Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.168
Filter
1.
Microb Genom ; 10(9)2024 Sep.
Article in English | MEDLINE | ID: mdl-39222339

ABSTRACT

While conducting genomic surveillance of carbapenemase-producing Enterobacteriaceae (CPE) from patient colonisation and clinical infections at Birmingham's Queen Elizabeth Hospital (QE), we identified an N-type plasmid lineage, pQEB1, carrying several antibiotic resistance genes, including the carbapenemase gene bla KPC-2. The pQEB1 lineage is concerning due to its conferral of multidrug resistance, its host range and apparent transmissibility, and its potential for acquiring further resistance genes. Representatives of pQEB1 were found in three sequence types (STs) of Citrobacter freundii, two STs of Enterobacter cloacae, and three species of Klebsiella. Hosts of pQEB1 were isolated from 11 different patients who stayed in various wards throughout the hospital complex over a 13 month period from January 2023 to February 2024. At present, the only representatives of the pQEB1 lineage in GenBank were carried by an Enterobacter hormaechei isolated from a blood sample at the QE in 2016 and a Klebsiella pneumoniae isolated from a urine sample at University Hospitals Coventry and Warwickshire (UHCW) in May 2023. The UHCW patient had been treated at the QE. Long-read whole-genome sequencing was performed on Oxford Nanopore R10.4.1 flow cells, facilitating comparison of complete plasmid sequences. We identified structural variants of pQEB1 and defined the molecular events responsible for them. These have included IS26-mediated inversions and acquisitions of multiple insertion sequences and transposons, including carriers of mercury or arsenic resistance genes. We found that a particular inversion variant of pQEB1 was strongly associated with the QE Liver speciality after appearing in November 2023, but was found in different specialities and wards in January/February 2024. That variant has so far been seen in five different bacterial hosts from six patients, consistent with recent and ongoing inter-host and inter-patient transmission of pQEB1 in this hospital setting.


Subject(s)
Disease Outbreaks , Plasmids , beta-Lactamases , Humans , Plasmids/genetics , beta-Lactamases/genetics , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/drug effects , Bacterial Proteins/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Cross Infection/microbiology , Anti-Bacterial Agents/pharmacology , Citrobacter freundii/genetics , Citrobacter freundii/isolation & purification , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Hospitals , Enterobacter
2.
Front Immunol ; 15: 1454394, 2024.
Article in English | MEDLINE | ID: mdl-39221241

ABSTRACT

The increasing and ongoing issue of antibiotic resistance in bacteria is of huge concern globally, mainly to healthcare facilities. It is now crucial to develop a vaccine for therapeutic and preventive purposes against the bacterial species causing hospital-based infections. Among the many antibiotic- resistant bacterial pathogens, the Enterobacter cloacae complex (ECC) including six species, E. Colcae, E. absuriae, E. kobie, E. hormaechei, E. ludwigii, and E. nimipressuralis, are dangerous to public health and may worsen the situation. Vaccination plays a vital role in the prevention of infections and infectious diseases. This research highlighted the construction and design of a multi-epitope vaccine for the E. cloacae complex by retrieving their complete sequenced proteome. The retrieved proteome was assessed to opt for potential vaccine candidates using immunoinformatic tools. Both B and T-cell epitopes were predicted in order to create both humoral and cellular immunity and further scrutinized for antigenicity, allergenicity, water solubility, and toxicity analysis. The final potential epitopes were subjected to population coverage analysis. Major histocompatibility complex (MHC) class combined, and MHC Class I and II world population coverage was obtained as 99.74%, and 98.55% respectively while a combined 81.81% was covered. A multi-epitope peptide-based vaccine construct consisting of the adjuvant, epitopes, and linkers was subjected to the ProtParam tool to calculate its physiochemical properties. The total amino acids were 236, the molecular weight was 27.64kd, and the vaccine construct was stable with an instability index of 27.01. The Grand Average of Hydropathy (GRAVY) (hydrophilicity) value obtained was -0.659, being more negative and depicting the hydrophilic character. It was non-allergen antigenic with an antigenicity of 0.8913. The vaccine construct was further validated for binding efficacy with immune cell receptors MHC-I, MHC-II, and Toll-like receptor (TLR)-4. The molecular docking results depict that the designed vaccine has good binding potency with immune receptors crucial for antigen presentation and processing. Among the Vaccine-MHC-I, Vaccine-MHC-II, and Vaccine-TLR-4 complexes, the best-docked poses were identified based on their lowest binding energy scores of -886.8, -995.6, and -883.6, respectively. Overall, we observed that the designed vaccine construct can evoke a proper immune response and the construct could help experimental researchers in the formulation of a vaccine against the targeted pathogens.


