Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Zhonghua Er Ke Za Zhi ; 62(7): 676-680, 2024 Jul 02.
Article in Chinese | MEDLINE | ID: mdl-38955687

ABSTRACT

Objective: To summarize the clinical manifestations, diagnosis, treatment and prognosis of acute flaccid myelitis (AFM) in children. Methods: Clinical characteristics of 4 AFM cases from Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, from September 2018 to November 2022, were analyzed retrospectively. Results: The age of 4 children with AFM was 7 years, 4 years and 3 months, 7 years and 1 month, 6 years and 5 months, respectively. There were 2 boys and 2 girls. Prodromal infection status showed 3 children of respiratory tract infection and 1 child of digestive tract infection. The main manifestation was asymmetrical limb weakness after infection, and the affected limb range was from monoplegia to quadriplegia. Cranial nerve injury was involved in 1 child, no encephalopathy. Magnetic resonance imaging in the spinal cord of all 4 children showed long T1 and T2 signals, mainly involving gray matter. Cerebrospinal fluid cell-protein separation was observed in 2 children. Pathogen detected in 1 child pharyngeal swab was enterovirus D68. Antibody IgM to adenovirus was positive in the blood of 1 child. Antibody IgG against Echo and Coxsackie B virus were positive in the blood of another child. After glucocorticoid, human immunoglobulin or simple symptomatic treatment and at the same time under later rehabilitation training, muscle strength recovered to different degrees, but there were disabilities left in 3 children. Conclusions: AFM should be considered in children with acute and asymmetrical flaccid paralysis accompanied by abnormal magnetic resonance imaging signal in the central region of spinal cord, especially post-infection. The effective treatment is limited and the prognosis is poor.


Subject(s)
Central Nervous System Viral Diseases , Magnetic Resonance Imaging , Myelitis , Neuromuscular Diseases , Humans , Myelitis/diagnosis , Myelitis/virology , Male , Female , Child , Child, Preschool , Retrospective Studies , Central Nervous System Viral Diseases/diagnosis , Neuromuscular Diseases/diagnosis , Enterovirus D, Human/isolation & purification , Prognosis , Spinal Cord/pathology , Enterovirus Infections/diagnosis , Quadriplegia/etiology , Quadriplegia/diagnosis , Respiratory Tract Infections/diagnosis
2.
Virus Res ; 345: 199388, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714218

ABSTRACT

Human enteroviruses (EVs) represent a global public health concern due to their association with a range of serious pediatric illnesses. Despite the high morbidity and mortality exerted by EVs, no broad-spectrum antivirals are currently available. Herein, we presented evidence that doxycycline can inhibit in vitro replication of various neurotropic EVs, including enterovirus A71 (EV-A71), enterovirus D68 (EV-D68), and coxsackievirus (CV)-A6, in a dose-dependent manner. Further investigations indicated that the drug primarily acted at the post-entry stage of virus infection in vitro, with inhibitory effects reaching up to 89 % for EV-A71 when administered two hours post-infection. These findings provide valuable insights for the development of antiviral drugs against EV infections.


Subject(s)
Antiviral Agents , Doxycycline , Enterovirus , Virus Replication , Humans , Doxycycline/pharmacology , Virus Replication/drug effects , Antiviral Agents/pharmacology , Enterovirus/drug effects , Enterovirus/physiology , Enterovirus Infections/virology , Enterovirus Infections/drug therapy , Enterovirus A, Human/drug effects , Enterovirus A, Human/physiology , Cell Line , Enterovirus D, Human/drug effects , Enterovirus D, Human/physiology , Animals , Virus Internalization/drug effects
3.
J Virol ; 98(6): e0043424, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38690875

