Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
Cell Mol Life Sci ; 81(1): 347, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136782

ABSTRACT

CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.


Subject(s)
Epileptic Syndromes , Induced Pluripotent Stem Cells , Neurons , Protein Serine-Threonine Kinases , Spasms, Infantile , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Neurons/metabolism , Neurons/cytology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Phosphorylation , Epileptic Syndromes/metabolism , Epileptic Syndromes/genetics , Epileptic Syndromes/pathology , Spasms, Infantile/metabolism , Spasms, Infantile/genetics , Spasms, Infantile/pathology
2.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000022

ABSTRACT

CDKL5 deficiency disorder (CDD) is an X-linked dominant epileptic encephalopathy, characterized by early-onset and drug-resistant seizures, psychomotor delay, and slight facial features. Genomic variants inactivating CDKL5 or impairing its protein product kinase activity have been reported, making next-generation sequencing (NGS) and chromosomal microarray analysis (CMA) the standard diagnostic tests. We report a suspicious case of CDD in a female child who tested negative upon NGS and CMA and harbored an X chromosome de novo pericentric inversion. The use of recently developed genomic techniques (optical genome mapping and whole-genome sequencing) allowed us to finely characterize the breakpoints, with one of them interrupting CDKL5 at intron 1. This is the fifth case of CDD reported in the scientific literature harboring a structural rearrangement on the X chromosome, providing evidence for the hypothesis that this type of anomaly can represent a recurrent pathogenic mechanism, whose frequency is likely underestimated, with it being overlooked by standard techniques. The identification of the molecular etiology of the disorder is extremely important in evaluating the pathological outcome and to better investigate the mechanisms associated with drug resistance, paving the way for the development of specific therapies. Karyotype and genomic techniques should be considered in all cases presenting with CDD without molecular confirmation.


Subject(s)
Chromosomes, Human, X , Protein Serine-Threonine Kinases , Humans , Female , Chromosomes, Human, X/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/deficiency , Chromosome Inversion , Epileptic Syndromes/genetics , Genetic Diseases, X-Linked/genetics , Spasms, Infantile
3.
Eur J Pediatr ; 183(9): 4103-4110, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38965081

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) cause disability and dependence affecting both children and the family. The aim of the study was to describe the perspective of parents of children with DEEs regarding the impact of the disease on the family. We carried out a qualitative study based on the interpretivist paradigm. Twenty-one participants were selected using purposive sampling. Parents of children with DEEs of SCN1A, KCNQ2, CDKL5, PCDH19, and GNAO1 variants were included. In-depth interviews and researcher notes were used for data collection. A thematic analysis was performed on the data. Three themes were identified in the results: (a) Assuming conflicts and changes within the couple, causing them to distance themselves, reducing their time and intimacy and leading them to reconsider having more children; (b) impact of the disorder on siblings and grandparents, where siblings perceived DEE as a burden in their lives, felt neglected, and needed to grow and mature alone; conversely, the grandparents suffered for their grandchildren and the parents, in addition to perceiving that their health worsened, and (c) reconciling the care of the child with family life and work; this led the parents to share tasks, abandon or reduce working hours and ask for help.Conclusions: Caring for a child with DEE can result in neglect of social, psychological, emotional, recreational, educational, or occupational needs and obligations that ultimately impact all family members. What is Known: • Children with DEE may develop seizures and experience developmental and cognitive problems. • Caring for a child with DEE has a social and psychological impact on the entire family.

Caring for a child with DEE has a social and psychological impact on the entire family.
What is New: • Within the couple, there are tensions due to a lack of time, which could be alleviated by alternating childcare duties. • It is necessary to implement programs that address the physical and mental needs of the couple, as well as cater to the needs of siblings and alleviate the suffering of grandparents.