Subject(s)
Bacterial Vaccines , Enterobacter cloacae , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Enterobacter cloacae/immunology , Humans , Bacterial Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/prevention & control , Computational Biology/methods , Molecular Docking Simulation , Vaccine Development , Vaccinology/methods , Models, Molecular
3.
PLoS Pathog ; 20(8): e1012488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39186812

ABSTRACT

Antimicrobial peptides (AMPs) are a promising tool with which to fight rising antibiotic resistance. However, pathogenic bacteria are equipped with several AMP defense mechanisms, whose contributions to AMP resistance are often poorly defined. Here, we evaluate the genetic determinants of resistance to an insect AMP, cecropin B, in the opportunistic pathogen Enterobacter cloacae. Single-cell analysis of E. cloacae's response to cecropin revealed marked heterogeneity in cell survival, phenotypically reminiscent of heteroresistance (the ability of a subpopulation to grow in the presence of supra-MIC concentration of antimicrobial). The magnitude of this response was highly dependent on initial E. cloacae inoculum. We identified 3 genetic factors which collectively contribute to E. cloacae resistance in response to the AMP cecropin: The PhoPQ-two-component system, OmpT-mediated proteolytic cleavage of cecropin, and Rcs-mediated membrane stress response. Altogether, our data suggest that multiple, independent mechanisms contribute to AMP resistance in E. cloacae.


Subject(s)
Antimicrobial Peptides , Enterobacter cloacae , Enterobacter cloacae/genetics , Enterobacter cloacae/metabolism , Enterobacter cloacae/drug effects , Antimicrobial Peptides/metabolism , Antimicrobial Peptides/pharmacology , Antimicrobial Peptides/genetics , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Animals , Insect Proteins/metabolism , Insect Proteins/genetics , Enterobacteriaceae Infections/microbiology
4.
J Phys Chem B ; 128(35): 8376-8387, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39180156

ABSTRACT

Experimental studies on the translocation and accumulation of antibiotics in Gram-negative bacteria have revealed details of the properties that allow efficient permeation through bacterial outer membrane porins. Among the major outer membrane diffusion channels, OmpF has been extensively studied to understand the antibiotic translocation process. In a few cases, this knowledge has also helped to improve the efficacy of existing antibacterial molecules. However, the extension of these strategies to enhance the efficacy of other existing and novel drugs require comprehensive molecular insight into the permeation process and an understanding of how antibiotic and channel properties influence the effective permeation rates. Previous studies have investigated how differences in antibiotic charge distribution can influence the observed permeation pathways through the OmpF channel, and have shown that the dynamics of the L3 loop can play a dominant role in the permeation process. Here, we perform all-atom simulations of the OmpF orthologs, OmpE35 from Enterobacter cloacae and OmpK35 from Klebsiella pneumoniae. Unbiased simulations of the porins and biased simulations of the ciprofloxacin permeation processes through these channels provide insight into the differences in the permeation pathway and energetics. In addition, we show that similar to the OmpF channel, antibiotic-induced dynamics of the L3 loop are also operative in the orthologs. However, the sequence and structural differences, influence the extent of the L3 loop fluctuations with OmpK35 showing greater stability in unbiased runs and subdued fluctuations in simulations with ciprofloxacin.


Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Enterobacter cloacae , Klebsiella pneumoniae , Molecular Dynamics Simulation , Porins , Enterobacter cloacae/metabolism , Enterobacter cloacae/drug effects , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Ciprofloxacin/pharmacology , Ciprofloxacin/chemistry , Ciprofloxacin/metabolism , Porins/metabolism , Porins/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Diffusion , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
5.
Antimicrob Agents Chemother ; 68(9): e0027224, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39133022

ABSTRACT

The effectiveness of ß-lactam antibiotics is increasingly threatened by resistant bacteria that harbor hydrolytic ß-lactamase enzymes. Depending on the class of ß-lactamase present, ß-lactam hydrolysis can occur through one of two general molecular mechanisms. Metallo-ß-lactamases (MBLs) require active site Zn2+ ions, whereas serine-ß-lactamases (SBLs) deploy a catalytic serine residue. The result in both cases is drug inactivation via the opening of the ß-lactam warhead of the antibiotic. MBLs confer resistance to most ß-lactams and are non-susceptible to SBL inhibitors, including recently approved diazabicyclooctanes, such as avibactam; consequently, these enzymes represent a growing threat to public health. Aspergillomarasmine A (AMA), a fungal natural product, can rescue the activity of the ß-lactam antibiotic meropenem against MBL-expressing bacterial strains. However, the effectiveness of this ß-lactam/ß-lactamase inhibitor combination against bacteria producing multiple ß-lactamases remains unknown. We systematically investigated the efficacy of AMA/meropenem combination therapy with and without avibactam against 10 Escherichia coli and 10 Klebsiella pneumoniae laboratory strains tandemly expressing single MBL and SBL enzymes. Cell-based assays demonstrated that laboratory strains producing NDM-1 and KPC-2 carbapenemases were resistant to the AMA/meropenem combination but became drug-susceptible upon adding avibactam. We also probed these combinations against 30 clinical isolates expressing multiple ß-lactamases. E. coli, Enterobacter cloacae, and K. pneumoniae clinical isolates were more susceptible to AMA, avibactam, and meropenem than Pseudomonas aeruginosa and Acinetobacter baumannii isolates. Overall, the results demonstrate that a triple combination of AMA/avibactam/meropenem has potential for empirical treatment of infections caused by multiple ß-lactamase-producing bacteria, especially Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Escherichia coli , Meropenem , Microbial Sensitivity Tests , beta-Lactamases , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , beta-Lactamase Inhibitors/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Drug Combinations , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Aspartic Acid/analogs & derivatives
6.
Bull Exp Biol Med ; 177(1): 98-103, 2024 May.
Article in English | MEDLINE | ID: mdl-38963599