ABSTRACT

The globally reemerging respiratory pathogen enterovirus D68 (EV-D68) is implicated in outbreaks of severe respiratory illness and associated with acute flaccid myelitis. However, there remains a lack of effective treatments for EV-D68 infection. In this work, we found that the host Toll-like receptor 7 (TLR7) proteins, which function as powerful innate immune sensors, were selectively elevated in expression in response to EV-D68 infection. Subsequently, we investigated the impact of Vesatolimod (GS-9620), a Toll-like receptor 7 agonist, on EV-D68 replication. Our findings revealed that EV-D68 infection resulted in increased mRNA levels of TLR7. Treatment with Vesatolimod significantly inhibited EV-D68 replication [half maximal effective concentration (EC50) = 0.1427 µM] without inducing significant cytotoxicity at virucidal concentrations. Although Vesatolimod exhibited limited impact on EV-D68 attachment, it suppressed RNA replication and viral protein synthesis after virus entry. Vesatolimod broadly inhibited the replication of circulating isolated strains of EV-D68. Furthermore, our findings demonstrated that treatment with Vesatolimod conferred resistance to both respiratory and neural cells against EV-D68 infection. Overall, these results present a promising strategy for drug development by pharmacologically activating TLR7 to initiate an antiviral state in EV-D68-infected cells selectively.IMPORTANCEConventional strategies for antiviral drug development primarily focus on directly targeting viral proteases or key components, as well as host proteins involved in viral replication. In this study, based on our intriguing discovery that enterovirus D68 (EV-D68) infection specifically upregulates the expression of immune sensor Toll-like receptor 7 (TLR7) protein, which is either absent or expressed at low levels in respiratory cells, we propose a potential antiviral approach utilizing TLR7 agonists to activate EV-D68-infected cells into an anti-viral defense state. Notably, our findings demonstrate that pharmacological activation of TLR7 effectively suppresses EV-D68 replication in respiratory tract cells through a TLR7/MyD88-dependent mechanism. This study not only presents a promising drug candidate and target against EV-D68 dissemination but also highlights the potential to exploit unique alterations in cellular innate immune responses induced by viral infections, selectively inducing a defensive state in infected cells while safeguarding uninfected normal cells from potential adverse effects associated with therapeutic interventions.


Subject(s)
Antiviral Agents , Enterovirus D, Human , Toll-Like Receptor 7 , Virus Replication , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/metabolism , Humans , Virus Replication/drug effects , Enterovirus D, Human/drug effects , Antiviral Agents/pharmacology , Indoles/pharmacology , Enterovirus Infections/virology , Immunity, Innate/drug effects , Cell Line , Virus Internalization/drug effects , Pteridines
4.
PLoS Pathog ; 20(4): e1012159, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662650

ABSTRACT

Human enteroviruses are the most common human pathogen with over 300 distinct genotypes. Previous work with poliovirus has suggested that it is possible to generate antibody responses in humans and animals that can recognize members of multiple enterovirus species. However, cross protective immunity across multiple enteroviruses is not observed epidemiologically in humans. Here we investigated whether immunization of mice or baboons with inactivated poliovirus or enterovirus virus-like-particles (VLPs) vaccines generates antibody responses that can recognize enterovirus D68 or A71. We found that mice only generated antibodies specific for the antigen they were immunized with, and repeated immunization failed to generate cross-reactive antibody responses as measured by both ELISA and neutralization assay. Immunization of baboons with IPV failed to generate neutralizing antibody responses against enterovirus D68 or A71. These results suggest that a multivalent approach to enterovirus vaccination is necessary to protect against enterovirus disease in vulnerable populations.


Subject(s)
Antibodies, Viral , Cross Reactions , Enterovirus Infections , Poliovirus Vaccine, Inactivated , Animals , Mice , Cross Reactions/immunology , Antibodies, Viral/immunology , Enterovirus Infections/immunology , Enterovirus Infections/prevention & control , Enterovirus Infections/virology , Poliovirus Vaccine, Inactivated/immunology , Poliovirus Vaccine, Inactivated/administration & dosage , Vaccines, Virus-Like Particle/immunology , Antibodies, Neutralizing/immunology , Papio/immunology , Humans , Poliovirus/immunology , Female , Antibody Formation/immunology , Enterovirus/immunology , Mice, Inbred BALB C , Enterovirus D, Human/immunology
5.
Vaccine ; 42(9): 2463-2474, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38472067

ABSTRACT

Enterovirus D68 (EV-D68), a pathogen that causes respiratory symptoms, mainly in children, has been implicated in acute flaccid myelitis, which is a poliomyelitis-like paralysis. Currently, there are no licensed vaccines or treatments for EV-D68 infections. Here, we investigated the optimal viral inactivation reagents, vaccine adjuvants, and route of vaccination in mice to optimize an inactivated whole-virion (WV) vaccine against EV-D68. We used formalin, ß-propiolactone (BPL), and hydrogen peroxide as viral inactivation reagents and compared their effects on antibody responses. Use of any of these three viral inactivation reagents effectively induced neutralizing antibodies. Moreover, the antibody response induced by the BPL-inactivated WV vaccine was enhanced when adjuvanted with cytosine phosphoguanine oligodeoxynucleotide (CpG ODN) or AddaVax (MF59-like adjuvant), but not with aluminum hydroxide (alum). Consistent with the antibody response results, the protective effect of the inactivated WV vaccine against the EV-D68 challenge was enhanced when adjuvanted with CpG ODN or AddaVax, but not with alum. Further, while the intranasal inactivated WV vaccine induced EV-D68-specific IgA antibodies in the respiratory tract, it was less protective against EV-D68 challenge than the injectable vaccine. Thus, an injectable inactivated EV-D68 WV vaccine prepared with appropriate viral inactivation reagents and an optimal adjuvant is a promising EV-D68 vaccine.


Subject(s)
Alum Compounds , Enterovirus D, Human , Enterovirus Infections , Polysorbates , Squalene , Humans , Child , Animals , Mice , Antibodies, Viral , Vaccines, Inactivated , Oligodeoxyribonucleotides , Adjuvants, Immunologic
6.
Emerg Infect Dis ; 30(3): 423-431, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38407198

ABSTRACT

Surveillance for emerging pathogens is critical for developing early warning systems to guide preparedness efforts for future outbreaks of associated disease. To better define the epidemiology and burden of associated respiratory disease and acute flaccid myelitis (AFM), as well as to provide actionable data for public health interventions, we developed a multimodal surveillance program in Colorado, USA, for enterovirus D68 (EV-D68). Timely local, state, and national public health outreach was possible because prospective syndromic surveillance for AFM and asthma-like respiratory illness, prospective clinical laboratory surveillance for EV-D68 among children hospitalized with respiratory illness, and retrospective wastewater surveillance led to early detection of the 2022 outbreak of EV-D68 among Colorado children. The lessons learned from developing the individual layers of this multimodal surveillance program and how they complemented and informed the other layers of surveillance for EV-D68 and AFM could be applied to other emerging pathogens and their associated diseases.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus D, Human , Myelitis , Neuromuscular Diseases , Respiratory Tract Diseases , Child , Humans , Colorado/epidemiology , Prospective Studies , Retrospective Studies , Wastewater , Wastewater-Based Epidemiological Monitoring
7.
MMWR Morb Mortal Wkly Rep ; 73(4): 70-76, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300829

ABSTRACT

Acute flaccid myelitis (AFM) is a serious neurologic condition primarily affecting children; AFM can cause acute respiratory failure and permanent paralysis. AFM is a rare but known complication of various viral infections, particularly those of enteroviruses (EVs). Increases in AFM cases during 2014, 2016, and 2018 were associated with EV-D68 infection. This report examines trends in confirmed AFM cases during 2018-2022 and patients' clinical and laboratory characteristics. The number of AFM cases was low during 2019-2022 (28-47 cases per year); the number of cases remained low in 2022 despite evidence of increased EV-D68 circulation in the United States. Compared with cases during the most recent peak year (2018), fewer cases during 2019-2021 had upper limb involvement, prodromal respiratory or febrile illness, or cerebrospinal fluid pleocytosis, and more were associated with lower limb involvement. It is unclear why EV-D68 circulation in 2022 was not associated with an increase in AFM cases or when the next increase in AFM cases will occur. Nonetheless, clinicians should continue to suspect AFM in any child with acute flaccid limb weakness, especially those with a recent respiratory or febrile illness.


Subject(s)
Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Child , Humans , United States/epidemiology , Neuromuscular Diseases/epidemiology , Paralysis , Myelitis/epidemiology , Central Nervous System Viral Diseases/epidemiology , Enterovirus Infections/epidemiology
8.
mSphere ; 9(2): e0052623, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38259063

ABSTRACT

Enterovirus D68 (EV-D68) is predominantly associated with mild respiratory infections, but can also cause severe respiratory disease and extra-respiratory complications, including acute flaccid myelitis. Systemic dissemination of EV-D68 is crucial for the development of extra-respiratory diseases, but it is currently unclear how EV-D68 spreads systemically (viremia). We hypothesize that immune cells contribute to the systemic dissemination of EV-D68, as this is a mechanism commonly used by other enteroviruses. Therefore, we investigated the susceptibility and permissiveness of human primary immune cells for different EV-D68 isolates. In human peripheral blood mononuclear cells inoculated with EV-D68, only B cells were susceptible but virus replication was limited. However, in B cell-rich cultures, such as Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) and primary lentivirus-transduced B cells, which better represent lymphoid B cells, were productively infected. Subsequently, we showed that dendritic cells (DCs), particularly immature DCs, are susceptible and permissive for EV-D68 infection and that they can spread EV-D68 to autologous BLCL. Altogether, our findings suggest that immune cells, especially B cells and DCs, could play an important role in the pathogenesis of EV-D68 infection. Infection of these cells may contribute to systemic dissemination of EV-D68, which is an essential step toward the development of extra-respiratory complications.IMPORTANCEEnterovirus D68 (EV-D68) is an emerging respiratory virus that has caused outbreaks worldwide since 2014. EV-D68 infects primarily respiratory epithelial cells resulting in mild respiratory diseases. However, EV-D68 infection is also associated with extra-respiratory complications, including polio-like paralysis. It is unclear how EV-D68 spreads systemically and infects other organs. We hypothesized that immune cells could play a role in the extra-respiratory spread of EV-D68. We showed that EV-D68 can infect and replicate in specific immune cells, that is, B cells and dendritic cells (DCs), and that virus could be transferred from DCs to B cells. Our data reveal a potential role of immune cells in the pathogenesis of EV-D68 infection. Intervention strategies that prevent EV-D68 infection of immune cells will therefore potentially prevent systemic spread of virus and thereby severe extra-respiratory complications.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Epstein-Barr Virus Infections , Respiratory Tract Infections , Humans , Leukocytes, Mononuclear , Herpesvirus 4, Human , Dendritic Cells
9.
J Microbiol Immunol Infect ; 57(2): 238-245, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38233293