Subject(s)
Parents , Qualitative Research , Humans , Male , Female , Child , Child, Preschool , Adult , Parents/psychology , Adolescent , Middle Aged , Infant , Cost of Illness , Epileptic Syndromes/psychology , Epileptic Syndromes/genetics , Spasms, Infantile/psychology
4.
Mol Autism ; 15(1): 28, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877552

ABSTRACT

BACKGROUND: Mutations in the X-linked gene cyclin-dependent kinase-like 5 (CDKL5) cause a severe neurological disorder characterised by early-onset epileptic seizures, autism and intellectual disability (ID). Impaired hippocampal function has been implicated in other models of monogenic forms of autism spectrum disorders and ID and is often linked to epilepsy and behavioural abnormalities. Many individuals with CDKL5 deficiency disorder (CDD) have null mutations and complete loss of CDKL5 protein, therefore in the current study we used a Cdkl5-/y rat model to elucidate the impact of CDKL5 loss on cellular excitability and synaptic function of CA1 pyramidal cells (PCs). We hypothesised abnormal pre and/or post synaptic function and plasticity would be observed in the hippocampus of Cdkl5-/y rats. METHODS: To allow cross-species comparisons of phenotypes associated with the loss of CDKL5, we generated a loss of function mutation in exon 8 of the rat Cdkl5 gene and assessed the impact of the loss of CDLK5 using a combination of extracellular and whole-cell electrophysiological recordings, biochemistry, and histology. RESULTS: Our results indicate that CA1 hippocampal long-term potentiation (LTP) is enhanced in slices prepared from juvenile, but not adult, Cdkl5-/y rats. Enhanced LTP does not result from changes in NMDA receptor function or subunit expression as these remain unaltered throughout development. Furthermore, Ca2+ permeable AMPA receptor mediated currents are unchanged in Cdkl5-/y rats. We observe reduced mEPSC frequency accompanied by increased spine density in basal dendrites of CA1 PCs, however we find no evidence supporting an increase in silent synapses when assessed using a minimal stimulation protocol in slices. Additionally, we found no change in paired-pulse ratio, consistent with normal release probability at Schaffer collateral to CA1 PC synapses. CONCLUSIONS: Our data indicate a role for CDKL5 in hippocampal synaptic function and raise the possibility that altered intracellular signalling rather than synaptic deficits contribute to the altered plasticity. LIMITATIONS: This study has focussed on the electrophysiological and anatomical properties of hippocampal CA1 PCs across early postnatal development. Studies involving other brain regions, older animals and behavioural phenotypes associated with the loss of CDKL5 are needed to understand the pathophysiology of CDD.


Subject(s)
Disease Models, Animal , Long-Term Potentiation , Protein Serine-Threonine Kinases , Receptors, AMPA , Receptors, N-Methyl-D-Aspartate , Spasms, Infantile , Animals , Male , Rats , CA1 Region, Hippocampal/metabolism , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/physiopathology , Epileptic Syndromes/genetics , Epileptic Syndromes/metabolism , Excitatory Postsynaptic Potentials , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/physiopathology , Hippocampus/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Receptors, AMPA/metabolism , Receptors, AMPA/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Synapses/metabolism
5.
Epilepsy Behav ; 157: 109804, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38861909

ABSTRACT

OBJECTIVES: There is a paucity of studies reporting the epilepsy spectrum using the 2017 and 2022 ILAE classification systems in everyday clinical practice. To identify gaps and opportunities in care we evaluated a hospital-based cohort applying these epilepsy classification systems, including aetiology and co-morbidity, and the utility of molecular genetic diagnosis to identify available precision therapies. METHODS: Cross sectional retrospective study of all children with epilepsy (≤16 years) attending University Hospital Galway (2017-2022). Data collection and analysis of each case was standardised to ensure a systematic approach and application of the recent ILAE categorisation and terminology (2017 and 2022). Ethics approval was obtained. RESULTS: Among 356 children, epilepsy was classified as focal (46.1 %), generalised (38.8 %), combined (6.2 %), and unknown (9 %). Epilepsy syndrome was determined in 145/356 (40.7 %), comprising 24 different syndromes, most commonly SeLECTS (9 %), CAE (7 %), JAE (6.2 %) and IESS (5.9 %). New aetiology-specific syndromes were identified (e.g. CDKL5-DEE). Molecular diagnosis was confirmed in 19.9 % (n = 71) which encompassed monogenic (13.8 %) and chromosomopathy/CNV (6.2 %). There was an additional 35.7 % (n = 127) of patients who had a presumed genetic aetiology of epilepsy. Remaining aetiology included structural (18.8 %, n = 67), infectious (2 %, n = 7), metabolic (1.7 %, n = 6) and unknown (30.3 %, n = 108). Encephalopathy categorisation was determined in 182 patients (DE in 38.8 %; DEE in a further 11.8 %) associated with a range of co-morbidities categorised as global delay (29.2 %, n = 104), severe neurological impairment (16.3 %, n = 58), and ASD (14.6 %, n = 52). Molecular-based "precision therapy" was deemed available in 21/356 (5.9 %) patients, with "molecular precision" approach utilised in 13/356 (3.7 %), and some benefit noted in 6/356 (1.7 %) of overall cohort or 6/71 (8.5 %) of the molecular cohort. CONCLUSION: Applying the latest ILAE epilepsy classification systems allow comparison across settings and identifies a major neuro-developmental co-morbidity rate and a large genetic aetiology. We identified very few meaningful molecular-based disease modifying "precision therapies". There is a monumental gap between aetiological identification, and impact of meaningful therapies, thus the new 2017/2022 classification clearly identifies the major challenges in the provision of routine epilepsy care.


Subject(s)
Epilepsy , Humans , Child , Female , Male , Epilepsy/epidemiology , Epilepsy/classification , Epilepsy/genetics , Epilepsy/diagnosis , Epilepsy/therapy , Cross-Sectional Studies , Child, Preschool , Adolescent , Retrospective Studies , Infant , Hospitals, Pediatric , Comorbidity , Epileptic Syndromes/genetics , Epileptic Syndromes/diagnosis
6.
J Neurol ; 271(8): 5368-5377, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38874638

ABSTRACT

CDKL5 deficiency disorder (CDD) is a complex clinical condition resulting from non-functional or absent CDKL5 protein, a serine-threonine kinase pivotal for neural maturation and synaptogenesis. The disorder manifests primarily as developmental epileptic encephalopathy, with associated neurological phenotypes, such as hypotonia, movement disorders, visual impairment, and gastrointestinal issues. Its prevalence is estimated at 1 in 40,000-60,000 live births, and it is more prevalent in females due to the lethality of germline mutations in males during fetal development. This Italian multi-center observational study focused on 34 patients with CDKL5-related epileptic encephalopathy, aiming to enhance the understanding of the clinical and molecular aspects of CDD. The study, conducted across 14 pediatric neurology tertiary care centers in Italy, covered various aspects, including phenotypic presentations, seizure types, EEG patterns, treatments, neuroimaging findings, severity of psychomotor delay, and variant-phenotype correlations. The results highlighted the heterogeneity of seizure patterns, with hypermotor-tonic-spasms sequence seizures (HTSS) noted in 17.6% of patients. The study revealed a lack of clear genotype-phenotype correlation within the cohort. The presence of HTSS or HTSS-like at onset resulted a negative prognostic factor for the presence of daily seizures at long-term follow-up in CDD patients. Despite extensive polypharmacotherapy, including medications such as valproic acid, clobazam, cannabidiol, and others, sustained seizure freedom proved elusive, affirming the inherent drug-resistant nature of CDD. The findings underscored the need for further research to explore response rates to different treatments and the potential role of non-pharmacological interventions in managing this challenging disorder.


Subject(s)
Neurodevelopmental Disorders , Humans , Male , Italy , Female , Child, Preschool , Cohort Studies , Infant , Child , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/epidemiology , Epileptic Syndromes/genetics , Epileptic Syndromes/physiopathology , Protein Serine-Threonine Kinases/genetics , Adolescent , Spasms, Infantile
7.
J Neurol Sci ; 461: 123063, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38820769

ABSTRACT

OBJECTIVE: CDKL5 deficiency disorder (CDD), an epileptic encephalopathy for which novel therapeutics are under development, lacks valid and reliable measures of therapeutic efficacy. We aimed to elucidate the neurophysiological and brain structural features of CDD patients and identify objective indicators reflecting the clinical severity. METHODS: Twelve CDD patients and 12 healthy controls (HCs) participated. The clinical severity of CDD was scored using the CDD severity assessment (CDD-SA). The participants underwent visual evoked potential (VEP), auditory brainstem response (ABR), structural MRI, and diffusion tensor imaging (DTI) analyses. Measurements from each modality were compared with normal values of age-matched cohorts (VEP and ABR) or statistically compared between CDD patients and HCs (MRI). RESULTS: VEP showed a significant correlation between P100 latency and CDD-SA in CDD patients. ABR showed abnormalities in six patients (50%), including prolonged V-wave latency (n = 2), prolonged inter-peak latency between waves I and V (n = 3), and mild hearing loss (n = 4). Structural MRI showed a significant reduction in cortical volume in the left pars triangularis and right cerebellum compared with HCs. DTI showed a widespread decrease in fractional anisotropy and an increase in mean and radial diffusivity compared with HCs. CONCLUSION: CDD patients had reduced cortical volume in the left pars triangularis, a brain region crucial for speech, and one-third of patients had mild hearing loss. These changes may be involved in language impairments in CDD patients. Additionally, P100 latency significantly correlated with the clinical severity. These features can be used to assess the clinical severity of CDD.


Subject(s)
Brain , Diffusion Tensor Imaging , Evoked Potentials, Auditory, Brain Stem , Evoked Potentials, Visual , Magnetic Resonance Imaging , Spasms, Infantile , Humans , Male , Female , Evoked Potentials, Visual/physiology , Spasms, Infantile/diagnostic imaging , Spasms, Infantile/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Evoked Potentials, Auditory, Brain Stem/physiology , Child , Epileptic Syndromes/diagnostic imaging , Epileptic Syndromes/physiopathology , Epileptic Syndromes/genetics , Child, Preschool , Adolescent , Evoked Potentials, Auditory/physiology , Hearing Loss, Central/physiopathology , Hearing Loss, Central/diagnostic imaging , Severity of Illness Index , Adult , Protein Serine-Threonine Kinases/genetics , Young Adult
8.
Epilepsia ; 65(7): e119-e124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38752438

ABSTRACT

FIRES and NORSE are clinical presentations of disease processes that, to date, remain unexplained without an established etiology in many cases. Neuroinflammation is thought to have paramount importance in the genesis of these conditions. We hereby report the clinical, EEG, brain MRI, and genetic findings of a nuclear family with recurrent febrile-related encephalopathy with refractory de novo Status Epilepticus. Whole-exome sequencing (WES) revealed a homozygous p.C105W pathogenic variant of FADD gene (FAS-associated protein with death domain, FADD), known to cause ultrarare forms of autosomal recessive immunodeficiency that could be associated with variable degrees of lymphoproliferation, cerebral atrophy, and cardiac abnormalities. The FADD-related conditions disrupt FAS-mediated apoptosis and can cause a clinical picture with the characteristics of FIRES. This observation is important because, on one hand, it increases the number of reported patients with FADD deficiency, showing that this disorder may present variable expressivity, and on the other hand, it demonstrates a genetic cause of FIRES involving a cell-mediated inflammation regulatory pathway. This finding supports early treatment with immunomodulatory therapy and could represent a new avenue of research in the field of new onset refractory status epilepticus and related conditions.


Subject(s)
Fas-Associated Death Domain Protein , Humans , Fas-Associated Death Domain Protein/genetics , Female , Male , Seizures, Febrile/genetics , Status Epilepticus/genetics , Status Epilepticus/etiology , Pedigree , Exome Sequencing , Fever/genetics , Fever/complications , Epileptic Syndromes/genetics , Electroencephalography
9.
Eur J Neurosci ; 59(12): 3337-3352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38654472

ABSTRACT

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by a loss-of-function mutation in CDKL5 gene, encoding a serine-threonine kinase highly expressed in the brain. CDD manifests with early-onset epilepsy, autism, motor impairment and severe intellectual disability. While there are no known treatments for CDD, the use of cannabidiol has recently been introduced into clinical practice for neurodevelopmental disorders. Given the increased clinical utilization of cannabidiol, we examined its efficacy in the CDKL5R59X knock-in (R59X) mice, a CDD model based on a human mutation that exhibits both lifelong seizure susceptibility and behavioural deficits. We found that cannabidiol pre-treatment rescued the increased seizure susceptibility in response to the chemoconvulsant pentylenetetrazol (PTZ), attenuated working memory and long-term memory impairments, and rescued social deficits in adult R59X mice. To elucidate a potential mechanism, we compared the developmental hippocampal and cortical expression of common endocannabinoid (eCB) targets in R59X mice and their wild-type littermates, including cannabinoid type 1 receptor (CB1R), transient receptor potential vanilloid type 1 (TRPV1) and 2 (TRPV2), G-coupled protein receptor 55 (GPR55) and adenosine receptor 1 (A1R). Many of these eCB targets were developmentally regulated in both R59X and wild-type mice. In addition, adult R59X mice demonstrated significantly decreased expression of CB1R and TRPV1 in the hippocampus, and TRPV2 in the cortex, while TRPV1 was increased in the cortex. These findings support the potential for dysregulation of eCB signalling as a plausible mechanism and therapeutic target in CDD, given the efficacy of cannabidiol to attenuate hyperexcitability and behavioural deficits in this disorder.


