Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 864
Filter
1.
Cell Commun Signal ; 22(1): 398, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143495

ABSTRACT

Ovarian granulosa cells are essential to gonadotrophin-regulated estrogen production, female cycle maintenance and fertility. The epithelial Na+ channel (ENaC) is associated with female fertility; however, whether and how it plays a role in ovarian cell function(s) remained unexplored. Here, we report patch-clamp and Na+ imaging detection of ENaC expression and channel activity in both human and mouse ovarian granulosa cells, which are promoted by pituitary gonadotrophins, follicle stimulating hormone (FSH) or luteinizing hormone (LH). Cre-recombinase- and CRISPR-Cas9-based granulosa-specific knockout of ENaC α subunit (Scnn1a) in mice resulted in failed estrogen elevation at early estrus, reduced number of corpus luteum, abnormally extended estrus phase, reduced litter size and subfertility in adult female mice. Further analysis using technologies including RNA sequencing and Ca2+ imaging revealed that pharmacological inhibition, shRNA-based knockdown or the knockout of ENaC diminished spontaneous or stimulated Ca2+ oscillations, lowered the capacity of intracellular Ca2+ stores and impaired FSH/LH-stimulated transcriptome changes for estrogen production in mouse and/or human granulosa cells. Together, these results have revealed a previously undefined role of ENaC in modulating gonadotrophin signaling in granulosa cells for estrogen homeostasis and thus female fertility.


Subject(s)
Calcium , Epithelial Sodium Channels , Estrogens , Fertility , Granulosa Cells , Homeostasis , Female , Animals , Granulosa Cells/metabolism , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Humans , Estrogens/metabolism , Mice , Fertility/genetics , Calcium/metabolism , Gonadotropins/metabolism , Signal Transduction , Mice, Knockout , Calcium Signaling
2.
PLoS One ; 19(7): e0307809, 2024.
Article in English | MEDLINE | ID: mdl-39052685

ABSTRACT

The airway epithelium plays a pivotal role in regulating mucosal immunity and inflammation. Epithelial barrier function, homeostasis of luminal fluid, and mucociliary clearance are major components of mucosal defense mechanisms. The epithelial sodium channel (ENaC) is one of the key players in controlling airway fluid volume and composition, and characteristic cytokines cause ENaC and barrier dysfunctions following pulmonary infections or allergic reactions. Given the limited understanding of the requisite duration and magnitude of cytokines to affect ENaC and barrier function, available treatment options for restoring normal ENaC activity are limited. Previous studies have demonstrated that distinct amino acids can modulate epithelial ion channel activities and barrier function in intestines and airways. Here, we have investigated the time- and concentration-dependent effect of representative cytokines for Th1- (IFN-γ and TNF-α), Th2- (IL-4 and IL-13), and Treg-mediated (TGF-ß1) immune responses on ENaC activity and barrier function in human bronchial epithelial cells. When cells were exposed to Th1 and Treg cytokines, ENaC activity decreased gradually while barrier function remained largely unaffected. In contrast, Th2 cytokines had an immediate and profound inhibitory effect on ENaC activity that was subsequently followed by epithelial barrier disruption. These functional changes were associated with decreased membrane protein expression of α-, ß-, and γ-ENaC, and decreased mRNA levels of ß- and γ-ENaC. A proprietary blend of amino acids was developed based on their ability to prevent Th2 cytokine-induced ENaC dysfunction. Exposure to the select amino acids reversed the inhibitory effect of IL-13 on ENaC activity by increasing mRNA levels of ß- and γ-ENaC, and protein expression of γ-ENaC. This study indicates the beneficial effect of select amino acids on ENaC activity in an in vitro setting of Th2-mediated inflammation suggesting these amino acids as a novel therapeutic approach for correcting this condition.


Subject(s)
Amino Acids , Bronchi , Cytokines , Epithelial Cells , Epithelial Sodium Channels , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Humans , Bronchi/cytology , Bronchi/metabolism , Bronchi/drug effects , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cytokines/metabolism , Amino Acids/pharmacology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/drug effects , Tumor Necrosis Factor-alpha/metabolism , Cell Line , Th1 Cells/immunology , Th1 Cells/drug effects , Th1 Cells/metabolism , Interleukin-13/metabolism
3.
J Pediatr Endocrinol Metab ; 37(8): 745-749, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38963175