ABSTRACT

We examined the effects of elevated temperatures and biocides on survivability of food isolates of Cronobacter spp. (C. sakazakii) and concomitant enterobacteriaceae obtained in microbiological control of infant nutrition products. Increased resistance of certain strains of Cronobacter, Enterobacter cloacae, and Pantoea spp. to thermal processing was revealed. Salmonella, Pantoea, and Cronobacter bacteria were least sensitive to antimicrobial action of chlorine-containing agents. The above properties varied in the strains of the same species. Specifically, only two of three examined isolates of Cronobacter spp. demonstrated lower sensitivity to heat in comparison with the enterobacterial test-cultures of other species.


Subject(s)
Chlorine , Cronobacter , Disinfectants , Food Microbiology , Disinfectants/pharmacology , Cronobacter/drug effects , Cronobacter/isolation & purification , Chlorine/pharmacology , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Hot Temperature , Humans , Cronobacter sakazakii/drug effects , Cronobacter sakazakii/isolation & purification , Microbial Sensitivity Tests , Salmonella/drug effects , Salmonella/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification
7.
Arch Virol ; 169(8): 156, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967872

ABSTRACT

Infections caused by multidrug-resistant (MDR) bacteria are a growing global concern. Enterobacter cloacae complex (ECC) species are particularly adept at developing antibiotic resistance. Phage therapy is proposed as an alternative treatment for pathogens that no longer respond to antibiotics. Unfortunately, ECC phages are understudied when compared to phages of many other bacterial species. In this Ghanaian-Finnish study, we isolated two ECC strains from ready-to-eat food samples and three novel phages from natural waters against these strains. We sequenced the genomic DNA of the novel Enterobacter phages, fGh-Ecl01, fGh-Ecl02, and fGh-Ecl04, and assessed their therapeutic potential. All of the phages were found to be lytic, easy to propagate, and lacking any toxic, integrase, or antibiotic resistance genes and were thus considered suitable for therapy purposes. They all were found to be related to T4-type viruses: fGh-Ecl01 and fGh-Ecl04 to karamviruses and fGh-Ecl02 to agtreviruses. Testing of Finnish clinical ECC strains showed promising susceptibility to these novel phages. As many as 61.1% of the strains were susceptible to fGh-Ecl01 and fGh-Ecl04, and 7.4% were susceptible to fGh-Ecl02. Finally, we investigated the susceptibility of the newly isolated ECC strains to three antibiotics - meropenem, ciprofloxacin, and cefepime - in combination with the novel phages. The use of phages and antibiotics together had synergistic effects. When using an antibiotic-phage combination, even low concentrations of antibiotics fully inhibited the growth of bacteria.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Enterobacter cloacae , Enterobacter cloacae/virology , Enterobacter cloacae/drug effects , Ghana , Bacteriophages/genetics , Bacteriophages/isolation & purification , Bacteriophages/physiology , Bacteriophages/classification , Anti-Bacterial Agents/pharmacology , Phage Therapy/methods , Genome, Viral , Enterobacteriaceae Infections/therapy , Enterobacteriaceae Infections/microbiology , Drug Resistance, Multiple, Bacterial , Finland , Humans , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Meropenem/pharmacology
8.
BMC Infect Dis ; 24(1): 711, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030479

ABSTRACT

BACKGROUND: Enterobacter cloacae complex (ECC) including different species are isolated from different human clinical samples. ECC is armed by many different virulence genes (VGs) and they were also classified among ESKAPE group by WHO recently. The present study was designed to find probable association between VGs and antibiotic susceptibility in different ECC species. METHODS: Forty-five Enterobacter isolates that were harvested from different clinical samples were classified in four different species. Seven VGs were screened by PCR technique and antibiotic susceptibility assessment was performed by disk-diffusion assay. RESULT: Four Enterobacter species; Enterobacter cloacae (33.3%), Enterobacter hormaechei (55.6%), Enterobacter kobei (6.7%) and Enterobacter roggenkampii (4.4%) were detected. Minimum antibiotic resistance was against carbapenem agents and amikacin even in MDR isolates. 33.3% and 13.3% of isolates were MDR and XDR respectively. The rpoS (97.8%) and csgD (11.1%) showed maximum and minimum frequency respectively. Blood sample isolated were highly virulent but less resistant in comparison to the other sample isolates. The csgA, csgD and iutA genes were associated with cefepime sensitivity. CONCLUSION: The fepA showed a predictory role for differentiating of E. hormaechei from other species. More evolved iron acquisition system in E. hormaechei was hypothesized. The fepA gene introduced as a suitable target for designing novel anti-virulence/antibiotic agents against E. hormaechei. Complementary studies on other VGs and ARGs and with bigger study population is recommended.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , Virulence Factors , Humans , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/pathogenicity , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Virulence/genetics , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter/genetics , Enterobacter/drug effects , Enterobacter/isolation & purification , Male , Female
9.
J Antimicrob Chemother ; 79(9): 2246-2250, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39011845

ABSTRACT

OBJECTIVES: To establish the epidemiology cut-off (ECOFF) values of eravacycline against Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae, Acinetobacter baumannii and Staphylococcus aureus, from a multi-centre study in China. METHODS: We collected 2500 clinical isolates from five hospitals in China from 2017 to 2020. The MICs of eravacycline were determined using broth microdilution. The ECOFF values of eravacycline against the five species commonly causing cIAIs were calculated using visual estimation and ECOFFinder following the EUCAST guideline. RESULTS: The MICs of eravacycline against all the strains were in the range of 0.004-16 mg/L. The ECOFF values of eravacycline were 0.5 mg/L for E. coli, 2 mg/L for K. pneumonia and E. cloacae, and 0.25 mg/L for A. baumannii and S. aureus, consistent with the newest EUCAST publication of eravacycline ECOFF values for the populations. No discrepancy was found between the visually estimated and 99.00% ECOFF values calculated using ECOFFinder. CONCLUSIONS: The determined ECOFF values of eravacycline against the five species can assist in distinguishing wild-type from non-wild-type strains. Given its promising activity, eravacycline may represent a member of the tetracycline class in treating cIAIs caused by commonly encountered Gram-negative and Gram-positive pathogens.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Enterobacter cloacae , Escherichia coli , Klebsiella pneumoniae , Microbial Sensitivity Tests , Staphylococcus aureus , Tetracyclines , Humans , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Tetracyclines/pharmacology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Escherichia coli/drug effects , Escherichia coli/isolation & purification , China/epidemiology
10.
Toxicon ; 247: 107850, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-38971137

ABSTRACT

BACKGROUND: Enterobacter cloacae insecticidal proteins have been reported to kill Galleria mellonella larvae through affecting their midgut microbiome. However, the mechanisms involved remain unclear. Here we aim to investigate how the insecticidal proteins act on the midgut Duox-ROS system and microbial community of G. mellonella larvae. METHODS: Reverse transcription qPCR and fluorescence probes were utilized to assess the Duox expression levels and to evaluate quantitative changes of the ROS levels. Sequencing of the 16S rRNA gene sequences of the midgut bacteria of G. mellonella larvae was conducted for further analyses of bacterial diversity, composition, and abundance. RESULTS: After the injection of the insecticidal proteins, the Duox expression levels first increased within 28 h, then dramatically peaked at 36 h, and slowly decreased thereafter. Simultaneously, the ROS levels increased significantly at 36 h, peaked at 48 h, and rapidly declined to the normal level at 60 h. Responsive to the change of the ROS levels, the structure of the midgut microbial community was altered substantially, compared to that of the untreated larvae. The relative abundance of Enterobacteriaceae and other specific pathogenic bacteria increased significantly, whereas that of Lactobacillus decreased sharply. Importantly, notable shifts were observed in the crucial midgut predicted metabolic functions, including membrane transportation, carbohydrate metabolism, and amino acid metabolism. CONCLUSION: Insecticidal proteins of E. cloacae kill G. mellonella larvae mainly through generation of high oxidative stress, alterations of the midgut microbial community and function, and damage to the physiological functions. These findings provide insights into the inhibition mechanism of E. cloacae insecticidal proteins to G. mellonella larvae.


Subject(s)
Enterobacter cloacae , Gastrointestinal Microbiome , Larva , Moths , Reactive Oxygen Species , Animals , Larva/microbiology , Moths/microbiology , Gastrointestinal Microbiome/drug effects , Reactive Oxygen Species/metabolism , Insecticides , Bacterial Proteins , RNA, Ribosomal, 16S , Dual Oxidases
11.
Anal Methods ; 16(24): 3927-3937, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38832637

ABSTRACT

For the first time, a novel fluorescent moiety, 2-amino-4-(7-formyl-1,8-dihydropyren-2-yl)-7-hydroxy-4H-chromene-3-carbonitrile (ACC), was synthesized by an ultrasonication method. The synthesis of this moiety was confirmed via structural elucidation using FTIR and NMR spectroscopy techniques. Further, photophysical properties of the fluorescent moiety were tested using UV-visible and emission spectroscopy techniques. In this case, the moiety was tagged with an antibody of Enterobacter cloacae via 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and N-hydroxysuccinimide (EDC/NHS) coupling and applied as a sensing element for the detection of Enterobacter cloacae (E. cloacae) by UV-visible and emission spectroscopy techniques. The developed fluorescent sensor detected E. cloacae via a FRET mechanism. Under optimized conditions, ACC-anti-E. cloacae detected E. cloacae in the linear range from 101 to 1010 CFU mL-1 with a limit of detection (LOD) of 10.55 CFU mL-1. The developed sensor was applied for the detection of E. cloacae in food samples such as orange, pomegranate, milk, rice, tomato, potato and onion.


Subject(s)
Enterobacter cloacae , Enterobacter cloacae/isolation & purification , Food Microbiology/methods , Food Contamination/analysis , Limit of Detection , Immunoassay/methods , Animals , Fluorescent Dyes/chemistry , Food Analysis/methods
12.
Virulence ; 15(1): 2367652, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38912723

ABSTRACT

ß-N-acetylglucosaminidase (NagZ), a cytosolic glucosaminidase, plays a pivotal role in peptidoglycan recycling. Previous research demonstrated that NagZ knockout significantly eradicated AmpC-dependent ß-lactam resistance in Enterobacter cloacae. However, NagZ's role in the virulence of E. cloacae remains unclear. Our study, incorporating data on mouse and Galleria mellonella larval mortality rates, inflammation markers, and histopathological examinations, revealed a substantial reduction in the virulence of E. cloacae following NagZ knockout. Transcriptome sequencing uncovered differential gene expression between NagZ knockout and wild-type strains, particularly in nucleotide metabolism pathways. Further investigation demonstrated that NagZ deletion led to a significant increase in cyclic diguanosine monophosphate (c-di-GMP) levels. Additionally, transcriptome sequencing and RT-qPCR confirmed significant differences in the expression of ECL_03795, a gene with an unknown function but speculated to be involved in c-di-GMP metabolism due to its EAL domain known for phosphodiesterase activity. Interestingly, in ECL_03795 knockout strains, a notable reduction in the virulence was observed, and virulence was rescued upon complementation with ECL_03795. Consequently, our study suggests that NagZ's function on virulence is partially mediated through the ECL_03795→c-di-GMP pathway, providing insight into the development of novel therapies and strongly supporting the interest in creating highly efficient NagZ inhibitors.


Subject(s)
Enterobacter cloacae , Animals , Virulence , Mice , Enterobacter cloacae/genetics , Enterobacter cloacae/pathogenicity , Enterobacter cloacae/drug effects , Larva/microbiology , Moths/microbiology , Acetylglucosaminidase/genetics , Acetylglucosaminidase/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Enterobacteriaceae Infections/microbiology , Virulence Factors/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Female , Gene Expression Regulation, Bacterial , Gene Knockout Techniques
13.
Front Biosci (Elite Ed) ; 16(2): 15, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38939914

ABSTRACT

BACKGROUND: Fall armyworm (Spodoptera frugiperda) is a highly destructive maize pest that significantly threatens agricultural productivity. Existing control methods, such as chemical insecticides and entomopathogens, lack effectiveness, necessitating alternative approaches. METHODS: Gut-associated bacteria were isolated from the gut samples of fall armyworm and screened based on their chitinase and protease-producing ability before characterization through 16S rRNA gene sequence analysis. The efficient chitinase-producing Bacillus licheniformis FGE4 and Enterobacter cloacae FGE18 were chosen to test the biocontrol efficacy. As their respective cell suspensions and extracted crude chitinase enzyme, these two isolates were applied topically on the larvae, supplemented with their feed, and analyzed for their quantitative food use efficiency and survivability. RESULTS: Twenty-one high chitinase and protease-producing bacterial isolates were chosen. Five genera were identified by 16S rRNA gene sequencing: Enterobacter, Enterococcus, Bacillus, Pantoea, and Kocuria. In the biocontrol efficacy test, the consumption index and relative growth rate were lowered in larvae treated with Enterobacter cloacae FGE18 by topical application and feed supplementation. Similarly, topical treatment of Bacillus licheniformis FGE4 to larvae decreased consumption index, relative growth rate, conversion efficiency of ingested food, and digested food values. CONCLUSION: The presence of gut bacteria with high chitinase activity negatively affects insect health. Utilizing gut-derived bacterial isolates with specific insecticidal traits offers a promising avenue to control fall armyworms. This research suggests a potential strategy for future pest management.


Subject(s)
Chitinases , Spodoptera , Animals , Spodoptera/microbiology , Chitinases/metabolism , Chitinases/genetics , RNA, Ribosomal, 16S/genetics , Bacteria/enzymology , Bacillus licheniformis/genetics , Bacillus licheniformis/enzymology , Enterobacter cloacae/genetics , Enterobacter cloacae/enzymology , Larva/microbiology , Pest Control, Biological/methods , Gastrointestinal Tract/microbiology
14.
Microbiol Spectr ; 12(8): e0354823, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-38916360

ABSTRACT

The aim of this study was to evaluate the proportion of resistance to a temocillin, tigecycline, ciprofloxacin, and chloramphenicol phenotype called t2c2 that resulted from mutations within the ramAR locus among extended-spectrum ß-lactamases-Enterobacterales (ESBL-E) isolated in three intensive care units for 3 years in a French university hospital. Two parallel approaches were performed on all 443 ESBL-E included: (i) the minimal inhibitory concentrations of temocillin, tigecycline, ciprofloxacin, and chloramphenicol were determined and (ii) the genomes obtained from the Illumina sequencing platform were analyzed to determine multilocus sequence types, resistomes, and diversity of several tetR-associated genes including ramAR operon. Among the 443 ESBL-E strains included, isolates of Escherichia coli (n = 194), Klebsiella pneumoniae (n = 122), and Enterobacter cloacae complex (Ecc) (n = 127) were found. Thirty-one ESBL-E strains (7%), 16 K. pneumoniae (13.1%), and 15 Ecc (11.8%) presented the t2c2 phenotype in addition to their ESBL profile, whereas no E. coli presented these resistances. The t2c2 phenotype was invariably reversible by the addition of Phe-Arg-ß-naphthylamide, indicating a role of resistance-nodulation-division pumps in these observations. Mutations associated with the t2c2 phenotype were restricted to RamR, the ramAR intergenic region (IR), and AcrR. Mutations in RamR consisted of C- or N-terminal deletions and amino acid substitutions inside its DNA-binding domain or within key sites of protein-substrate interactions. The ramAR IR showed nucleotide substitutions involved in the RamR DNA-binding domain. This diversity of sequences suggested that RamR and the ramAR IR represent major genetic events for bacterial antimicrobial resistance.IMPORTANCEMorbimortality caused by infectious diseases is very high among patients hospitalized in intensive care units (ICUs). A part of these outcomes can be explained by antibiotic resistance, which delays the appropriate therapy. The transferable antibiotic resistance gene is a well-known mechanism to explain the high rate of multidrug resistance (MDR) bacteria in ICUs. This study describes the prevalence of chromosomal mutations, which led to additional antibiotic resistance among MDR bacteria. More than 12% of Klebsiella pneumoniae and Enterobacter cloacae complex strains presented mutations within the ramAR locus associated with a dysregulation of an efflux pump called AcrAB-TolC and a porin: OmpF. These dysregulations led to an increase in antibiotic output notably tigecycline, ciprofloxacin, and chloramphenicol associated with a decrease of input for beta-lactam, especially temocillin. Mutations within transcriptional regulators such as ramAR locus played a major role in antibiotic resistance dissemination and need to be further explored.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Drug Resistance, Multiple, Bacterial , Klebsiella pneumoniae , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Chloramphenicol/pharmacology , Ciprofloxacin/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/enzymology , Enterobacteriaceae Infections/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Intensive Care Units , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Microbial Sensitivity Tests , Multilocus Sequence Typing , Mutation , Tigecycline/pharmacology
15.
Clin Lab ; 70(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38868883

ABSTRACT

BACKGROUND: Antibiotic resistance is a major problem threatening human beings. The genetic determinants that carry resistance genes can be transmitted in several ways in clinical and food environments. Hence, this research study aimed to investigate the presence of New Delhi metallo-beta-lactamase-1 (blaNDM-1) produced by enterotoxigenic Enterobacter cloacae in both clinical and food samples. METHODS AND RESULTS: Twenty-four isolates of Enterobacter spp. were isolated, seven isolates from food samples and 17 isolates from blood taken from neonates and children (1 day - 10 years old) resident in a children's hospital. Antibiotic susceptibility test to 14 antibiotics was performed for all isolates. Enterotoxigenicity of the clinical and foodborne isolates was detected phenotypically using Suckling mouse bioassay. Genomic deoxyribonucleic acid (DNA) was extracted from the isolated Enterobacter spp. that were detected resistant to imipenem. Polymerase chain reaction (PCR) was used to amplify blaNDM-1 gene followed by sequencing. The results of the bioassay revealed that 64.28% of E. cloacae ssp. cloacae isolates were enterotoxigenic. Two E. cloacae ssp. cloacae were imipenem resistant. CONCLUSIONS: This study showed that one isolate from a male child 1 < year was bla NDM-1 positive that was con-firmed by sequencing. This is the first report that revealed blaNDM-1 producing Enterobacter cloacae in Iraq.


Subject(s)
Anti-Bacterial Agents , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , beta-Lactamases/genetics , Enterobacter cloacae/genetics , Enterobacter cloacae/isolation & purification , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Humans , Infant , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/diagnosis , Child , Child, Preschool , Anti-Bacterial Agents/pharmacology , Animals , Infant, Newborn , Iraq , Food Microbiology , Mice
16.
Int J Antimicrob Agents ; 64(2): 107228, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38823494

ABSTRACT

The rapid dissemination of carbapenem-resistant Enterobacterales (CRE) especially carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a great threat to global public health. Ceftazidime-avibactam, a novel ß-lactam/ß-lactamase inhibitor combination, has been widely used due to its excellent antibacterial activity against KPC-producing K. pneumoniae. However, several resistance mechanisms have been reported since its use. Here, we conducted a series of in vitro experiments to reveal and demonstrate the dynamic evolution of ceftazidime-avibactam resistance including interspecies IncX3_NDM-5 plasmid transfer between Enterobacter cloacae and K. pneumoniae and blaKPC mutation from blaKPC-2 to blaKPC-33. Through the analysis of conjugation frequency and fitness cost, the IncX3_NDM-5 plasmid in this study showed strong transmissibility and stability in E. coli EC600 and clinical strain K. pneumoniae 5298 as recipient strain. With increasing ceftazidime-avibactam concentration, the conjugation frequency remained at 10-3-10-5, while the mutation frequency of K. pneumoniae 5298 was 10-6-10-8 at the same concentration. Further plasmid analysis (the IncX3_NDM plasmid from this study and other 658 plasmids from the NCBI database) revealed the diverse origin and genetic structure of blaNDM-5 carrying plasmids. E. coli (42.9%), China (43.9%), IncX3 (66.6%) are the most common strains, regions, and Inc types respectively. By analysing of genetic environment detected in IncX3 plasmids, the dominant structures (168/258, 65.1%) were identified: ISKox3-IS26-blaNDM-5-IS5-ISAba125-Tn3000-Tn3. In additon, several structural variations were found in the core gene structure. In conclusion, the high fitness and transmissibility of the IncX3_NDM-5 plasmids were noteworthy. More importantly, the diverse ceftazidime-avibactam resistance mechanisms including blaNDM-5 tranfer and blaKPC-2 mutation highlighted the importance of the continuous monitoring of antimicrobial susceptibility and carbapenemases subtype during ceftazidime-avibactam treatment.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Ceftazidime , Drug Combinations , Drug Resistance, Multiple, Bacterial , Enterobacter cloacae , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , beta-Lactamases , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Plasmids/genetics , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli/drug effects , Klebsiella Infections/microbiology , Klebsiella Infections/drug therapy , Bacterial Proteins/genetics , Gene Transfer, Horizontal , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects
17.
J Microorg Control ; 29(2): 81-89, 2024.
Article in English | MEDLINE | ID: mdl-38880620

ABSTRACT

Although recent propagation of carbapenemase-producing Enterobacterales (CPE) has become a problem worldwide, the picture of CPE infection in Japan has not fully been elucidated. In this study, we examined clinical and microbiological characteristics of invasive CPE infection occurring at 8 hospitals in Minami Ibaraki Area between July 2001 to June 2017. Of 7294 Enterobacterales strains isolated from independent cases of bacteremia and/or meningitis, 10 (0.14%) were CPE (8 Enterobacter cloacae-complex, 1 Escherichia coli, and 1 Edwardsiella tarda), all of which had the blaIMP-1 gene and susceptible to gentamicin and trimethoprim/sulfamethoxazole. These strains were isolated from 7 adult and 2 infant bacteremia (1 infant patient developed CPE bacteremia twice) after 2007. The most common portal of entry was intravenous catheters. All of the adult patients were recovered, while the infant patients eventually died. Genomic analyses showed that the 8 E. cloacae-complex strains were classified into 5 groups, each of which was exclusively detected in specific facilities at intervals of up to 3 years, suggesting persistent colonization in the facilities. This study showed that invasive CPE infection in the area was rare, caused by IMP-1-type CPE having susceptibility to various antibiotics, and nonfatal among adult patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Bacterial Proteins , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Humans , Japan/epidemiology , Bacteremia/microbiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , beta-Lactamases/genetics , beta-Lactamases/metabolism , Male , Female , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Infant , Middle Aged , Adult , Aged , Enterobacter cloacae/genetics , Enterobacter cloacae/drug effects , Enterobacter cloacae/isolation & purification , Gentamicins/pharmacology , Gentamicins/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Aged, 80 and over , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/isolation & purification
18.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38700663

ABSTRACT

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Aztreonam , Ceftazidime , Drug Combinations , Enterobacter cloacae , Enterobacteriaceae Infections , Microbial Sensitivity Tests , beta-Lactamases , Aztreonam/pharmacology , Aztreonam/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/microbiology , Animals , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Humans , beta-Lactamases/metabolism , beta-Lactamases/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/genetics , Drug Therapy, Combination , Moths/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Disease Models, Animal
19.
J Glob Antimicrob Resist ; 37: 225-232, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750896

ABSTRACT

OBJECTIVES: Polymyxins are currently the last-resort treatment against multi-drug resistant Gram-negative bacterial infections, but plasmid-mediated mobile polymyxin resistance genes (mcr) threaten its efficacy, especially in carbapenem-resistant Enterobacter cloacae complex (CRECC). The objective of this study was to provide insights into the mechanism of polymyxin-induced bacterial resistance and the effect of overexpression of mcr-9. METHODS: The clinical strain CRECC414 carrying the mcr-9 gene was treated with a gradient concentration of polymyxin. Subsequently, the broth microdilution was used to determine the minimum inhibitory concentration (MIC) and RT-qPCR was utilized to assess mcr-9 expression. Transcriptome sequencing and whole genome sequencing (WGS) was utilized to identify alterations in strains resulting from increased polymyxin resistance, and significant transcriptomic differences were analysed alongside a comprehensive examination of metabolic networks at the genomic level. RESULTS: Polymyxin treatment induced the upregulation of mcr-9 expression and significantly elevated the MIC of the strain. Furthermore, the WGS and transcriptomic results revealed a remarkable up-regulation of arnBCADTEF gene cassette, indicating that the Arn/PhoPQ system-mediated L-Ara4N modification is the preferred mechanism for achieving high levels of resistance. Additionally, significant alterations in bacterial gene expression were observed with regards to multidrug efflux pumps, oxidative stress and repair mechanisms, cell membrane biosynthesis, as well as carbohydrate metabolic pathways. CONCLUSION: Polymyxin greatly disrupts the transcription of vital cellular pathways. A complete PhoPQ two-component system is a prerequisite for polymyxin resistance of Enterobacter cloacae, even though mcr-9 is highly expressed. These findings provide novel and important information for further investigation of polymyxin resistance of CRECC.


Subject(s)
Anti-Bacterial Agents , Carbapenem-Resistant Enterobacteriaceae , Enterobacter cloacae , Gene Expression Profiling , Microbial Sensitivity Tests , Polymyxins , Polymyxins/pharmacology , Anti-Bacterial Agents/pharmacology , Enterobacter cloacae/drug effects , Enterobacter cloacae/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenem-Resistant Enterobacteriaceae/drug effects , Carbapenem-Resistant Enterobacteriaceae/isolation & purification , Humans , Bacterial Proteins/genetics , Whole Genome Sequencing , Gene Expression Regulation, Bacterial/drug effects , Enterobacteriaceae Infections/microbiology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Transcriptome
20.
Virology ; 595: 110100, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714025

ABSTRACT

Enterobacter cloacae is a clinically significant pathogen due to its multi-resistance to antibiotics, presenting a challenge in the treatment of infections. As concerns over antibiotic resistance escalate, novel therapeutic approaches have been explored. Bacteriophages, characterized by their remarkable specificity and ability to self-replicate within target bacteria, are emerging as a promising alternative therapy. In this study, we isolated and partially characterized nine lytic bacteriophages targeting E. cloacae, with two selected for comprehensive genomic analysis based on their host range and bacteriolytic activity. All identified phages exhibited a narrow host range, demonstrated stability within a temperature range of 30-60 °C, displayed pH tolerance from 3 to 10, and showed an excellent bacteriolytic capacity for up to 18 h. Notably, the fully characterized phage genomes revealed an absence of lysogenic, virulence, or antibiotic-resistance genes, positioning them as promising candidates for therapeutic intervention against E. cloacae-related diseases. Nonetheless, translating this knowledge into practical therapeutic applications mandates a deeper understanding of bacteriophage interactions within complex biological environments.


Subject(s)
Bacteriophages , Enterobacter cloacae , Genome, Viral , Genomics , Host Specificity , Enterobacter cloacae/virology , Enterobacter cloacae/genetics , Bacteriophages/genetics , Bacteriophages/physiology , Bacteriophages/classification , Bacteriophages/isolation & purification , Phage Therapy , Enterobacteriaceae Infections/microbiology , Bacteriolysis
SELECTION OF CITATIONS
SEARCH DETAIL