ABSTRACT

BACKGROUND: Enterovirus D68 (EV-D68) is an important reemerging pathogen that causes severe acute respiratory infection and acute flaccid paralysis, mainly in children. Since 2014, EV-D68 outbreaks have been reported in the United States, Europe, and east Asia; however, no outbreaks have been reported in southeast Asian countries, including Myanmar, during the previous 10 years. METHODS: EV-D68 was detected in nasopharyngeal swabs from children with acute lower respiratory infections in Myanmar. The samples were previously collected from children aged 1 month to 12 years who had been admitted to the Yankin Children Hospital in Yangon, Myanmar, between May 2017 and January 2019. EV-D68 was detected with a newly developed EV-D68-specific real-time PCR assay. The clade was identified by using a phylogenetic tree created with the Bayesian Markov chain Monte Carlo method. RESULTS: During the study period, nasopharyngeal samples were collected from 570 patients. EV-D68 was detected in 42 samples (7.4 %)-11 samples from 2017 to 31 samples from 2018. The phylogenetic tree revealed that all strains belonged to clade B3, which has been the dominant clade worldwide since 2014. We estimate that ancestors of currently circulating genotypes emerged during the period 1980-2004. CONCLUSIONS: To our knowledge, this is the first report of EV-D68 detection in children with acute lower respiratory infections in Yangon, Myanmar, in 2017-2018. Detection and detailed virologic analyses of EV-D68 in southeast Asia is an important aspect of worldwide surveillance and will likely be useful in better understanding the worldwide epidemiologic profile of EV-D68 infection.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Pneumonia , Respiratory Tract Infections , Child , Humans , United States , Enterovirus D, Human/genetics , Myanmar/epidemiology , Phylogeny , Bayes Theorem , Pneumonia/epidemiology , Disease Outbreaks , Enterovirus/genetics
10.
Sci Rep ; 14(1): 2161, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272942

ABSTRACT

Enterovirus D68 (EV-D68) is an emerging pathogen that has caused outbreaks of severe respiratory disease worldwide, especially in children. We aim to investigate the prevalence and genetic characteristics of EV-D68 in children from Shanghai. Nasopharyngeal swab or bronchoalveolar lavage fluid samples collected from children hospitalized with community-acquired pneumonia were screened for EV-D68. Nine of 3997 samples were EV-D68-positive. Seven of nine positive samples were sequenced and submitted to GenBank. Based on partial polyprotein gene (3D) or complete sequence analysis, we found the seven strains belong to different clades and subclades, including three D1 (detected in 2013 and 2014), one D2 (2013), one D3 (2019), and two B3 (2014 and 2018). Overall, we show different clades and subclades of EV-D68 spread with low positive rates (0.2%) among children in Shanghai between 2013 and 2020. Amino acid mutations were found in the epitopes of the VP1 BC and DE loops and C-terminus; similarity analysis provided evidence for recombination as an important mechanism of genomic diversification. Both single nucleotide mutations and recombination play a role in evolution of EV-D68. Genetic instability within these clinical strains may indicate large outbreaks could occur following cumulative mutations.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Respiratory Tract Infections , Child , Humans , Molecular Epidemiology , Enterovirus D, Human/genetics , Respiratory Tract Infections/epidemiology , Enterovirus Infections/epidemiology , Phylogeny , China/epidemiology , Disease Outbreaks , Enterovirus/genetics
11.
J Virol ; 98(2): e0190923, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289118

ABSTRACT

Pyroptosis, a pro-inflammatory programmed cell death, has been implicated in the pathogenesis of coronavirus disease 2019 and other viral diseases. Gasdermin family proteins (GSDMs), including GSDMD and GSDME, are key regulators of pyroptotic cell death. However, the mechanisms by which virus infection modulates pyroptosis remain unclear. Here, we employed a mCherry-GSDMD fluorescent reporter assay to screen for viral proteins that impede the localization and function of GSDMD in living cells. Our data indicated that the main protease NSP5 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) blocked GSDMD-mediated pyroptosis via cleaving residues Q29 and Q193 of GSDMD. While another SARS-CoV-2 protease, NSP3, cleaved GSDME at residue G370 but activated GSDME-mediated pyroptosis. Interestingly, respiratory enterovirus EV-D68-encoded proteases 3C and 2A also exhibit similar differential regulation on the functions of GSDMs by inactivating GSDMD but initiating GSDME-mediated pyroptosis. EV-D68 infection exerted oncolytic effects on human cancer cells by inducing pyroptotic cell death. Our findings provide insights into how respiratory viruses manipulate host cell pyroptosis and suggest potential targets for antiviral therapy as well as cancer treatment.IMPORTANCEPyroptosis plays a crucial role in the pathogenesis of coronavirus disease 2019, and comprehending its function may facilitate the development of novel therapeutic strategies. This study aims to explore how viral-encoded proteases modulate pyroptosis. We investigated the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and respiratory enterovirus D68 (EV-D68) proteases on host cell pyroptosis. We found that SARS-CoV-2-encoded proteases NSP5 and NSP3 inactivate gasdermin D (GSDMD) but initiate gasdermin E (GSDME)-mediated pyroptosis, respectively. We also discovered that another respiratory virus EV-D68 encodes two distinct proteases 2A and 3C that selectively trigger GSDME-mediated pyroptosis while suppressing the function of GSDMD. Based on these findings, we further noted that EV-D68 infection triggers pyroptosis and produces oncolytic effects in human carcinoma cells. Our study provides new insights into the molecular mechanisms underlying virus-modulated pyroptosis and identifies potential targets for the development of antiviral and cancer therapeutics.


Subject(s)
Endopeptidases , Enterovirus D, Human , Host Microbial Interactions , Oncolytic Viruses , Pyroptosis , SARS-CoV-2 , Humans , Cell Line, Tumor , COVID-19/metabolism , COVID-19/therapy , COVID-19/virology , Endopeptidases/genetics , Endopeptidases/metabolism , Enterovirus D, Human/enzymology , Enterovirus D, Human/genetics , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Gasdermins/antagonists & inhibitors , Gasdermins/genetics , Gasdermins/metabolism , Oncolytic Virotherapy , Oncolytic Viruses/enzymology , Oncolytic Viruses/genetics , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
12.
J Virol ; 98(2): e0199423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38240591

ABSTRACT

Following the successful control of poliovirus, the re-emergence of respiratory enterovirus D68 (EV-D68), a prominent non-polio enterovirus, has become a serious public health concern worldwide. Host innate immune responses are the primary defense against EV-D68 invasion; however, the mechanism underlying viral evasion of the antiviral activity of interferons (IFN) remains unclear. In this study, we found that EV-D68 inhibited type I IFN signaling by cleaving signal transducer and activator of transcription 1 (STAT1), a crucial factor in cellular responses to interferons and other cytokines. We observed that the prototype and circulating EV-D68 strains conserved their ability to induce STAT1 cleavage and attenuate IFN signal transduction. Further investigation revealed that EV-D68 3C protease cleaves STAT1 at the 131Q residue. Interestingly, not all enterovirus-encoded 3C proteases exhibited this ability. EV-D68 and poliovirus 3C proteases efficiently induced STAT1 cleavage; whereas, 3C proteases from EV-A71, coxsackievirus A16, and echoviruses did not. STAT1 cleavage also abolished the nuclear translocation capacity of STAT1 in response to IFN stimulation to activate downstream signaling elements. Overall, these results suggest that STAT1, targeted by viral protease 3C, is utilized by EV-D68 to subvert the host's innate immune response.IMPORTANCEEnterovirus D68 (EV-D68) has significantly transformed over the past decade, evolving from a rare pathogen to a potential pandemic pathogen. The interferon (IFN) signaling pathway is an important defense mechanism and therapeutic target for the host to resist viral invasion. Previous studies have reported that the EV-D68 virus blocks or weakens immune recognition and IFN production in host cells through diverse strategies; however, the mechanisms of EV-D68 resistance to IFN signaling have not been fully elucidated. Our study revealed that EV-D68 relies on its own encoded protease, 3C, to directly cleave signal transducer and activator of transcription 1 (STAT1), a pivotal transduction component in the IFN signaling pathway, disrupting the IFN-mediated antiviral response. Previous studies on human enteroviruses have not documented direct cleavage of the STAT1 protein to evade cellular immune defenses. However, not all enteroviral 3C proteins can cleave STAT1. These findings highlight the diverse evolutionary strategies different human enteroviruses employ to evade host immunity.


Subject(s)
3C Viral Proteases , Enterovirus D, Human , Interferon Type I , Signal Transduction , Humans , 3C Viral Proteases/metabolism , Antigens, Viral/metabolism , Antiviral Agents/pharmacology , Cysteine Endopeptidases/metabolism , Enterovirus D, Human/physiology , Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Interferon Type I/metabolism , Peptide Hydrolases/metabolism , Proteolysis , STAT1 Transcription Factor/metabolism , Viral Proteins/metabolism
13.
Antiviral Res ; 221: 105755, 2024 01.
Article in English | MEDLINE | ID: mdl-37984566

ABSTRACT

Enterovirus D68 (EV-D68), belonging to the genus Enterovirus of the Picornavirus family, is an emerging pathogen that can cause neurological and respiratory diseases in children. However, there is little understanding of the pathogenesis of EV-D68, and no effective vaccine or drug for the prevention or treatment of the diseases caused by this virus is available. Autophagy is a cellular process that targets cytoplasmic proteins or organelles to the lysosomes for degradation. Enteroviruses strategically harness the host autophagy pathway to facilitate the completion of their life cycle. Therefore, we selected an autophagy compound library to screen for autophagy-related compounds that may affect viral growth. By using the neutralization screening assay, we identified a compound, 'licochalcone A' that significantly inhibited EV-D68 replication. To investigate the mechanism by which licochalcone A inhibits EV-D68 replication and to identify the viral life cycle stage it inhibits, the time-of-addition, viral attachment, viral entry, and dual-luciferase reporter assays were performed. The results of the time-of-addition assay showed that licochalcone A, a characteristic chalcone found in liquorice roots and widely used in traditional Chinese medicine, inhibits EV-D68 replication during the early stages of the viral life cycle, while those of the dual-luciferase reporter assay showed that licochalcone A does not regulate viral attachment and entry, but inhibits EV-D68 IRES-dependent translation. Licochalcone A also inhibited enterovirus A71 and coxsackievirus B3 but did not significantly inhibit dengue virus 2 or human coronavirus 229E replication. Licochalcone A regulates IRES translation to inhibit EV-D68 viral replication.


Subject(s)
Chalcones , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Child , Humans , Chalcones/pharmacology , Enterovirus Infections/drug therapy , Antigens, Viral , Enterovirus D, Human/physiology , Luciferases
14.
Epidemics ; 46: 100736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38118274

ABSTRACT

Recent outbreaks of enterovirus D68 (EV-D68) infections, and their causal linkage with acute flaccid myelitis (AFM), continue to pose a serious public health concern. During 2020 and 2021, the dynamics of EV-D68 and other pathogens have been significantly perturbed by non-pharmaceutical interventions against COVID-19; this perturbation presents a powerful natural experiment for exploring the dynamics of these endemic infections. In this study, we analyzed publicly available data on EV-D68 infections, originally collected through the New Vaccine Surveillance Network, to predict their short- and long-term dynamics following the COVID-19 interventions. Although long-term predictions are sensitive to our assumptions about underlying dynamics and changes in contact rates during the NPI periods, the likelihood of a large outbreak in 2023 appears to be low. Comprehensive surveillance data are needed to accurately characterize future dynamics of EV-D68. The limited incidence of AFM cases in 2022, despite large EV-D68 outbreaks, poses further questions for the timing of the next AFM outbreaks.


Subject(s)
COVID-19 , Central Nervous System Viral Diseases , Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Humans , COVID-19/epidemiology , Neuromuscular Diseases/epidemiology , Myelitis/epidemiology , Disease Outbreaks , Enterovirus Infections/epidemiology , Enterovirus Infections/prevention & control
15.
Emerg Infect Dis ; 30(1): 141-145, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38147067

ABSTRACT

In a 2-year study in Leuven, Belgium, we investigated the use of wastewater sampling to assess community spread of respiratory viruses. Comparison with the number of positive clinical samples demonstrated that wastewater data reflected circulation levels of typical seasonal respiratory viruses, such as influenza, respiratory syncytial virus, and enterovirus D68.


Subject(s)
Enterovirus D, Human , Influenza, Human , Respiratory Syncytial Virus, Human , Humans , Belgium/epidemiology , Wastewater , Respiratory Syncytial Virus, Human/genetics
16.
Virus Res ; 339: 199284, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38040125

ABSTRACT

Enterovirus D68 (EV-D68) primarily spreads through the respiratory tract and causes respiratory symptoms in children and acute flaccid myelitis (AFM). Type III interferons (IFNs) play a critical role in inhibiting viral growth in respiratory epithelial cells. However, the mechanism by which EV-D68 induces type III IFN production is not yet fully understood. In this study, we show that EV-D68 infection stimulates Calu-3 cells to secrete IFN-λ. The transfection of EV-D68 viral RNA (vRNA) stimulated IFN-λ via MDA5. Furthermore, our findings provide evidence that EV-D68 infection also induces MDA5-IRF3/IRF7-mediated IFN-λ. In addition, we discovered that EV-D68 infection downregulated MDA5 expression. Knockdown of MDA5 increased EV-D68 replication in Calu-3 cells. Finally, we demonstrated that the IFN-λ1 and IFN-λ2/3 proteins effectively inhibit EV-D68 infection in respiratory epithelial cells. In summary, our study shows that EV-D68 induces type III IFN production via the activated MDA5-IRF3/IRF7 pathway and that type III IFNs inhibit EV-D68 replication in Calu-3 cells.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Neuromuscular Diseases , Child , Humans , Enterovirus D, Human/genetics , Interferon Lambda , Respiratory System
17.
J Virol ; 97(12): e0160023, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38047678

ABSTRACT

IMPORTANCE: Enterovirus D68 (EV-D68) is an emerging respiratory pathogen associated with acute flaccid myelitis. Currently, no approved vaccines or antiviral drugs are available. Here, we report four functionally independent neutralizing antigenic sites (I to IV) by analyses of neutralizing monoclonal antibody (MAb)-resistant mutants. Site I is located in the VP1 BC loop near the fivefold axis. Site II resides in the VP2 EF loop, and site III is situated in VP1 C-terminus; both sites are located at the south rim of the canyon. Site IV is composed of residue in VP2 ßB strand and residues in the VP3 BC loop and resides around the threefold axis. The developed MAbs targeting the antigenic sites can inhibit viral binding to cells. These findings advance the understanding of the recognition of EV-D68 by neutralizing antibodies and viral evolution and immune escape and also have important implications for the development of novel EV-D68 vaccines.


Subject(s)
Antibodies, Neutralizing , Capsid Proteins , Enterovirus D, Human , Enterovirus Infections , Humans , Capsid , Capsid Proteins/chemistry , Enterovirus D, Human/genetics , Enterovirus Infections/immunology , Enterovirus Infections/virology
18.
J Biomed Sci ; 30(1): 96, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110940

ABSTRACT

BACKGROUND: Human enteroviruses A71 (EV-A71) and D68 (EV-D68) are the suspected causative agents of hand-foot-and-mouth disease, aseptic meningitis, encephalitis, acute flaccid myelitis, and acute flaccid paralysis in children. Until now, no cure nor mucosal vaccine existed for EV-A71 and EV-D68. Novel mucosal bivalent vaccines are highly important for preventing EV-A71 and EV-D68 infections. METHODS: In this study, formalin-inactivated EV-A71 and EV-D68 were used as antigens, while PS-G, a polysaccharide from Ganoderma lucidum, was used as an adjuvant. Natural polysaccharides have the characteristics of intrinsic immunomodulation, biocompatibility, low toxicity, and safety. Mice were immunized intranasally with PBS, EV-A71, EV-D68, or EV-A71 + EV-D68, with or without PS-G as an adjuvant. RESULTS: The EV-A71 + EV-D68 bivalent vaccine generated considerable EV-A71- and EV-D68-specific IgG and IgA titres in the sera, nasal washes, saliva, bronchoalveolar lavage fluid, and feces. These antibodies neutralized EV-D68 and EV-A71 infectivity. They also cross-neutralized infections by different EV-D68 and EV-A71 sub-genotypes. Furthermore, compared with the PBS group, EV-A71 + EV-D68 + PS-G-vaccinated mice exhibited an increased number of EV-D68- and EV-A71-specific IgA- and IgG-producing cells. In addition, T-cell proliferative responses, and IFN-γ and IL-17 secretion in the spleen were substantially induced when PS-G was used as an adjuvant with EV-A71 + EV-D68. Finally, in vivo challenge experiments demonstrated that the immune sera induced by EV-A71 + EV-D68 + PS-G conferred protection in neonate mice against lethal EV-A71 and EV-D68 challenges as indicated by the increased survival rate and decreased clinical score and viral RNA tissue expression. Taken together, all EV-A71/EV-D68 + PS-G-immunized mice developed potent specific humoral, mucosal, and cellular immune responses to EV-D68 and EV-A71 and were protected against them. CONCLUSIONS: These findings demonstrated that PS-G can be used as a potential adjuvant for EV-A71 and EV-D68 bivalent mucosal vaccines. Our results provide useful information for the further preclinical and clinical development of a mucosal bivalent enterovirus vaccine against both EV-A71 and EV-D68 infections.


Subject(s)
Enterovirus A, Human , Enterovirus D, Human , Enterovirus Infections , Enterovirus , Reishi , Child , Animals , Humans , Mice , Enterovirus D, Human/genetics , Enterovirus A, Human/genetics , Vaccines, Combined , Antigens, Viral , Immunoglobulin A , Immunoglobulin G
19.
J Clin Virol ; 169: 105618, 2023 12.
Article in English | MEDLINE | ID: mdl-37977074

ABSTRACT

BACKGROUND: Enterovirus-D68 (EV-D68) has appeared biennially in the United States following the 2014 outbreak. It has gained epidemiologic and clinical relevance and was identified as an important pathogen associated with severe respiratory and central nervous system diseases. We aim to describe the clinical and molecular characteristics of the post-pandemic 2022 Enterovirus-D68 outbreak in children evaluated in a tertiary pediatric hospital in Columbus, Ohio. METHODS: EV-D68 RT-PCR was performed on nasopharyngeal specimens collected during Jun-Nov 2022 from children (<18 years), identified by 1) physician-order or 2) random selection of 10-15 specimens weekly that were Rhinovirus/Enterovirus-positive by physician-ordered respiratory virus panel. Patients who tested positive for EV-D68 were identified and clinical data and outcomes were analyzed. Partial viral VP1 region was sequenced and characterized. RESULTS: Forty-four children positive for EV-D68 were identified, among which 88.6 % of patients presented with respiratory symptoms and 61.4 % required PICU admission. Two patients presented with AFM that was attributed to EV-D68. EV-D68 sequences from 2022 clustered within the B3 subclade. CONCLUSIONS: A significant proportion of children identified with EV-D68 during the 2022 outbreak had respiratory compromise requiring PICU admission. As the virus continues evolving, it is important to monitor the activity of EV-D68, characterizing these strains clinically and genetically, which will help to understand the viral pathogenicity and virulence.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Respiratory Tract Infections , Child , Humans , United States/epidemiology , Ohio/epidemiology , Child, Hospitalized , Enterovirus D, Human/genetics , Respiratory Tract Infections/epidemiology , Disease Outbreaks
20.
J Clin Virol ; 169: 105617, 2023 12.
Article in English | MEDLINE | ID: mdl-37977075

ABSTRACT

INTRODUCTION: Public health measures aimed at controlling transmission of SARS-CoV-2, otherwise known as "lockdown" measures, had profound effects on circulation of non-SARS viruses, many of which decreased to very low levels.  The interrupted transmission of these viruses may have lasting effects. Some of the influenza clades seem to have disappeared during this period, a phenomenon which is described as a "funnel effect". It is currently unknown if the lockdown measures had any effect on the diversity of circulating viruses, other than influenza. Enteroviruses are especially interesting in this context, as the clinical presentation of an infection with a particular enterovirus-type may be clade-dependent. METHODS AND MATERIALS: Enteroviruses were detected in clinical materials using a 5'UTR-based detection PCR, and partial VP-1 sequences were obtained, using methods described before. All samples with EV detections from a large part of the Netherlands were included in the study. The samples originated from general practitioners, general hospitals, university hospitals and public health offices. RESULTS: Five EV-genotypes circulated in significant numbers before and after the lockdown, EV-D68, E-11, CV-A6, CV-B5 and CV-A2. All five genotypes showed decreased genetic diversity after the lockdown, and four indicate a significant number of sequences clustering together with a very high sequence homology. Moreover, children with E-11 and CV-B5 detections were significantly older after the lockdown than before. CONCLUSIONS: The reduced enterovirus transmission in the Netherlands during the pandemic, seems to have led to a decrease in genetic diversity in the five most commonly detected enterovirus serotypes.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Enterovirus , Influenza, Human , Child , Humans , Enterovirus/genetics , Enterovirus D, Human/genetics , Serogroup , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL