Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 977
Filter
1.
J Cell Mol Med ; 28(18): e70099, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39300699

ABSTRACT

Along with mounting evidence that gut microbiota and their metabolites migrate endogenously to distal organs, the 'gut-lung axis,' 'gut-brain axis,' 'gut-liver axis' and 'gut-renal axis' have been established. Multiple animal recent studies have demonstrated gut microbiota may also be a key susceptibility factor for neurological disorders such as Alzheimer's disease, Parkinson's disease and autism. The gastrointestinal tract is innervated by the extrinsic sympathetic and vagal nerves and the intrinsic enteric nervous system, and the gut microbiota interacts with the nervous system to maintain homeostatic balance in the host gut. A total of 1507 publications on the interactions between the gut microbiota, the gut-brain axis and neurological disorders are retrieved from the Web of Science to investigate the interactions between the gut microbiota and the nervous system and the underlying mechanisms involved in normal and disease states. We provide a comprehensive overview of the effects of the gut microbiota and its metabolites on nervous system function and neurotransmitter secretion, as well as alterations in the gut microbiota in neurological disorders, to provide a basis for the possibility of targeting the gut microbiota as a therapeutic agent for neurological disorders.


Subject(s)
Brain-Gut Axis , Gastrointestinal Microbiome , Nervous System Diseases , Humans , Gastrointestinal Microbiome/physiology , Animals , Nervous System Diseases/microbiology , Nervous System Diseases/metabolism , Brain-Gut Axis/physiology , Enteric Nervous System/metabolism , Brain/metabolism , Nervous System/metabolism , Nervous System/microbiology , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/metabolism
2.
Proc Natl Acad Sci U S A ; 121(39): e2406479121, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39284050

ABSTRACT

Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.


Subject(s)
Disease Models, Animal , Gene Knock-In Techniques , Parkinson Disease , alpha-Synuclein , Animals , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Mice , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Parkinson Disease/pathology , Mice, Transgenic , Phosphorylation , Olfaction Disorders/genetics , Olfaction Disorders/metabolism , Olfaction Disorders/physiopathology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Enteric Nervous System/metabolism , Enteric Nervous System/physiopathology , Humans , Male
3.
Int J Mol Sci ; 25(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39201268

ABSTRACT

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent organic pollutant and a potent aryl hydrocarbon receptor (AHR) ligand, causes delayed intestinal motility and affects the survival of enteric neurons. In this study, we investigated the specific signaling pathways and molecular targets involved in TCDD-induced enteric neurotoxicity. Immortalized fetal enteric neuronal (IM-FEN) cells treated with 10 nM TCDD exhibited cytotoxicity and caspase 3/7 activation, indicating apoptosis. Increased cleaved caspase-3 expression with TCDD treatment, as assessed by immunostaining in enteric neuronal cells isolated from WT mice but not in neural crest cell-specific Ahr deletion mutant mice (Wnt1Cre+/-/Ahrb(fl/fl)), emphasized the pivotal role of AHR in this process. Importantly, the apoptosis in IM-FEN cells treated with TCDD was mediated through a ceramide-dependent pathway, independent of endoplasmic reticulum stress, as evidenced by increased ceramide synthesis and the reversal of cytotoxic effects with myriocin, a potent inhibitor of ceramide biosynthesis. We identified Sptlc2 and Smpd2 as potential gene targets of AHR in ceramide regulation by a chromatin immunoprecipitation (ChIP) assay in IM-FEN cells. Additionally, TCDD downregulated phosphorylated Akt and phosphorylated Ser9-GSK-3ß levels, implicating the PI3 kinase/AKT pathway in TCDD-induced neurotoxicity. Overall, this study provides important insights into the mechanisms underlying TCDD-induced enteric neurotoxicity and identifies potential targets for the development of therapeutic interventions.


Subject(s)
Apoptosis , Ceramides , Endoplasmic Reticulum Stress , Neurons , Polychlorinated Dibenzodioxins , Receptors, Aryl Hydrocarbon , Signal Transduction , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Animals , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Mice , Signal Transduction/drug effects , Polychlorinated Dibenzodioxins/toxicity , Neurons/metabolism , Neurons/drug effects , Ceramides/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/drug effects
4.
J Neurosci ; 44(37)2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39138000

ABSTRACT

Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.


Subject(s)
Dysautonomia, Familial , Enteric Nervous System , Homeostasis , Intestinal Mucosa , Animals , Enteric Nervous System/metabolism , Dysautonomia, Familial/genetics , Dysautonomia, Familial/pathology , Mice , Homeostasis/genetics , Male , Female , Humans , Intestinal Mucosa/metabolism , Mice, Knockout , Mice, Inbred C57BL , Mutation , Transcriptional Elongation Factors , Intracellular Signaling Peptides and Proteins
5.
Biomed Pharmacother ; 179: 117290, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39153433

ABSTRACT

Hydrogen sulfide (H2S) is a gaseous signaling molecule that influences digestive and nervous system functions. Enteric glial cells (EGCs) are integral to the enteric nervous system and play a role in regulating gastrointestinal motility. This study explored the dual effects of exogenous H2S on EGCs and the influence of apoptosis-related pathways and ion channels in EGCs. We also administered honokiol for further interventional studies. The results revealed that low-concentration H2S increased the mitochondrial membrane potential (MMP) of EGCs, decreased the whole-cell membrane potential, downregulated BAX and caspase-3, upregulated Bcl2 expression, reduced apoptosis, and promoted cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also increased. A high concentration of H2S had the opposite effect. In addition, GFAP mRNA expression was upregulated in the test-low group, downregulated in the test-high group, and upregulated in the test-high + Hon group. Honokiol treatment increased MMP, reduced whole-cell membrane potential, inhibited BAX and caspase-3 expression, increased Bcl2 expression, decreased cell apoptosis, and increased cell proliferation. The Ca2+ concentration, Cx43 mRNA, and protein expression were also upregulated. In conclusion, our study showed that exogenous H2S can bidirectionally regulate EGC proliferation and apoptosis by affecting MMP and cell membrane potential via the Bcl2/BAX/caspase-3 pathway and modulate Cx43-mediated Ca2+ responses in EGCs to regulate colonic motility bidirectionally. Honokiol can ameliorate the damage to EGCs induced by high H2S concentrations through the Bcl2/BAX/caspase-3 pathway and improve colon motility by increasing Cx43 expression and Ca2+ concentration.


Subject(s)
Apoptosis , Biphenyl Compounds , Calcium Signaling , Cell Proliferation , Connexin 43 , Hydrogen Sulfide , Lignans , Neuroglia , Rats, Sprague-Dawley , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Animals , Apoptosis/drug effects , Cell Proliferation/drug effects , Biphenyl Compounds/pharmacology , Neuroglia/drug effects , Neuroglia/metabolism , Lignans/pharmacology , Calcium Signaling/drug effects , Rats , Connexin 43/metabolism , Connexin 43/genetics , Membrane Potential, Mitochondrial/drug effects , Calcium/metabolism , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Cells, Cultured , Allyl Compounds , Phenols
6.
Mol Med ; 30(1): 113, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095693

ABSTRACT

BACKGROUND: To explore whether nobiletin has a protective effect on high-fat diet (HFD)-induced enteric nerve injury and its underlying mechanism. METHODS: An obesity model was induced by a HFD. Nobiletin (100 mg/kg and 200 mg/kg) and vehicle were administered by gastric gavage for 4 weeks. Lee's index, body weight, OGTT and intestinal propulsion assays were performed before sacrifice. After sampling, lipids were detected using Bodipy 493/503; lipid peroxidation was detected using MDA and SOD kits and the expression of PGP 9.5, Trem2, GFAP, ß-tubulin 3, Bax, Bcl2, Nestin, P75 NTR, SOX10 and EDU was detected using immunofluorescence. The GDNF, p-AKT, AKT, p-FOXO3a, FOXO3a and P21 proteins were detected using western blotting. The relative mRNA expression levels of NOS2 were detected via qPCR. Primary enteric neural stem cells (ENSCs) were cultured. After ENSCs were treated with palmitic acid (PA) and nobiletin, CCK-8 and caspase-3/7 activity assays were performed to evaluate proliferation and apoptosis. RESULTS: HFD consumption caused colon lipid accumulation and peroxidation, induced enteric nerve damage and caused intestinal motor dysfunction. However, nobiletin reduced lipid accumulation and peroxidation in the colon; promoted Trem2, ß-tubulin 3, Nestin, P75NTR, SOX10 and Bcl2 expression; inhibited Bax and GFAP expression; reduced NOS2 mRNA transcription; and regulated the GDNF/AKT/FOXO3a/P21 pathway. Nobiletin also promoted PA-induced impairment of ENSCs. CONCLUSIONS: Nobiletin restored HFD-induced enteric nerve injury, which may be associated with inhibiting enteric nerve apoptosis, promoting enteric nerve survival and regulating the GDNF/AKT/FOXO3a/P21 pathway.


Subject(s)
Diet, High-Fat , Enteric Nervous System , Flavones , Forkhead Box Protein O3 , Glial Cell Line-Derived Neurotrophic Factor , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Forkhead Box Protein O3/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diet, High-Fat/adverse effects , Signal Transduction/drug effects , Male , Flavones/pharmacology , Flavones/therapeutic use , Enteric Nervous System/metabolism , Enteric Nervous System/drug effects , Neuroglia/metabolism , Neuroglia/drug effects , Mice , Disease Models, Animal , Rats , Obesity/metabolism , Obesity/drug therapy , Apoptosis/drug effects
7.
Front Immunol ; 15: 1401751, 2024.
Article in English | MEDLINE | ID: mdl-39119341

ABSTRACT

Introduction: Enteric glial cells are important players in the control of motility, intestinal barrier integrity and inflammation. During inflammation, they switch into a reactive phenotype enabling them to release inflammatory mediators, thereby shaping the inflammatory environment. While a plethora of well-established in vivo models exist, cell culture models necessary to decipher the mechanistic pathways of enteric glial reactivity are less well standardized. In particular, the composition of extracellular matrices (ECM) can massively affect the experimental outcome. Considering the growing number of studies involving primary enteric glial cells, a better understanding of their homeostatic and inflammatory in vitro culture conditions is needed. Methods: We examined the impact of different ECMs on enteric glial culture purity, network morphology and immune responsiveness. Therefore, we used immunofluorescence and brightfield microscopy, as well as 3' bulk mRNA sequencing. Additionally, we compared cultured cells with in vivo enteric glial transcriptomes isolated from Sox10iCreERT2Rpl22HA/+ mice. Results: We identified Matrigel and laminin as superior over other coatings, including poly-L-ornithine, different lysines, collagens, and fibronectin, gaining the highest enteric glial purity and most extended glial networks expressing connexin-43 hemichannels allowing intercellular communication. Transcriptional analysis revealed strong similarities between enteric glia on Matrigel and laminin with enrichment of gene sets supporting neuronal differentiation, while cells on poly-L-ornithine showed enrichment related to cell proliferation. Comparing cultured and in vivo enteric glial transcriptomes revealed a 50% overlap independent of the used coating substrates. Inflammatory activation of enteric glia by IL-1ß treatment showed distinct coating-dependent gene expression signatures, with an enrichment of genes related to myeloid and epithelial cell differentiation on Matrigel and laminin coatings, while poly-L-ornithine induced more gene sets related to lymphocyte differentiation. Discussion: Together, changes in morphology, differentiation and immune activation of primary enteric glial cells proved a strong effect of the ECM. We identified Matrigel and laminin as pre-eminent substrates for murine enteric glial cultures. These new insights will help to standardize and improve enteric glial culture quality and reproducibility between in vitro studies in the future, allowing a better comparison of their functional role in enteric neuroinflammation.


Subject(s)
Extracellular Matrix , Homeostasis , Laminin , Neuroglia , Animals , Extracellular Matrix/metabolism , Neuroglia/metabolism , Neuroglia/immunology , Mice , Laminin/metabolism , Enteric Nervous System/metabolism , Enteric Nervous System/immunology , Cells, Cultured , Drug Combinations , Collagen/metabolism , Mice, Inbred C57BL , Proteoglycans/metabolism
8.
Exp Physiol ; 109(9): 1545-1556, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38979869

ABSTRACT

Gut motility undergoes a switch from myogenic to neurogenic control in late embryonic development. Here, we report on the electrical events that underlie this transition in the enteric nervous system, using the GCaMP6f reporter in neural crest cell derivatives. We found that spontaneous calcium activity is tetrodotoxin (TTX) resistant at stage E11.5, but not at E18.5. Motility at E18.5 was characterized by periodic, alternating high- and low-frequency contractions of the circular smooth muscle; this frequency modulation was inhibited by TTX. Calcium imaging at the neurogenic-motility stages E18.5-P3 showed that CaV1.2-positive neurons exhibited spontaneous calcium activity, which was inhibited by nicardipine and 2-aminoethoxydiphenyl borate (2-APB). Our protocol locally prevented muscle tone relaxation, arguing for a direct effect of nicardipine on enteric neurons, rather than indirectly by its relaxing effect on muscle. We demonstrated that the ENS was mechanosensitive from early stages on (E14.5) and that this behaviour was TTX and 2-APB resistant. We extended our results on L-type channel-dependent spontaneous activity and TTX-resistant mechanosensitivity to the adult colon. Our results shed light on the critical transition from myogenic to neurogenic motility in the developing gut, as well as on the intriguing pathways mediating electro-mechanical sensitivity in the enteric nervous system. HIGHLIGHTS: What is the central question of this study? What are the first neural electric events underlying the transition from myogenic to neurogenic motility in the developing gut, what channels do they depend on, and does the enteric nervous system already exhibit mechanosensitivity? What is the main finding and its importance? ENS calcium activity is sensitive to tetrodotoxin at stage E18.5 but not E11.5. Spontaneous electric activity at fetal and adult stages is crucially dependent on L-type calcium channels and IP3R receptors, and the enteric nervous system exhibits a tetrodotoxin-resistant mechanosensitive response. Abstract figure legend Tetrodotoxin-resistant Ca2+ rise induced by mechanical stimulation in the E18.5 mouse duodenum.


Subject(s)
Calcium Channels, L-Type , Calcium , Enteric Nervous System , Gastrointestinal Motility , Neurons , Tetrodotoxin , Animals , Calcium Channels, L-Type/metabolism , Tetrodotoxin/pharmacology , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Enteric Nervous System/physiology , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Gastrointestinal Motility/drug effects , Gastrointestinal Motility/physiology , Calcium/metabolism , Muscle, Smooth/drug effects , Muscle, Smooth/metabolism , Muscle, Smooth/physiology , Mice, Inbred C57BL , Calcium Channel Blockers/pharmacology , Female , Muscle Contraction/drug effects , Muscle Contraction/physiology , Nicardipine/pharmacology , Boron Compounds
9.
Neurobiol Dis ; 200: 106609, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39048026

ABSTRACT

BACKGROUND: Gastrointestinal dysfunction has emerged as a prominent early feature of Parkinson's Disease, shedding new light on the pivotal role of the enteric nervous system in its pathophysiology. However, the role of immune-cell clusters and inflammatory and glial markers in the gut pathogenetic process needs further elucidation. OBJECTIVES: We aimed to study duodenum tissue samples to characterize PD's enteric nervous system pathology further. Twenty patients with advanced PD, six with early PD, and 18 matched controls were included in the PADUA-CESNE cohort. METHODS: Duodenal biopsies from 26 patients with early to advanced stage PD and 18 age-matched HCs were evaluated for the presence of surface markers (CD3+, CD4+, CD8+, CD20+, CD68+, HLA-DR), presence of misfolded alpha-synuclein and enteric glial alteration (GFAP). Correlation of immulogic pattern and clinical characteristic were analyzed. RESULTS: The findings validate that in patients with Parkinson's Disease, the activation and reactive gliosis are linked to the neurodegeneration triggered by the presence of misfolded alpha-synuclein in the enteric nervous system. This process intensifies from the initial to the advanced stages of the disease. The clusters of T- and B-lymphocytes in the enteric system, along with the overall expression of HLA-DR in antigen-presenting cells, exceeded those in the control group. Conversely, no differences in terms of macrophage populations were found. CONCLUSIONS: These findings broaden our understanding of the mechanisms underlying the enteric nervous system's involvement in PD and point to the gastrointestinal system as a potential therapeutic target, especially in the early stages of the disease. Moreover, our results propose a role of T- and B-lymphocytes in maintaining inflammation and ultimately influencing alpha-synuclein misfolding and aggregation.


Subject(s)
Enteric Nervous System , Parkinson Disease , Humans , Parkinson Disease/immunology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Enteric Nervous System/immunology , Enteric Nervous System/pathology , Enteric Nervous System/metabolism , Female , Male , Aged , Middle Aged , Cohort Studies , alpha-Synuclein/metabolism , alpha-Synuclein/immunology , Duodenum/immunology , Duodenum/pathology , Duodenum/metabolism
10.
J Neurochem ; 168(9): 1956-1972, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38970456

ABSTRACT

Perineuronal nets (PNN) are highly specialized structures of the extracellular matrix around specific groups of neurons in the central nervous system (CNS). They play functions related to optimizing physiological processes and protection neurons against harmful stimuli. Traditionally, their existence was only described in the CNS. However, there was no description of the presence and composition of PNN in the enteric nervous system (ENS) until now. Thus, our aim was to demonstrate the presence and characterize the components of the PNN in the enteric nervous system. Samples of intestinal tissue from mice and humans were analyzed by RT-PCR and immunofluorescence assays. We used a marker (Wisteria floribunda agglutinin) considered as standard for detecting the presence of PNN in the CNS and antibodies for labeling members of the four main PNN-related protein families in the CNS. Our results demonstrated the presence of components of PNN in the ENS of both species; however its molecular composition is species-specific.


Subject(s)
Enteric Nervous System , Extracellular Matrix , Animals , Enteric Nervous System/metabolism , Humans , Mice , Male , Female , Extracellular Matrix/metabolism , Adult , Mice, Inbred C57BL , Middle Aged , Plant Lectins/metabolism , Aged , Species Specificity , Receptors, N-Acetylglucosamine/metabolism , Nerve Net/metabolism , Nerve Net/chemistry , Neurons/metabolism
11.
BMC Vet Res ; 20(1): 283, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38956647

ABSTRACT

BACKGROUND: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS: To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS: The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS: These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.


Subject(s)
Intestine, Small , Sheep Diseases , Synaptosomal-Associated Protein 25 , Animals , Sheep , Sheep Diseases/metabolism , Sheep Diseases/parasitology , Intestine, Small/metabolism , Synaptosomal-Associated Protein 25/metabolism , Synaptosomal-Associated Protein 25/genetics , Enteric Nervous System/metabolism , Rabbits
12.
Nutrients ; 16(14)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39064711

ABSTRACT

Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects.


Subject(s)
Jejunum , Microplastics , Neurons , Animals , Jejunum/drug effects , Jejunum/metabolism , Swine , Microplastics/toxicity , Neurons/drug effects , Neurons/metabolism , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Substance P/metabolism , Vasoactive Intestinal Peptide/metabolism , Polyethylene Terephthalates , Nitric Oxide Synthase Type I/metabolism , Galanin/metabolism , Neuronal Plasticity/drug effects , Administration, Oral , Neurotransmitter Agents/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Male , Nerve Tissue Proteins
13.
Int J Mol Sci ; 25(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39000048

ABSTRACT

Bisphenols are dangerous endocrine disruptors that pollute the environment. Due to their chemical properties, they are globally used to produce plastics. Structural similarities to oestrogen allow bisphenols to bind to oestrogen receptors and affect internal body systems. Most commonly used in the plastic industry is bisphenol A (BPA), which also has negative effects on the nervous, immune, endocrine, and cardiovascular systems. A popular analogue of BPA-bisphenol S (BPS) also seems to have harmful effects similar to BPA on living organisms. Therefore, with the use of double immunofluorescence labelling, this study aimed to compare the effect of BPA and BPS on the enteric nervous system (ENS) in mouse jejunum. The study showed that both studied toxins impact the number of nerve cells immunoreactive to substance P (SP), galanin (GAL), vasoactive intestinal polypeptide (VIP), the neuronal isoform of nitric oxide synthase (nNOS), and vesicular acetylcholine transporter (VAChT). The observed changes were similar in the case of both tested bisphenols. However, the influence of BPA showed stronger changes in neurochemical coding. The results also showed that long-term exposure to BPS significantly affects the ENS.


Subject(s)
Benzhydryl Compounds , Enteric Nervous System , Jejunum , Phenols , Sulfones , Animals , Phenols/toxicity , Benzhydryl Compounds/toxicity , Mice , Jejunum/drug effects , Jejunum/metabolism , Enteric Nervous System/drug effects , Enteric Nervous System/metabolism , Sulfones/pharmacology , Sulfones/toxicity , Substance P/metabolism , Vasoactive Intestinal Peptide/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism , Male , Galanin/metabolism , Endocrine Disruptors/toxicity , Endocrine Disruptors/pharmacology , Nitric Oxide Synthase Type I/metabolism
14.
Dig Dis Sci ; 69(8): 2828-2840, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38849592

ABSTRACT

BACKGROUND: Leucine-rich repeat kinase 2 is a molecule that is responsible for familial Parkinson's disease. Our previous findings revealed that leucine-rich repeat kinase 2 is expressed in the enteric nervous system. However, which cells in the enteric nervous system express leucine-rich repeat kinase 2 and whether leucine-rich repeat kinase 2 is associated with the structure of the enteric nervous system remain unclear. The enteric nervous system is remarkable because some patients with Parkinson's disease experience gastrointestinal symptoms before developing motor symptoms. AIMS: We established a leucine-rich repeat kinase 2 reporter mouse model and performed immunostaining in leucine-rich repeat kinase 2 knockout mice. METHODS: Longitudinal muscle containing the myenteric plexus prepared from leucine-rich repeat kinase 2 reporter mice was analyzed by immunostaining using anti-green fluorescent protein (GFP) antibody. Immunostaining using several combinations of antibodies characterizing enteric neurons and glial cells was performed on intestinal preparations from leucine-rich repeat kinase 2 knockout mice. RESULTS: GFP expression in the reporter mice was predominantly in enteric glial cells rather than in enteric neurons. Immunostaining revealed that differences in the structure and proportion of major immunophenotypic cells were not apparent in the knockout mice. Interestingly, the number of biphenotypic cells expressing the neuronal and glial cell markers increased in the leucine-rich repeat kinase 2 knockout mice. Moreover, there was accumulation of α-synuclein in the knockout mice. CONCLUSIONS: Our present findings suggest that leucine-rich repeat kinase 2 is a newly recognized molecule that potentially regulates the integrity of enteric nervous system and enteric α-synuclein accumulation.


Subject(s)
Enteric Nervous System , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice, Knockout , Neurons , alpha-Synuclein , Animals , Mice , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Enteric Nervous System/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Myenteric Plexus/metabolism , Neuroglia/metabolism , Neurons/metabolism , Phenotype
15.
Neurochem Int ; 178: 105789, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38852824

ABSTRACT

Ulcerative colitis (UC) is a common inflammatory bowel disease with a complex origin in clinical settings. It is frequently accompanied by negative emotional responses, including anxiety and depression. Enteric glial cells (EGCs) are important components of the gut-brain axis and are involved in the development of the enteric nervous system (ENS), intestinal neuroimmune, and regulation of intestinal motor functions. Since there is limited research encompassing the regulatory function of EGCs in anxiety- and depression-like behaviors induced by UC, this study aims to reveal their regulatory role in such behaviors and associated intestinal inflammation. This study applied morphological, molecular biological, and behavioral methods to observe the morphological and functional changes of EGCs in UC mice. The results indicated a significant activation of EGCs in the ENS of dextran sodium sulfate -induced UC mice. This activation was evidenced by morphological alterations, such as elongation or terminal swelling of processes. Besides EGCs activation, UC mice exhibited significantly elevated expression levels of pro-inflammatory cytokines in the peripheral blood, accompanied by anxiety- and depression-like behaviors. The inhibition of EGCs activity within the ENS can ameliorate the anxiety- and depression-like behaviors caused by UC. Our data suggest that UC and its resulting behaviors may be related to the activation of EGCs within the ENS. Moreover, the modulation of intestinal inflammation through inhibition of EGCs activation emerges as a promising clinical approach for alleviating UC-induced anxiety- and depression-like behaviors.


Subject(s)
Anxiety , Colitis, Ulcerative , Depression , Neuroglia , Animals , Colitis, Ulcerative/psychology , Colitis, Ulcerative/pathology , Colitis, Ulcerative/metabolism , Anxiety/psychology , Anxiety/metabolism , Depression/metabolism , Depression/psychology , Neuroglia/metabolism , Neuroglia/pathology , Mice , Male , Mice, Inbred C57BL , Dextran Sulfate/toxicity , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Inflammation/metabolism , Inflammation/pathology , Behavior, Animal
16.
Annu Rev Immunol ; 42(1): 489-519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38941607

ABSTRACT

Recent advances have contributed to a mechanistic understanding of neuroimmune interactions in the intestine and revealed an essential role of this cross talk for gut homeostasis and modulation of inflammatory and infectious intestinal diseases. In this review, we describe the innervation of the intestine by intrinsic and extrinsic neurons and then focus on the bidirectional communication between neurons and immune cells. First, we highlight the contribution of neuronal subtypes to the development of colitis and discuss the different immune and epithelial cell types that are regulated by neurons via the release of neuropeptides and neurotransmitters. Next, we review the role of intestinal inflammation in the development of visceral hypersensitivity and summarize how inflammatory mediators induce peripheral and central sensitization of gut-innervating sensory neurons. Finally, we outline the importance of immune cells and gut microbiota for the survival and function of different neuronal populations at homeostasis and during bacterial and helminth infection.


Subject(s)
Neuroimmunomodulation , Humans , Animals , Intestines/immunology , Homeostasis , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Neurons/metabolism , Neurons/immunology , Neuropeptides/metabolism , Enteric Nervous System/immunology , Enteric Nervous System/metabolism
17.
J Pain ; 25(9): 104572, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38768798

ABSTRACT

Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.


Subject(s)
Chronic Pain , Mice, Inbred C57BL , Receptors, Vasopressin , Visceral Pain , Animals , Male , Mice , Chronic Pain/genetics , Colon , Disease Models, Animal , Enteric Nervous System/metabolism , Hyperalgesia/genetics , Irritable Bowel Syndrome/genetics , Neurons/metabolism , Polymorphism, Single Nucleotide , Receptors, Vasopressin/genetics , Visceral Pain/genetics
18.
Brain Behav Immun ; 119: 867-877, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750700

ABSTRACT

The gastrointestinal tract is one of the main organs affected during systemic inflammation and disrupted gastrointestinal motility is a major clinical manifestation. Many studies have investigated the involvement of neuroimmune interactions in regulating colonic motility during localized colonic inflammation, i.e., colitis. However, little is known about how the enteric nervous system and intestinal macrophages contribute to dysregulated motility during systemic inflammation. Given that systemic inflammation commonly results from the innate immune response against bacterial infection, we mimicked bacterial infection by administering lipopolysaccharide (LPS) to rats and assessed colonic motility using ex vivo video imaging techniques. We utilized the Cx3cr1-Dtr rat model of transient depletion of macrophages to investigate the role of intestinal macrophages in regulating colonic motility during LPS infection. To investigate the role of inhibitory enteric neurotransmission on colonic motility following LPS, we applied the nitric oxide synthase inhibitor, Nω-nitro-L-arginine (NOLA). Our results confirmed an increase in colonic contraction frequency during LPS-induced systemic inflammation. However, neither the depletion of intestinal macrophages, nor the suppression of inhibitory enteric nervous system activity impacted colonic motility disruption during inflammation. This implies that the interplay between the enteric nervous system and intestinal macrophages is nuanced, and complex, and further investigation is needed to clarify their joint roles in colonic motility.


Subject(s)
Enteric Nervous System , Gastrointestinal Motility , Inflammation , Lipopolysaccharides , Macrophages , Animals , Lipopolysaccharides/pharmacology , Rats , Gastrointestinal Motility/physiology , Macrophages/metabolism , Inflammation/metabolism , Inflammation/physiopathology , Enteric Nervous System/physiopathology , Enteric Nervous System/metabolism , Male , Brain-Gut Axis/physiology , Colon/metabolism , Gastrointestinal Tract/metabolism , Colitis/physiopathology , Colitis/metabolism , Colitis/chemically induced , Brain/metabolism , Rats, Sprague-Dawley , Gastrointestinal Diseases/physiopathology , Gastrointestinal Diseases/metabolism
19.
J Clin Invest ; 134(9)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38690732

ABSTRACT

Epigenetic regulatory mechanisms are underappreciated, yet are critical for enteric nervous system (ENS) development and maintenance. We discovered that fetal loss of the epigenetic regulator Bap1 in the ENS lineage caused severe postnatal bowel dysfunction and early death in Tyrosinase-Cre Bap1fl/fl mice. Bap1-depleted ENS appeared normal in neonates; however, by P15, Bap1-deficient enteric neurons were largely absent from the small and large intestine of Tyrosinase-Cre Bap1fl/fl mice. Bowel motility became markedly abnormal with disproportionate loss of cholinergic neurons. Single-cell RNA sequencing at P5 showed that fetal Bap1 loss in Tyrosinase-Cre Bap1fl/fl mice markedly altered the composition and relative proportions of enteric neuron subtypes. In contrast, postnatal deletion of Bap1 did not cause enteric neuron loss or impaired bowel motility. These findings suggest that BAP1 is critical for postnatal enteric neuron differentiation and for early enteric neuron survival, a finding that may be relevant to the recently described human BAP1-associated neurodevelopmental disorder.


Subject(s)
Cell Differentiation , Enteric Nervous System , Tumor Suppressor Proteins , Ubiquitin Thiolesterase , Animals , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Mice , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Female , Gastrointestinal Motility/genetics , Humans
20.
PLoS One ; 19(5): e0303914, 2024.
Article in English | MEDLINE | ID: mdl-38809858

ABSTRACT

The vertebrate enteric nervous system (ENS) is a crucial network of enteric neurons and glia resident within the entire gastrointestinal tract (GI). Overseeing essential GI functions such as gut motility and water balance, the ENS serves as a pivotal bidirectional link in the gut-brain axis. During early development, the ENS is primarily derived from enteric neural crest cells (ENCCs). Disruptions to ENCC development, as seen in conditions like Hirschsprung disease (HSCR), lead to the absence of ENS in the GI, particularly in the colon. In this study, using zebrafish, we devised an in vivo F0 CRISPR-based screen employing a robust, rapid pipeline integrating single-cell RNA sequencing, CRISPR reverse genetics, and high-content imaging. Our findings unveil various genes, including those encoding opioid receptors, as possible regulators of ENS establishment. In addition, we present evidence that suggests opioid receptor involvement in the neurochemical coding of the larval ENS. In summary, our work presents a novel, efficient CRISPR screen targeting ENS development, facilitating the discovery of previously unknown genes, and increasing knowledge of nervous system construction.


Subject(s)
CRISPR-Cas Systems , Enteric Nervous System , Zebrafish , Animals , Enteric Nervous System/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Neural Crest/metabolism , Hirschsprung Disease/genetics
SELECTION OF CITATIONS
SEARCH DETAIL