ABSTRACT

OBJECTIVES: Pseudohypoaldosteronism type 1 (PHA1) has two genetically distinct variants, including renal and systemic forms. Systemic PHA type I (PHA1B) has varying degrees of clinical presentation and results from mutations in genes encoding subunits of the epithelial sodium channel (ENaC) including the alpha, beta, and gamma subunits. To date, about 45 variants of PHA1B have been identified. CASE PRESENTATION: We report a boy with PHA1B, who presented with vomiting, lethargy, and poor feeding due to salt wasting six days after birth. The patient had electrolyte imbalances. A novel SCNN1A (sodium channel epithelial subunit alpha) gene mutation, NM_001038.6:c.1497G>C, with an autosomal recessive pattern, was identified by whole exosome sequencing. This variant was inherited as a homozygote from both heterozygous parents. CONCLUSIONS: PHA should be considered in neonates with hyponatremia and hyperkalemia. This case report presents a patient with a novel mutation in SCNN1A that has not been previously reported. Long-term follow-up of identified patients to understand the underlying phenotype--genotype link is necessary.


Subject(s)
Epithelial Sodium Channels , Homozygote , Mutation , Pseudohypoaldosteronism , Humans , Male , Pseudohypoaldosteronism/genetics , Epithelial Sodium Channels/genetics , Iran , Infant, Newborn , Prognosis
4.
Physiol Rep ; 12(14): e16139, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39016176

ABSTRACT

The monocyte-macrophage system plays an important role in phagocytosis of pathogens and cellular debris following infection or tissue injury in several pathophysiological conditions. We examined ENaC/ASIC subunit transcript expression and the importance of select subunits in migration of bone marrow derived monocytes (freshly isolated) and macrophages (monocytes differentiated in culture). We also examined the effect of select subunit deletion on macrophage phenotype. BM monocytes were harvested from the femurs of male and female WT and KO mice (6-12 weeks of age). Our results show that α, ß, γENaC, and ASIC1-5 transcripts are expressed in BM macrophages and monocytes to varying degrees. At least αENaC, ßENaC, and ASIC2 subunits contribute to chemotactic migration responses in BM monocyte-macrophages. Polarization markers (CD86, soluble TNFα) in BM macrophages from mice lacking ASIC2a plus ßENaC were shifted towards the M1 phenotype. Furthermore, select M1 phenotypic markers were recovered with rescue of ßENaC or ASIC2. Taken together, these data suggest that ßENaC and ASIC2 play an important role in BM macrophage migration and loss of ßENaC and/or ASIC2 partially polarizes macrophages to the M1 phenotype. Thus, targeting ENaC/ASIC expression in BM macrophages may regulate their ability to migrate to sites of injury.


Subject(s)
Acid Sensing Ion Channels , Chemotaxis , Epithelial Sodium Channels , Macrophages , Monocytes , Animals , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Macrophages/metabolism , Male , Mice , Acid Sensing Ion Channels/metabolism , Acid Sensing Ion Channels/genetics , Female , Monocytes/metabolism , Mice, Inbred C57BL , Mice, Knockout , Bone Marrow Cells/metabolism , Cells, Cultured
5.
Am J Physiol Renal Physiol ; 327(2): F265-F276, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38867672

ABSTRACT

Ubiquitination influences the expression of the epithelial Na+ channel (ENaC). We assessed the mechanisms of selective ubiquitination of the mature, cleaved form of γENaC in both native rodent kidneys and Fisher rat thyroid (FRT) cells expressing the channel heterologously. In both models, singly cleaved and fully cleaved γENaCs were strongly ubiquitinated, implying that the second cleavage releasing an inhibitory peptide was not essential for the process. To see whether location of the protein in or near the apical membrane rather than cleavage per se influences ubiquitination, we studied mutants of γENaC in which cleavage sites are abolished. These subunits were ubiquitinated only when coexpressed with α- and ßENaC, facilitating trafficking through the Golgi apparatus. To test whether reaching the apical surface is necessary we performed in situ surface biotinylation and measured ENaC ubiquitination in the apical membrane of rat kidney. Ubiquitination of cleaved γENaC was similar in whole kidney and surface fractions, implying that both apical and subapical channels could be modified. In FRT cells, inhibiting clathrin-mediated endocytosis with Dyngo-4a increased both total and ubiquitinated γENaC at the cell surface. Finally, we tested the idea that increased intracellular Na+ could stimulate ubiquitination. Administration of amiloride to block Na+ entry through the channels did not affect ubiquitination of γENaC in either FRT cells or the rat kidney. However, presumed large increases in cellular Na+ produced by monensin in FRT cells or acute Na+ repletion in rats increased ubiquitination and decreased overall ENaC expression.NEW & NOTEWORTHY We have explored the mechanisms underlying the ubiquitination of the γ subunit of epithelial Na+ channel (ENaC), a process believed to control channel internalization and degradation. We previously reported that the mature, cleaved form of the subunit is selectively ubiquitinated. Here we show that this specificity arises not from the cleavage state of the protein but from its location in the cell. We also show that under some conditions, increased intracellular Na+ can stimulate ENaC ubiquitination.


Subject(s)
Endocytosis , Epithelial Sodium Channels , Kidney , Ubiquitination , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Animals , Kidney/metabolism , Rats , Rats, Inbred F344 , Male
6.
BMJ Case Rep ; 17(6)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914525

ABSTRACT

Pseudohypoaldosteronism type 1 is a rare congenital autosomal recessive disorder, characterised by failure of receptor response to aldosterone. It is caused by mutation in SCNN1A gene with clinical features like failure to thrive in infancy, hyponatraemia, hyperkalaemia and metabolic acidosis. We present a male infant with seizures, hyperkalaemia and with failure to thrive, diagnosed at day 6 of life. The baby required repeated correction for hyperkalaemia; hence, after ruling out treatable causes for hyperkalaemia, exonerated sequencing was done which showed pathogenic mutation for cystic fibrosis and recessive mutation for pseudohypoaldosteronism. But the child was clinically in favour of pseudohypoaldosteronism. Hence, features of pseudohypoaldosteronism predominate cystic fibrosis; they both may coexist.


Subject(s)
Cystic Fibrosis , Hyperkalemia , Pseudohypoaldosteronism , Humans , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/diagnosis , Pseudohypoaldosteronism/complications , Cystic Fibrosis/complications , Cystic Fibrosis/genetics , Male , Hyperkalemia/etiology , Infant, Newborn , Epithelial Sodium Channels/genetics , Failure to Thrive/etiology , Seizures/etiology , Mutation
7.
Hypertens Res ; 47(8): 2144-2156, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38778170

ABSTRACT

To explore the mechanism of the hypertension in dopamine receptor-4 (Drd4) null mice, we determined the salt sensitivity and renal sodium transport proteins in Drd4-/- and Drd4+/+ mice with varied salt diets. On normal NaCl diet (NS), mean arterial pressures (MAP, telemetry) were higher in Drd4-/- than Drd4+/+; Low NaCl diet (LS) tended to decrease MAP in both strains; high NaCl diet (HS) elevated MAP with sodium excretion decreased and pressure-natriuresis curve shifted to right in Drd4-/- relative to Drd4+/+ mice. Drd4-/- mice exhibited increased renal sodium-hydrogen exchanger 3 (NHE3), sodium-potassium-2-chloride cotransporter (NKCC2), sodium-chloride cotransporter (NCC), and outer medullary α-epithelial sodium channel (αENaC) on NS, decreased NKCC2, NCC, αENaC, and αNa+-K+-ATPase on LS, and increased αENaC on HS. NKCC2, NCC, αENaC, and αNa+-K+-ATPase in plasma membrane were greater in Drd4-/- than in Drd4+/+ mice with HS. D4R was expressed in proximal and distal convoluted tubules, thick ascending limbs, and outer medullary collecting ducts and colocalized with NKCC2 and NCC. The phosphorylation of NKCC2 was enhanced but ubiquitination was reduced in the KO mice. There were no differences between the mouse strains in serum aldosterone concentrations and urinary dopamine excretions despite their changes with diets. The mRNA expressions of renal NHE3, NKCC2, NCC, and αENaC on NS were not altered in Drd4-/- mice. Thus, increased protein expressions of NHE3, NKCC2, NCC and αENaC are associated with hypertension in Drd4-/- mice; increased plasma membrane protein expression of NKCC2, NCC, αENaC, and αNa+-K+-ATPase may mediate the salt sensitivity of Drd4-/- mice.


Subject(s)
Kidney , Mice, Knockout , Receptors, Dopamine D4 , Animals , Kidney/metabolism , Mice , Receptors, Dopamine D4/genetics , Receptors, Dopamine D4/metabolism , Up-Regulation , Sodium Chloride, Dietary , Solute Carrier Family 12, Member 1/metabolism , Male , Hypertension/metabolism , Hypertension/genetics , Sodium-Hydrogen Exchanger 3/metabolism , Sodium-Hydrogen Exchanger 3/genetics , Blood Pressure/physiology , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Sodium-Hydrogen Exchangers/metabolism , Sodium-Hydrogen Exchangers/genetics , Mice, Inbred C57BL
8.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634134

ABSTRACT

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Subject(s)
Epithelial Sodium Channels , Proteolysis , Sodium , Animals , Epithelial Sodium Channels/metabolism , Epithelial Sodium Channels/genetics , Male , Female , Sodium/metabolism , Kidney Tubules, Collecting/metabolism , Homeostasis , Furin/metabolism , Furin/genetics , Mice , Colon/metabolism , Potassium/metabolism , Diet, Sodium-Restricted , Mice, 129 Strain , Mutation , Amiloride/pharmacology
9.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G555-G566, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38349781

ABSTRACT

Cystic fibrosis (CF) is a genetic disease caused by the mutations of cystic fibrosis transmembrane conductance regulator (CFTR), the cystic fibrosis transmembrane conductance regulator gene. Cftr is a critical ion channel expressed in the apical membrane of mouse salivary gland striated duct cells. Although Cftr is primarily a Cl- channel, its knockout leads to higher salivary Cl- and Na+ concentrations and lower pH. Mouse experiments show that the activation of Cftr upregulates epithelial Na+ channel (ENaC) protein expression level and Slc26a6 (a 1Cl-:2[Formula: see text] exchanger of the solute carrier family) activity. Experimentally, it is difficult to predict how much the coregulation effects of CFTR contribute to the abnormal Na+, Cl-, and [Formula: see text] concentrations and pH in CF saliva. To address this question, we construct a wild-type mouse salivary gland model and simulate CFTR knockout by altering the expression levels of CFTR, ENaC, and Slc26a6. By reproducing the in vivo and ex vivo final saliva measurements from wild-type and CFTR knockout animals, we obtain computational evidence that ENaC and Slc26a6 activities are downregulated in CFTR knockout in salivary glands.NEW & NOTEWORTHY This paper describes a salivary gland mathematical model simulating the ion exchange between saliva and the salivary gland duct epithelium. The novelty lies in the implementation of CFTR regulating ENaC and Slc26a6 in a CFTR knockout gland. By reproducing the experimental saliva measurements in wild-type and CFTR knockout glands, the model shows that CFTR regulates ENaC and Slc26a6 anion exchanger in salivary glands. The method could be used to understand the various cystic fibrosis phenotypes.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Mice , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cell Membrane/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Sodium/metabolism , Models, Theoretical , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Antiporters/genetics , Antiporters/metabolism
10.
Brain Struct Funct ; 229(3): 681-694, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38305875

ABSTRACT

Epithelial sodium channel (ENaC) is responsible for regulating Na+ homeostasis. While its physiological functions have been investigated extensively in peripheral tissues, far fewer studies have explored its functions in the brain. Since our limited knowledge of ENaC's distribution in the brain impedes our understanding of its functions there, we decided to explore the whole-brain expression pattern of the Scnn1a gene, which encodes the core ENaC complex component ENaCα. To visualize Scnn1a expression in the brain, we crossed Scnn1a-Cre mice with Rosa26-lsl-tdTomato mice. Brain sections were subjected to immunofluorescence staining using antibodies against NeuN or Myelin Binding Protein (MBP), followed by the acquisition of confocal images. We observed robust tdTomato fluorescence not only in the soma of cortical layer 4, the thalamus, and a subset of amygdalar nuclei, but also in axonal projections in the hippocampus and striatum. We also observed expression in specific hypothalamic nuclei. Contrary to previous reports, however, we did not detect significant expression in the circumventricular organs, which are known for their role in regulating Na+ balance. Finally, we detected fluorescence in cells lining the ventricles and in the perivascular cells of the median eminence. Our comprehensive mapping of Scnn1a-expressing cells in the brain will provide a solid foundation for further investigations of the physiological roles ENaC plays within the central nervous system.


Subject(s)
Brain , Epithelial Sodium Channels , Animals , Mice , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Hypothalamus/metabolism , Red Fluorescent Protein , Sodium/metabolism , Brain/metabolism
11.
Clin J Am Soc Nephrol ; 19(5): 610-619, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38265765

ABSTRACT

BACKGROUND: Liddle syndrome was initially characterized by hypertension, hypokalemia, metabolic alkalosis, and suppressed plasma renin and aldosterone, resulting from gain-of-function variants in the epithelial Na + channel (ENaC). Efficient treatment with ENaC inhibitors is available, but the phenotypic spectrum of genetically confirmed Liddle syndrome is unknown, and some patients may remain undiagnosed and at risk of inefficient treatment. In this study, we used a reverse phenotyping approach to investigate the Liddle syndrome phenotypic spectrum and genotype-phenotype correlations. METHODS: Pubmed, Embase, Scopus, and the Human Gene Mutation Database were searched for articles reporting Liddle syndrome variants. The genetic variants were systematically classified to identify patients with genetically confirmed Liddle syndrome. We identified 62 articles describing 45 unique variants within 86 Liddle syndrome families, and phenotypic data were pooled for 268 patients with confirmed Liddle syndrome. RESULTS: The Liddle syndrome variants localized to exon 13 of SCNN1B and SCNN1G , disrupting the PPPxY motif critical for downregulating ENaC activity. Hypertension sensitive to ENaC inhibition was present in 97% of adults carrying Liddle syndrome variants while hypokalemia, metabolic alkalosis, and plasma renin and aldosterone suppression showed incomplete penetrance. In addition, 95% and 55% of patients had a family history of hypertension or cerebrovascular events, respectively. The genotype had minor phenotypic effects; however, probands compared with relatives showed significant phenotypic discrepancies consistent with selection bias for initial genetic screening. CONCLUSIONS: Patients with genetically confirmed Liddle syndrome displayed a phenotypic spectrum, with ENaC-sensitive hypertension and family history of hypertension being the most common features. The phenotype seemed independent of the specific gene or variant type involved.


Subject(s)
Epithelial Sodium Channels , Liddle Syndrome , Phenotype , Humans , Liddle Syndrome/genetics , Liddle Syndrome/diagnosis , Epithelial Sodium Channels/genetics , Adult , Genetic Association Studies , Female , Male , Hypertension/genetics , Hypertension/physiopathology , Hypertension/drug therapy , Renin/blood , Renin/genetics , Hypokalemia/genetics , Hypokalemia/blood , Adolescent , Young Adult , Genetic Predisposition to Disease , Child , Mutation
12.
Steroids ; 202: 109348, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049079

ABSTRACT

The COVID-19 pandemic has been a global health crisis of unprecedented magnitude. In the battle against the SARS-CoV-2 coronavirus, dexamethasone, a widely used corticosteroid with potent anti-inflammatory properties, has emerged as a promising therapy in the fight against severe COVID-19. Dexamethasone is a synthetic glucocorticoid that exerts its therapeutic effects by suppressing the immune system and reducing inflammation. In the context of COVID-19, the severe form of the disease is often characterized by a hyperactive immune response, known as a cytokine storm. Dexamethasone anti-inflammatory properties make it a potent tool in modulating this exaggerated immune response. Lung inflammation may lead to excessive fluid accumulation in the airways which can reduce gas exchange and mucociliary clearance. Pulmonary oedema and flooding of the airways are hallmarks of severe COVID-19 lung disease. The volume of airway surface liquid is determined by a delicate balance of salt and water secretion and absorption across the airway epithelium. In addition to its anti-inflammatory actions, dexamethasone modulates the activity of ion channels which regulate electrolyte and water transport across the airway epithelium. The observations of dexamethasone activation of sodium ion absorption via ENaC Na+ channels and inhibition of chloride ion secretion via CFTR Cl- channels to decrease airway surface liquid volume indicate a novel therapeutic action of the glucocorticoid to reverse airway flooding. This brief review delves into the early non-genomic and late genomic signaling mechanisms of dexamethasone regulation of ion channels and airway surface liquid dynamics, shedding light on the molecular mechanisms underpinning the action of the glucocorticoid in managing COVID-19.


Subject(s)
COVID-19 , Glucocorticoids , Humans , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment , Epithelial Sodium Channels/genetics , Dexamethasone , Anti-Inflammatory Agents , Water
13.
Am J Physiol Cell Physiol ; 326(2): C540-C550, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38145296

ABSTRACT

Vitamin D deficiency is a risk factor for exacerbation of obstructive airway disease, a hallmark of which is mucus dehydration and plugging. Calcitriol (the active form of vitamin D) deficiency in cultured human airway epithelia resulted in increased SCNN1G and ATP1B1 mRNAs encoding subunits of ENaC and the Na-K pump compared with supplemented epithelia. These drive the absorption of airway surface liquid. Consistently, calcitriol-deficient epithelia absorbed liquid faster than supplemented epithelia. Calcitriol deficiency also increased amiloride-sensitive Isc and Gt without altering Na-K pump activity, indicating the changes in amiloride-sensitivity arose from ENaC. ENaC activity can be regulated by trafficking, proteases, and channel abundance. We found the effect was likely not induced by changes to endocytosis of ENaC given that calcitriol did not affect the half-lives of amiloride-sensitive Isc and Gt. Furthermore, trypsin nominally increased Isc produced by epithelia ± calcitriol, suggesting calcitriol did not affect proteolytic activation of ENaC. Consistent with mRNA and functional data, calcitriol deficiency resulted in increased γENaC protein. These data indicate that the vitamin D receptor response controls ENaC function and subsequent liquid absorption, providing insight into the relationship between vitamin D deficiency and respiratory disease.NEW & NOTEWORTHY It is unknown why calcitriol (active vitamin D) deficiency worsens pulmonary disease outcomes. Results from mRNA, immunoblot, Ussing chamber, and absorption experiments indicate that calcitriol deficiency increases ENaC activity in human airway epithelia, decreasing apical hydration. Given that epithelial hydration is required for mucociliary transport and airway innate immune function, the increased ENaC activity observed in calcitriol-deficient epithelia may contribute to respiratory pathology observed in vitamin D deficiency.


Subject(s)
Amiloride , Vitamin D Deficiency , Humans , Vitamin D , Calcitriol/pharmacology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Lung/metabolism , Vitamins , RNA, Messenger/genetics
14.
Mol Med Rep ; 29(2)2024 02.
Article in English | MEDLINE | ID: mdl-38099339

ABSTRACT

Liddle syndrome is an autosomal dominant form of monogenic hypertension that is caused by mutations in SCNN1A, SCNN1B or SCNN1G, which respectively encode the α, ß and γ subunits of the epithelial sodium channel. In the present study, DNA was extracted from leukocytes in peripheral blood obtained from all members of a family with Liddle syndrome. Whole­exome sequencing and Sanger sequencing were performed to assess the candidate variant and a co­segregation analysis was conducted. A frameshift mutation in SCNN1B (NM_ 000336: c.1806dupG, p.Pro603Alafs*5) in the family was identified, characterized by early­onset hypertension and hypokalemia. The mutation led to the truncation of the ß subunit of the epithelial sodium channel and a lack of the conservative PY motif. Furthermore, a systematic review of follow­up data from patients with Liddle syndrome with SCNN1B mutations was performed. The follow­up data of 108 patients with pathogenic SCNN1B mutations from 47 families were summarized. Phenotypic heterogeneity was evident in patients with Liddle syndrome and early­onset hypertension was the most frequent symptom. Patients responded well to targeted amiloride therapy with significant improvements in blood pressure and serum potassium concentration. The present study demonstrates that confirmatory genetic testing and targeted therapy can prevent premature onset of clinical endpoint events in patients with Liddle syndrome.


Subject(s)
Hypertension , Liddle Syndrome , Humans , Liddle Syndrome/diagnosis , Liddle Syndrome/genetics , Liddle Syndrome/drug therapy , Epithelial Sodium Channels/genetics , Frameshift Mutation , Mutation , Hypertension/genetics , Hypertension/drug therapy , Potassium
15.
Eur J Med Chem ; 265: 116038, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38157597

ABSTRACT

Lung selective inhibition of the endothelial sodium channel (ENaC) is a potential mutation agnostic treatment of Cystic Fibrosis (CF). We describe the discovery and development of BI 1265162, the first ENaC inhibitor devoid of the amiloride structural motif that entered clinical trials. The design of BI 1265162 focused on its suitability for inhalation via the Respimat® Soft Mist™ Inhaler and a long duration of action. A convergent and scalable route for the synthesis of BI 1265162 as dihydrogen phosphate salt is presented, that was applied to support clinical trials. A phase 2 study with BI 1265162 did not provide a clear sign of clinical benefit. Whether ENaC inhibition will be able to hold its promise for CF patients remains an open question.


Subject(s)
Cystic Fibrosis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Sodium Channel Blockers/therapeutic use , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/therapeutic use , Amiloride/pharmacology , Amiloride/therapeutic use , Sodium/metabolism , Sodium/therapeutic use
16.
Biochem Biophys Res Commun ; 687: 149187, 2023 12 20.
Article in English | MEDLINE | ID: mdl-37944472

ABSTRACT

Sodium influx carried out by ion channels is one of the main regulators of water-salt and volume balance in cells of blood origin. Previously, we described amiloride-insensitive ENaC-like channels in human myeloid leukemia K562 cells; the intracellular regulatory mechanisms of the channels are associated with actin cytoskeleton dynamics. Recently, an extracellular mechanism of ENaC-like channels activation in K562 cells by the action of serine protease trypsin has been revealed. The other extracellular pathways that modulate ENaC (epithelial Na+ channel) activity and sodium permeability in transformed blood cells are not yet fully investigated. Here, we study the action of capsazepine (CPZ), as δ-ENaC activator, on single channel activity in K562 cells in whole-cell patch clamp experiments. Addition of CPZ (2 µM) to the extracellular solution caused an activation of sodium channels with typical features; unitary conductance was 15.1 ± 0.8 pS. Amiloride derivative benzamil (50 µM) did not inhibit their activity. Unitary currents and conductance of CPZ-activated channels were higher in Na+-containing extracellular solution than in Li+, that is one of the main fingerprints of δ-ENaC. The results of RT-PCR analysis and immunofluorescence staining also confirmed the expression of δ-hENaC (as well as α-, ß-, γ-ENaC) at the mRNA and protein level. These findings allow us to speculate that CPZ activates amiloride-insensitive ENaC-like channels that contain δ-ENaC in К562 cells. Our data reveal a novel extracellular mechanism for ENaC-like activation in human leukemia cells.


Subject(s)
Amiloride , Leukemia, Myeloid , Humans , Amiloride/pharmacology , Amiloride/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Leukemia, Myeloid/metabolism , Sodium/metabolism , Oocytes/metabolism
17.
Toxins (Basel) ; 15(10)2023 10 13.
Article in English | MEDLINE | ID: mdl-37888643

ABSTRACT

Cancer progression is characterized by microenvironmental acidification. Tumor cells adapt to low environmental pH by activating acid-sensing trimeric ion channels of the DEG/ENaC family. The α-ENaC/ASIC1a/γ-ENaC heterotrimeric channel is a tumor-specific acid-sensing channel, and its targeting can be considered a new strategy for cancer therapy. Mambalgin-2 from the Dendroaspis polylepis venom inhibits the α-ENaC/ASIC1a/γ-ENaC heterotrimer more effectively than the homotrimeric ASIC1a channel, initially proposed as the target of mambalgin-2. Although the molecular basis of such mambalgin selectivity remained unclear. Here, we built the models of the complexes of mambalgin-2 with the α-ENaC/ASIC1a/γ-ENaC and ASIC1a channels, performed MD and predicted the difference in the binding modes. The importance of the 'head' loop region of mambalgin-2 for the interaction with the hetero-, but not with the homotrimeric channel was confirmed by site-directed mutagenesis and electrophysiology. A new mode of allosteric regulation of the ENaC channels by linking the thumb domain of the ASIC1a subunit with the palm domain of the γ-ENaC subunit was proposed. The data obtained provide new insights into the regulation of various types of acid-sensing ion channels and the development of new strategies for cancer treatment.


Subject(s)
Epithelial Sodium Channels , Neoplasms , Animals , Epithelial Sodium Channels/genetics , Acid Sensing Ion Channels/genetics , Xenopus laevis/metabolism , Neoplasms/drug therapy
18.
Exp Biol Med (Maywood) ; 248(20): 1768-1779, 2023 10.
Article in English | MEDLINE | ID: mdl-37828834

ABSTRACT

An increase in blood pressure by a high-salt (HS) diet may change the expression levels of renal epithelial sodium channels (ENaCs) and aquaporins (AQPs). Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were exposed to HS and regular-salt (RS) diets for 6 weeks. Mean arterial pressure (MAP) and plasma atrial natriuretic peptide (ANP), angiotensin II (Ang II), aldosterone, and arginine vasopressin (AVP) levels were determined. Expression of mRNA levels of ENaCs and AQPs were quantified by real-time PCR. The MAP was higher in SHRs on the HS diet. Plasma Ang II and aldosterone levels were low while plasma ANP level was high in both strains of rats. Renal expression of mRNA levels of α-, ß-, and γ-ENaCs was lowered in SHRs on the HS diet. Meanwhile, renal AQP1, AQP2, and AQP7 mRNA expression levels were lowered in both strains of rats on the HS diet. Suppression of mRNA expression levels of ENaC and AQP subunits suggests that the high-salt-induced increase in the MAP of SHR may not be solely due to renal sodium and water retention.


Subject(s)
Hypertension , Rats , Animals , Hypertension/metabolism , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Aldosterone/adverse effects , Aquaporin 2 , Rats, Inbred WKY , Blood Pressure , Rats, Inbred SHR , Sodium Chloride, Dietary/adverse effects , Angiotensin II/adverse effects , Diet , RNA, Messenger/genetics , Atrial Natriuretic Factor/metabolism , Atrial Natriuretic Factor/pharmacology
19.
Immunol Invest ; 52(7): 925-939, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37732637

ABSTRACT

Acute lung injury (ALI) is a common lung disease with increasing morbidity and mortality rates due to the lack of specific drugs. Impaired alveolar fluid clearance (AFC) is a primary pathological feature of ALI. Epithelial sodium channel (ENaC) is a primary determinant in regulating the transport of Na+ and the clearance of alveolar edema fluid. Therefore, ENaC is an important target for the development of drugs for ALI therapy. However, the role of ENaC in the progression of ALI remains unclear. Inhibition of early growth response factor (EGR-1) expression has been reported to induce a protective effect on ALI; therefore, we evaluated whether EGR-1 participates in the progression of ALI by regulating ENaC-α in alveolar epithelium. We investigated the potential mechanism of EGR-1-mediated regulation of ENaC in ALI. We investigated whether EGR-1 aggravates the pulmonary edema response in ALI by regulating ENaC. ALI mouse models were established by intrabronchial injection of lipopolysaccharides (LPS). Lentiviruses with EGR-1 knockdown were transfected into LPS-stimulated A549 cells. We found that EGR-1 expression was upregulated in the lung tissues of ALI mice and in LPS-induced A549 cells, and was negatively correlated with ENaC-α expression. Knockdown of EGR-1 increased ENaC-α expression and relieved cellular edema in ALI. Moreover, EGR-1 regulated ENaC-α expression at the transcriptional level, and correspondingly promoted pulmonary edema and aggravated ALI symptoms. In conclusion, our study demonstrated that EGR-1 could promote pulmonary edema by downregulating ENaC-α at the transcriptional level in ALI. Our study provides a new potential therapeutic strategy for treatment of ALI.


EGR-1 expression was increased in LPS-induced ALI mice and associated with aggravated pulmonary edemaEGR-1 induced pulmonary edema relying on regulating the expression of ENaC-α at the transcriptional level by manipulating the promoter.


Subject(s)
Acute Lung Injury , Pulmonary Edema , Animals , Humans , Mice , A549 Cells , Acute Lung Injury/chemically induced , Epithelial Sodium Channels/genetics , Lipopolysaccharides
20.
JCI Insight ; 8(21)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37707951

ABSTRACT

Epithelial Na+ channels (ENaCs) control extracellular fluid volume by facilitating Na+ absorption across transporting epithelia. In vitro studies showed that Cys-palmitoylation of the γENaC subunit is a major regulator of channel activity. We tested whether γ subunit palmitoylation sites are necessary for channel function in vivo by generating mice lacking the palmitoylated cysteines (γC33A,C41A) using CRISPR/Cas9 technology. ENaCs in dissected kidney tubules from γC33A,C41A mice had reduced open probability compared with wild-type (WT) littermates maintained on either standard or Na+-deficient diets. Male mutant mice also had higher aldosterone levels than WT littermates following Na+ restriction. However, γC33A,C41A mice did not have reduced amiloride-sensitive Na+ currents in the distal colon or benzamil-induced natriuresis compared to WT mice. We identified a second, larger conductance cation channel in the distal nephron with biophysical properties distinct from ENaC. The activity of this channel was higher in Na+-restricted γC33A,C41A versus WT mice and was blocked by benzamil, providing a possible compensatory mechanism for reduced prototypic ENaC function. We conclude that γ subunit palmitoylation sites are required for prototypic ENaC activity in vivo but are not necessary for amiloride/benzamil-sensitive Na+ transport in the distal nephron or colon.


Subject(s)
Amiloride , Lipoylation , Mice , Male , Animals , Amiloride/pharmacology , Epithelial Sodium Channels/genetics , Epithelial Sodium Channels/metabolism , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL