicity. METHODS: Retrospectively, 224 clinical records of GC patient were screened, of which 93 patients were incorporated into the study. Eleven SNPs with minor allelic frequency above 5% in GSTP1, ERCC2, ERCC1, TP53, UMPS, SHMT1, MTHFR, ABCC2 and DPYD were assessed. Association between patient clinical characteristics and toxicity was estimated using logistic regression models and classification algorithms. RESULTS: Reported grade ≤ 2 and 3-4 toxicities were 64.6% (61/93) and 34.4% (32/93) respectively. Selected DPYD SNPs were associated with higher toxicity (rs1801265; OR = 4.20; 95% CI = 1.70-10.95, p = 0.002), while others displayed a trend towards lower toxicity (rs1801159; OR = 0.45; 95% CI = 0.19-1.08; p = 0.071). Combination of paired SNPs demonstrated significant associations in DPYD (rs1801265), UMPS (rs1801019), ABCC2 (rs717620) and SHMT1 (rs1979277). Using multivariate logistic regression that combined age, sex, peri-operative chemotherapy, 5-FU regimen, the binary combination of the SNPs DPYD (rs1801265) + ABCC2 (rs717620), and DPYD (rs1801159) displayed the best predictive performance. A nomogram was constructed to assess the risk of developing overall toxicity. CONCLUSION: Pending further validation, this model could predict chemotherapy associated toxicity and improve GC patient quality of life.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , Platinum Compounds/administration & dosage , Polymorphism, Single Nucleotide , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Aged , Capecitabine/adverse effects , Case-Control Studies , Confidence Intervals , DNA-Binding Proteins/genetics , Dihydrouracil Dehydrogenase (NADP)/genetics , Endonucleases/genetics , Female , Fluorouracil/adverse effects , Gene Frequency , Genes, p53 , Genotype , Glutathione S-Transferase pi/genetics , Glycine Hydroxymethyltransferase/genetics , Humans , Leucovorin/adverse effects , Logistic Models , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Multienzyme Complexes/genetics , Nomograms , Odds Ratio , Organoplatinum Compounds/adverse effects , Orotate Phosphoribosyltransferase/genetics , Orotidine-5'-Phosphate Decarboxylase/genetics , Pyrimidines , Quality of Life , Retrospective Studies , Stomach Neoplasms/pathology , Xeroderma Pigmentosum Group D Protein/geneticsABSTRACT
The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.
Subject(s)
DNA Methylation , Endonucleases/genetics , Endonucleases/metabolism , Gametogenesis , Lamiales/physiology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant , RNA, Untranslated/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolismABSTRACT
BACKGROUND: Malignant Pleural Mesothelioma (MPM) is a rare but aggressive neoplasia that usually presents at advanced stages. Even though some advances have been achieved in the management of patients with MPM, this malignancy continuous to impose a deleterious prognosis for affected patients (12-18 months as median survival, and 5-10% 5-year survival rate), accordingly, the recognition of biomarkers that allow us to select the most appropriate therapy are necessary. METHODS: Immunohistochemistry semi-quantitative analysis was performed to evaluate four different biomarkers (ERCC1, RRM1, RRM2, and hENT-1) with the intent to explore if any of them was useful to predict response to treatment with continuous infusion gemcitabine plus cisplatin. Tissue biopsies from patients with locally advanced or metastatic MPM were analyzed to quantitatively asses the aforementioned biomarkers. Every included patient received treatment with low-dose gemcitabine (250 mg/m2) in a 6-h continuous infusion plus cisplatin 35 mg/m2 on days 1 and 8 every 3 weeks as first-line therapy. RESULTS: From the 70 eligible patients, the mean and standard deviation (SD) for ERCC1, RRM1, RRM2 and hENT-1 were 286,178.3 (± 219, 019.8); 104,647.1 (± 65, 773.4); 4536.5 (± 5, 521.3); and 2458.7 (± 4, 983.4), respectively. Patients with high expression of RRM1 had an increased median PFS compared with those with lower expression (9.5 vs 4.8 months, p = < 0.001). Furthermore, high expression of RRM1 and ERCC1 were associated with an increased median OS compared with their lower expression counterparts; [(23.1 vs 7.2 months for RRM1 p = < 0.001) and (17.4 vs 9.8 months for ERCC1 p = 0.018)]. CONCLUSIONS: ERCC1 and RRM1 are useful biomarkers that predict better survival outcomes in patients with advanced MPM treated with continuous infusion of gemcitabine plus cisplatin.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Mesothelioma, Malignant/drug therapy , Mesothelioma, Malignant/metabolism , Pleural Neoplasms/drug therapy , Pleural Neoplasms/metabolism , Ribonucleoside Diphosphate Reductase/metabolism , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Cisplatin/administration & dosage , DNA-Binding Proteins/genetics , Deoxycytidine/administration & dosage , Deoxycytidine/analogs & derivatives , Endonucleases/genetics , Female , Humans , Immunohistochemistry , Male , Mesothelioma, Malignant/mortality , Mesothelioma, Malignant/pathology , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Pleural Neoplasms/mortality , Pleural Neoplasms/pathology , Prognosis , Ribonucleoside Diphosphate Reductase/genetics , GemcitabineABSTRACT
Chromosome instability (CIN) underpins cancer evolution and is associated with drug resistance and poor prognosis. Understanding the mechanistic basis of CIN is thus a priority. The structure-specific endonuclease Mus81-Eme1 is known to prevent CIN. Intriguingly, however, here we show that the aberrant processing of late replication intermediates by Mus81-Eme1 is a source of CIN. Upon depletion of checkpoint kinase 1 (Chk1), Mus81-Eme1 cleaves under-replicated DNA engaged in mitotic DNA synthesis, leading to chromosome segregation defects. Supplementing cells with nucleosides allows the completion of mitotic DNA synthesis, restraining Mus81-Eme1-dependent DNA damage in mitosis and the ensuing CIN. We found no correlation between CIN arising from nucleotide shortage in mitosis and cell death, which were selectively linked to DNA damage load in mitosis and S phase, respectively. Our findings imply the possibility of optimizing Chk1-directed therapies by inducing cell death while curtailing CIN, a common side effect of chemotherapy.
Subject(s)
DNA Replication , DNA-Binding Proteins , Endodeoxyribonucleases , Endonucleases , Genomic Instability , Mitosis , Chromosomal Instability , DNA/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Endonucleases/metabolism , HumansABSTRACT
The research reported herein focuses on the synthesis of two new Cu(II) complexes {[Cu2(2-X-4,6-bis(di-2-picolylamino)-1,3,5-triazine], with X = butane-1,4-diamine (2) or N-methylpyrenylbutane-1,4-diamine (3)}, the latter with a pyrene group as a possible DNA intercalating agent. The structure of complex (3) was determined by X-ray crystallography and shows the dinuclear {CuII(µ-OCH3)2CuII} unit in which the CuII···CuII distance of 3.040 Å is similar to that of 2.97 Å previously found for 1, which contains a {CuII(µ-OH)2CuII} structural unit. Complexes (2) and (3) were also characterized in spectroscopic and electrochemical studies, and catecholase-like activity were performed for both complexes. The kinetic parameters obtained for the oxidation of the model substrate 3,5-di-tert-butylcatechol revealed that the insertion of the spacer butane-1,4-diamine and the pyrene group strongly contributes to increasing the catalytic efficiency of these systems. In fact, Kass becomes significantly higher, indicating that these groups influence the interaction between the complex and the substrate. These complexes also show DNA cleavage under mild conditions with moderate reaction times. The rate of cleavage (kcat) indicated that the presence of butane-1,4-diamine and pyrene increased the activity of both complexes. The reaction mechanism seems to have oxidative and hydrolytic features and the effect of DNA groove binding compounds and circular dichroism indicate that all complexes interact with plasmid DNA through the minor groove. High-resolution DNA cleavage assays provide information on the interaction mechanism and for complex (2) a specificity for the unpaired hairpin region containing thymine bases was observed, in contrast to (3).
Subject(s)
Biomimetics , Catechol Oxidase/chemistry , Coordination Complexes/chemistry , Copper/chemistry , Endonucleases/chemistry , Triazines/chemistry , Crystallography, X-Ray , Ligands , Molecular Structure , Oxidation-Reduction , Potentiometry , Spectrum Analysis/methodsABSTRACT
BACKGROUND: Paclitaxel/carboplatin combination is the standard chemotherapeutic protocol for gynecologic cancers, but severe toxicities may compromise treatment. There is great inter-individual variability regarding the incidence and severity of toxicities, which may be due to single-nucleotide polymorphisms (SNPs) affecting drug disposition or cellular sensitivity. Here we investigate the impact of selected SNPs in ERCC1, ABCB1, CYP2C8, and CYP3A5 genes on the incidence of severe toxicities, including nephro- and hepatotoxicity. METHODS: A cohort of 507 gynecological cancer patients receiving paclitaxel/carboplatin was recruited at the Brazilian National Cancer Institute (INCA-Brazil). Clinical data were obtained during routine consultations or from electronic medical records. Toxicities were graded according to the Common Terminology Criteria for Adverse Events (CTCAE 5.0). Genotyping was performed using real-time PCR. RESULTS: ABCB1 c.1236C>T was associated with moderate-to-severe (grades 2-4) nephrotoxicity (ORadjusted 2.40; 95% CI 1.39-4.15), even after adjustment for age (≥ 65) and diabetes. The risk association between ABCB1 c.1236C>T and moderate-to-severe nephrotoxicity following paclitaxel/carboplatin chemotherapy was also present among non-diabetic patients (ORadjusted 2.16; 95% CI 1.22-3.82). ERCC1 c.118C>T was the only individual variable associated with an increased risk for moderate-to-severe (grades 2-4) hepatotoxicity (OR 3.71; 95% CI 1.08-12.77), severe nausea (OR 4.18; 95% CI 1.59-10.95), and severe myalgia (OR 1.95; 95% CI 1.12-3.40). CONCLUSIONS: ABCB1 c.1236C>T and ERCC1 c.118C>T might serve as potential biomarkers for the risk of moderate-to-severe toxicities to carboplatin/paclitaxel chemotherapy of gynecological cancers.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/adverse effects , DNA-Binding Proteins/genetics , Endonucleases/genetics , ATP Binding Cassette Transporter, Subfamily B/genetics , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Brazil , Carboplatin/administration & dosage , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/genetics , Cohort Studies , Female , Genital Neoplasms, Female/drug therapy , Humans , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Middle Aged , Paclitaxel/administration & dosage , Polymorphism, Single Nucleotide , Prospective StudiesABSTRACT
ABSTRACT Purpose: Testicular germ cells tumor (TGCT) are associated with a high cure rate and are treated with platinum-based chemotherapy. However, a group of testicular cancer patients may have a very unfavorable evolution and insensitivity to the main therapeutic agent chemotherapy (CT) cisplatin. The aim of this study was to evaluate the risk of recurrence and overall survival related to the expression of nuclear factor kappa-B (NF-κB), transglutaminase 2 (TG2) and excision repair cross-complementation group 1 (ERCC1) in patients with TGCT treated with platinum combinations. Patients and Methods: A retrospective study was performed with TGCT patients treated with platinum-based chemotherapy. Immunohistochemical analysis was performed and the expression was correlated with clinical and laboratory data. Results: Fifty patients were included, the mean age was 28.4 years (18 to 45), and 76% were non-seminoma. All patients were treated with standard cisplatin, etoposide and bleomycin or cisplatin, and etoposide. Patient's analyzed immunodetection for NF-κB, TG2, and ERCC1 were positive in 76%, 54% and 42%, respectively. Multivariate analysis identified that positive expressions to ERCC1 and NF-κB are independent risk factors for higher recurrence TGCT after chemotherapy (RR 2.96 and 3.16, respectively). Patients with positive expression of ERCC1 presented a poor overall survival rate for 10-year follow (p=0.001). Conclusions: The expression of ERCC1 and NF-κB give a worse prognosis for relapse, and only ERCC1 had an influence on the overall survival of TGCT patients treated with platinum-based chemotherapy. These may represent markers that predict poor clinical outcome and response to cisplatin.
Subject(s)
Humans , Male , Adult , Testicular Neoplasms , Transglutaminases/metabolism , NF-kappa B/metabolism , GTP-Binding Proteins/metabolism , Lung Neoplasms , Prognosis , Antineoplastic Combined Chemotherapy Protocols , Retrospective Studies , Cisplatin , Drug Resistance, Neoplasm/physiology , DNA-Binding Proteins , DNA Repair , EndonucleasesABSTRACT
PURPOSE: Testicular germ cells tumor (TGCT) are associated with a high cure rate and are treated with platinum-based chemotherapy. However, a group of testicular cancer patients may have a very unfavorable evolution and insensitivity to the main therapeutic agent chemotherapy (CT) cisplatin. The aim of this study was to evaluate the risk of recurrence and overall survival related to the expression of nuclear factor kappa-B (NF-κB), transglutaminase 2 (TG2) and excision repair cross-complementation group 1 (ERCC1) in patients with TGCT treated with platinum combinations. PATIENTS AND METHODS: A retrospective study was performed with TGCT patients treated with platinum-based chemotherapy. Immunohistochemical analysis was performed and the expression was correlated with clinical and laboratory data. RESULTS: Fifty patients were included, the mean age was 28.4 years (18 to 45), and 76% were non-seminoma. All patients were treated with standard cisplatin, etoposide and bleomycin or cisplatin, and etoposide. Patient's analyzed immunodetection for NF-κB, TG2, and ERCC1 were positive in 76%, 54% and 42%, respectively. Multivariate analysis identified that positive expressions to ERCC1 and NF-κB are independent risk factors for higher recurrence TGCT after chemotherapy (RR 2.96 and 3.16, respectively). Patients with positive expression of ERCC1 presented a poor overall survival rate for 10-year follow (p=0.001). CONCLUSIONS: The expression of ERCC1 and NF-κB give a worse prognosis for relapse, and only ERCC1 had an influence on the overall survival of TGCT patients treated with platinum-based chemotherapy. These may represent markers that predict poor clinical outcome and response to cisplatin.