Subject(s)
Cannabidiol , Protein Serine-Threonine Kinases , Seizures , Animals , Cannabidiol/pharmacology , Seizures/drug therapy , Seizures/genetics , Seizures/metabolism , Mice , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Epileptic Syndromes/genetics , Epileptic Syndromes/drug therapy , Pentylenetetrazole , Hippocampus/metabolism , Hippocampus/drug effects , Disease Models, Animal , Gene Knock-In Techniques/methods , Male , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Endocannabinoids/metabolism , Behavior, Animal/drug effects , Mice, Inbred C57BL , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Spasms, Infantile , Receptors, Cannabinoid
10.
Epilepsy Behav ; 154: 109726, 2024 May.
Article in English | MEDLINE | ID: mdl-38513571

ABSTRACT

BACKGROUND: A pathogenic variant in SCN1A can result in a spectrum of phenotypes, including Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS + ) syndrome. Dravet syndrome (DS) is associated with refractory seizures, developmental delay, intellectual disability (ID), motor impairment, and challenging behavior(1,2). GEFS + is a less severe phenotype in which cognition is often normal and seizures are less severe. Challenging behavior largely affects quality of life of patients and their families. This study describes the profile and course of the behavioral phenotype in patients with SCN1A-related epilepsy syndromes, explores correlations between behavioral difficulties and potential risk factors. METHODS: Data were collected from questionnaires, medical records, and semi-structured interviews. Behavior difficulties were measured using the Adult/Child Behavior Checklist (C/ABCL) and Adult self-report (ASR). Other questionnaires included the Pediatric Quality of Life Inventory (PedsQL), the Functional Mobility Scale (FMS) and the Sleep Behavior Questionnaire by Simonds & Parraga (SQ-SP). To determine differences in behavioral difficulties longitudinally, paired T-tests were used. Pearson correlation and Spearman rank test were used in correlation analyses and multivariable regression analyses were employed to identify potential risk factors. RESULTS: A cohort of 147 participants, including 107 participants with DS and 40 with genetic epilepsy with febrile seizures plus (GEFS + ), was evaluated. Forty-six DS participants (43.0 %) and three GEFS + participants (7.5 %) showed behavioral problems in the clinical range on the A/CBCL total problems scale. The behavioral profile in DS exists out of withdrawn behavior, aggressive behavior, and attention problems. In DS patients, sleep disturbances (ß = 1.15, p < 0.001) and a lower age (ß = -0.21, p = 0.001) were significantly associated with behavioral difficulties. Between 2015 and 2022, behavioral difficulties significantly decreased with age (t = -2.24, CI = -6.10 - -0.15, p = 0.04) in DS participants aging from adolescence into adulthood. A decrease in intellectual functioning (ß = 3.37, p = 0.02) and using less antiseizure medications in 2022 than in 2015, (ß = -1.96, p = 0.04), were identified as possible risk factors for developing (more) behavioral difficulties. CONCLUSIONS: These findings suggest that, in addition to epilepsy, behavioral difficulties are a core feature of the DS phenotype. Behavioral problems require personalized management and treatment strategies. Further research is needed to identify effective interventions.


Subject(s)
NAV1.1 Voltage-Gated Sodium Channel , Humans , Male , Female , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adult , Child , Adolescent , Young Adult , Child, Preschool , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/psychology , Epilepsies, Myoclonic/complications , Quality of Life , Epileptic Syndromes/genetics , Epileptic Syndromes/psychology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/psychology , Neurodevelopmental Disorders/etiology , Seizures, Febrile/genetics , Seizures, Febrile/psychology , Seizures, Febrile/complications , Problem Behavior/psychology , Epilepsy/genetics , Epilepsy/psychology , Epilepsy/complications
11.
Epileptic Disord ; 26(2): 219-224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436508

ABSTRACT

Pathogenic variants in SCN8A are associated with a broad phenotypic spectrum, including Self-Limiting Familial Infantile Epilepsy (SeLFIE), characterized by infancy-onset age-related seizures with normal development and cognition. Movement disorders, particularly paroxysmal kinesigenic dyskinesia typically arising after puberty, may represent another core symptom. We present the case of a 1-year-old girl with a familial disposition to self-limiting focal seizures from the maternal side and early-onset orofacial movement disorders associated with SCN8A-SeLFIE. Brain MRI was normal. Genetic testing revealed a maternally inherited SCN8A variant [c.4447G > A; p.(Glu1483Lys)]. After the introduction of valproic acid, she promptly achieved seizure control as well as complete remission of strabismus and a significant decrease in episodes of tongue deviation. Family history, genetic findings, and epilepsy phenotype are consistent with SCN8A-SeLFIE. Movement disorders are an important part of the SCN8A phenotypic spectrum, and this case highlights the novel early-onset orofacial movement disorders associated with this condition. The episodes of tongue deviation and protrusion suggest focal oromandibular (lingual) dystonia. Additionally, while infantile strabismus or esophoria is a common finding in healthy individuals, our case raises the possibility of an ictal origin of the strabismus. This study underscores the importance of recognizing and addressing movement disorders in SCN8A-SeLFIE patients, particularly the rare early-onset orofacial manifestations. It adds to the growing body of knowledge regarding the diverse clinical presentations of SCN8A-associated disorders and suggests potential avenues for clinical management and further research.


Subject(s)
Dystonia , Dystonic Disorders , Epilepsy , Epileptic Syndromes , Movement Disorders , Strabismus , Female , Humans , Infant , Dystonia/genetics , Dystonic Disorders/genetics , Epilepsy/diagnosis , Epileptic Syndromes/genetics , Mutation , NAV1.6 Voltage-Gated Sodium Channel/genetics , Seizures/genetics , Strabismus/genetics
12.
Genes (Basel) ; 15(3)2024 02 21.
Article in English | MEDLINE | ID: mdl-38540325

ABSTRACT

Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.


Subject(s)
Epilepsy , Epileptic Syndromes , Spasms, Infantile , Animals , Precision Medicine , Spasms, Infantile/genetics , Epilepsy/genetics , Epileptic Syndromes/genetics , Spasm/complications
13.
Am J Med Genet A ; 194(7): e63570, 2024 07.
Article in English | MEDLINE | ID: mdl-38425131

ABSTRACT

CDKL5 deficiency disorder (CDD) is a genetically caused developmental epileptic encephalopathy that causes severe communication impairments. Communication of individuals with CDD is not well understood in the literature and currently available measures are not well validated in this population. Accurate and sensitive measurement of the communication of individuals with CDD is important for understanding this condition, clinical practice, and upcoming interventional trials. The aim of this descriptive qualitative study was to understand how individuals with CDD communicate, as observed by caregivers. Participants were identified through the International CDKL5 Disorder Database and invited to take part if their child had a pathogenic variant of the CDKL5 gene and they had previously completed the Communication and Symbolic Behavior Checklist (CSBS-DP ITC). The sample comprised caregivers of 23 individuals with CDD, whose ages ranged from 2 to 30 years (median 13 years), 15 were female, and most did not use words. Semistructured interviews were conducted via videoconference and analyzed using a conventional content analysis. Three overarching categories were identified: mode, purpose and meaning, and reciprocal exchanges. These categories described the purposes and mechanism of how some individuals with CDD communicate, including underpinning influential factors. Novel categories included expressing a range of emotions, and reciprocal exchanges (two-way interactions that varied in complexity). Caregivers observed many communication modes for multiple purposes. Understanding how individuals with CDD communicate improves understanding of the condition and will guide research to develop accurate measurement for clinical practice and upcoming medication trials.


Subject(s)
Caregivers , Communication , Epileptic Syndromes , Protein Serine-Threonine Kinases , Spasms, Infantile , Humans , Caregivers/psychology , Female , Male , Child , Epileptic Syndromes/genetics , Adolescent , Adult , Child, Preschool , Spasms, Infantile/genetics , Spasms, Infantile/physiopathology , Spasms, Infantile/diagnosis , Protein Serine-Threonine Kinases/genetics , Young Adult , Qualitative Research
14.
Am J Intellect Dev Disabil ; 129(2): 101-109, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38411242

ABSTRACT

Loss of function variants in the Cyclin-dependent kinase-like 5 gene (CDKL5) causes CDKL5 deficiency disorder (CDD). Most cases of CDD are due to a de novo missense or truncating variants. The CDKL5 gene was discovered in 1998 as part of the genomic mapping of the chromosome Xp22 region that led to the discovery of the serine-threonine kinases STK9. Since then, there have been significant advancements in the description of the disease in humans, the understanding of the pathophysiology, and the management of the disease. There have been many lessons learned since the initial description of the condition in humans in 2003. In this article, we will focus on pathophysiology, clinical manifestations, with particular focus on seizures because of its relevance to the medical practitioners and researchers and guidelines for management. We finalize the manuscript with the voice of the parents and caregivers, as discussed with the 2019 meeting with the Food and Drug Administration.


Subject(s)
Epileptic Syndromes , Spasms, Infantile , United States , Humans , Spasms, Infantile/genetics , Epileptic Syndromes/genetics , Protein Serine-Threonine Kinases/genetics
15.
Am J Med Genet A ; 194(7): e63577, 2024 07.
Article in English | MEDLINE | ID: mdl-38421079

ABSTRACT

SMC1A epilepsy syndrome or developmental and epileptic encephalopathy-85 with or without midline brain defects (DEE85, OMIM #301044) is an X-linked neurologic disorder associated with mutations of the SMC1A gene, which is also responsible for about 5% of patients affected by Cornelia de Lange syndrome spectrum (CdLS). Only described in female patients, SMC1A epilepsy syndrome is characterized by the onset of severe refractory epileptic seizures in the first year of life, global developmental delay, a variable degree of intellectual disability, and dysmorphic facial features not typical of CdLS. This was a descriptive observational study for the largest international cohort with this specific disorder. The main goal of this study was to improve the knowledge of the natural history of this phenotype with particular attention to the psychomotor development and the epilepsy data. The analyzed cohort shows normal prenatal growth with the subsequent development of postnatal microcephaly. The incidence of neonatal problems (seizures and respiratory compromise) is considerable (51.4%). There is a significant prevalence of central nervous system (20%) and cardiovascular malformations (20%). Motor skills are generally delayed. The presence of drug-resistant epilepsy is confirmed; the therapeutic role of a ketogenic diet is still uncertain. The significant regression of previously acquired skills following the onset of seizures has been observed. Facial dysmorphisms are variable and no patient shows a classic CdLS phenotype. To sum up, SMC1A variants caused drug-resistant epilepsy in these patients, more than two-thirds of whom were shown to progress to developmental and epileptic encephalopathy. The SMC1A gene variants are all different from each other (apart from a couple of monozygotic twins), demonstrating the absence of a mutational hotspot in the SMC1A gene. Owing to the absence of phenotypic specificity, whole-exome sequencing is currently the diagnostic gold standard.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Mutation , Humans , Female , Male , Cell Cycle Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , Child, Preschool , Infant , Mutation/genetics , Child , Epilepsy/genetics , Epilepsy/epidemiology , Epilepsy/pathology , Epilepsy/diagnosis , Phenotype , Cohort Studies , Adolescent , Infant, Newborn , Epileptic Syndromes/genetics , Epileptic Syndromes/epidemiology , De Lange Syndrome/genetics , De Lange Syndrome/epidemiology , De Lange Syndrome/pathology
17.
Clin Transl Sci ; 17(1): e13679, 2024 01.
Article in English | MEDLINE | ID: mdl-37955180

ABSTRACT

Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore-forming α-subunit of the NaV 1.1 voltage-gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A-positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV 1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.


Subject(s)
Epilepsies, Myoclonic , Epilepsy , Epileptic Syndromes , Humans , Epilepsies, Myoclonic/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Epileptic Syndromes/genetics , Epilepsy/genetics , Phenotype , Mutation, Missense , Mutation
18.
Epilepsia ; 65(3): 792-804, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38101940

ABSTRACT

OBJECTIVE: Copy number variants (CNVs) contribute to genetic risk and genetic etiology of both rare and common epilepsies. Whereas many studies have explored the role of CNVs in sporadic or severe cases, fewer have been done in familial generalized and focal epilepsies. METHODS: We analyzed exome sequence data from 267 multiplex families and 859 first-degree relative pairs with a diagnosis of genetic generalized epilepsies or nonacquired focal epilepsies to predict CNVs. Validation and segregation studies were performed using an orthogonal method when possible. RESULTS: We identified CNVs likely to contribute to epilepsy risk or etiology in the probands of 43 of 1116 (3.9%) families, including known recurrent CNVs (16p13.11 deletion, 15q13.3 deletion, 15q11.2 deletion, 16p11.2 duplication, 1q21.1 duplication, and 5-Mb duplication of 15q11q13). We also identified CNVs affecting monogenic epilepsy genes, including four families with CNVs disrupting the DEPDC5 gene, and a de novo deletion of HNRNPU in one affected individual from a multiplex family. Several large CNVs (>500 kb) of uncertain clinical significance were identified, including a deletion in 18q, a large duplication encompassing the SCN1A gene, and a 15q13.3 duplication (BP4-BP5). SIGNIFICANCE: The overall CNV landscape in common familial epilepsies is similar to that of sporadic epilepsies, with large recurrent deletions at 15q11, 15q13, and 16p13 contributing in 2.5%-3% of families. CNVs that interrupt known epilepsy genes and rare, large CNVs were also identified. Multiple etiologies were found in a subset of families, emphasizing the importance of genetic testing for multiple affected family members. Rare CNVs found in a single proband remain difficult to interpret and require larger cohorts to confirm their potential role in disease. Overall, our work indicates that CNVs contribute to the complex genetic architecture of familial generalized and focal epilepsies, supporting the role for clinical testing in affected individuals.


Subject(s)
Epilepsies, Partial , Epilepsy , Epileptic Syndromes , Humans , DNA Copy Number Variations/genetics , Epilepsy/genetics , Epilepsies, Partial/genetics , Genetic Testing , Epileptic Syndromes/genetics
19.
Nat Commun ; 14(1): 7830, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38081835

ABSTRACT

Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.


Subject(s)
Epilepsy , Epileptic Syndromes , Spasms, Infantile , Animals , Child , Humans , Mice , Calcium Channels/genetics , Epilepsy/genetics , Epileptic Syndromes/genetics , Protein Serine-Threonine Kinases/genetics , Spasms, Infantile/genetics
20.
Cell Rep ; 42(10): 113202, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37777961

ABSTRACT

CDKL5 deficiency disorder (CDD) is a severe epileptic encephalopathy resulting from pathological mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene. Despite significant progress in understanding the neuronal function of CDKL5, the molecular mechanisms underlying CDD-associated epileptogenesis are unknown. Here, we report that acute ablation of CDKL5 from adult forebrain glutamatergic neurons leads to elevated neural network activity in the dentate gyrus and the occurrence of early-onset spontaneous seizures via tropomyosin-related kinase B (TrkB) signaling. We observe increased expression of brain-derived neurotrophic factor (BDNF) and enhanced activation of its receptor TrkB in the hippocampus of Cdkl5-deficient mice prior to the onset of behavioral seizures. Moreover, reducing TrkB signaling in these mice rescues the altered synaptic activity and suppresses recurrent seizures. These results suggest that TrkB signaling mediates epileptogenesis in a mouse model of CDD and that targeting this pathway might be effective for treating epilepsy in patients affected by CDKL5 mutations.


Subject(s)
Epileptic Syndromes , Spasms, Infantile , Humans , Adult , Animals , Mice , Spasms, Infantile/genetics , Spasms, Infantile/metabolism , Epileptic Syndromes/genetics , Epileptic Syndromes/metabolism , Seizures/metabolism , Neurons/metabolism , Mice, Knockout , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL