Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.253
1.
Front Immunol ; 15: 1386160, 2024.
Article En | MEDLINE | ID: mdl-38779658

The study of peptide repertoires presented by major histocompatibility complex (MHC) molecules and the identification of potential T-cell epitopes contribute to a multitude of immunopeptidome-based treatment approaches. Epitope mapping is essential for the development of promising epitope-based approaches in vaccination as well as for innovative therapeutics for autoimmune diseases, infectious diseases, and cancer. It also plays a critical role in the immunogenicity assessment of protein therapeutics with regard to safety and efficacy concerns. The main challenge emerges from the highly polymorphic nature of the human leukocyte antigen (HLA) molecules leading to the requirement of a peptide mapping strategy for a single HLA allele. As many autoimmune diseases are linked to at least one specific antigen, we established FASTMAP, an innovative strategy to transiently co-transfect a single HLA allele combined with a disease-specific antigen into a human cell line. This approach allows the specific identification of HLA-bound peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Using FASTMAP, we found a comparable spectrum of endogenous peptides presented by the most frequently expressed HLA alleles in the world's population compared to what has been described in literature. To ensure a reliable peptide mapping workflow, we combined the HLA alleles with well-known human model antigens like coagulation factor VIII, acetylcholine receptor subunit alpha, protein structures of the SARS-CoV-2 virus, and myelin basic protein. Using these model antigens, we have been able to identify a broad range of peptides that are in line with already published and in silico predicted T-cell epitopes of the specific HLA/model antigen combination. The transient co-expression of a single affinity-tagged MHC molecule combined with a disease-specific antigen in a human cell line in our FASTMAP pipeline provides the opportunity to identify potential T-cell epitopes/endogenously processed MHC-bound peptides in a very cost-effective, fast, and customizable system with high-throughput potential.


Epitope Mapping , Epitopes, T-Lymphocyte , HLA-E Antigens , Proteomics , Proteomics/methods , HLA-E Antigens/analysis , Epitopes, T-Lymphocyte/analysis , Epitope Mapping/methods , Epitope Mapping/standards , Autoimmune Diseases/diagnosis , Autoimmune Diseases/immunology , Cell Line , Humans , Liquid Chromatography-Mass Spectrometry , Peptides/isolation & purification , Antigen-Presenting Cells/immunology , Artificial Cells/immunology
2.
Commun Biol ; 7(1): 652, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806676

Epitope binning, an approach for grouping antibodies based on epitope similarities, is a critical step in antibody drug discovery. However, conventional methods are complex, involving individual antibody production. Here, we established Epitope Binning-seq, an epitope binning platform for simultaneously analyzing multiple antibodies. In this system, epitope similarity between the query antibodies (qAbs) displayed on antigen-expressing cells and a fluorescently labeled reference antibody (rAb) targeting a desired epitope is analyzed by flow cytometry. The qAbs with epitope similar to the rAb can be identified by next-generation sequencing analysis of fluorescence-negative cells. Sensitivity and reliability of this system are confirmed using rAbs, pertuzumab and trastuzumab, which target human epidermal growth factor receptor 2. Epitope Binning-seq enables simultaneous epitope evaluation of 14 qAbs at various abundances in libraries, grouping them into respective epitope bins. This versatile platform is applicable to diverse antibodies and antigens, potentially expediting the identification of clinically useful antibodies.


Epitopes , Humans , Epitopes/immunology , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Animals , Receptor, ErbB-2/immunology , Receptor, ErbB-2/genetics , Flow Cytometry/methods , Trastuzumab/immunology , Epitope Mapping/methods , Antibodies/immunology , Antibodies/genetics , Antibodies, Monoclonal, Humanized/immunology
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38731888

The interaction of heparin with antithrombin (AT) involves a specific sequence corresponding to the pentasaccharide GlcNAc/NS6S-GlcA-GlcNS3S6S-IdoA2S-GlcNS6S (AGA*IA). Recent studies have revealed that two AGA*IA-containing hexasaccharides, which differ in the sulfation degree of the iduronic acid unit, exhibit similar binding to AT, albeit with different affinities. However, the lack of experimental data concerning the molecular contacts between these ligands and the amino acids within the protein-binding site prevents a detailed description of the complexes. Differential epitope mapping (DEEP)-STD NMR, in combination with MD simulations, enables the experimental observation and comparison of two heparin pentasaccharides interacting with AT, revealing slightly different bound orientations and distinct affinities of both glycans for AT. We demonstrate the effectiveness of the differential solvent DEEP-STD NMR approach in determining the presence of polar residues in the recognition sites of glycosaminoglycan-binding proteins.


Antithrombins , Heparin , Oligosaccharides , Humans , Antithrombins/chemistry , Antithrombins/metabolism , Binding Sites , Epitope Mapping/methods , Heparin/chemistry , Heparin/metabolism , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Binding , Solvents/chemistry
4.
Anal Chem ; 96(19): 7386-7393, 2024 May 14.
Article En | MEDLINE | ID: mdl-38698660

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Epitope Mapping , Receptor, ErbB-2 , Trastuzumab , Humans , Epitope Mapping/methods , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/immunology , Trastuzumab/chemistry , Alkylation , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Halogenation , Protein Footprinting/methods , Antigen-Antibody Complex/chemistry
5.
Biomolecules ; 14(4)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38672470

Investigations on binding strength differences of non-covalent protein complex components were performed by mass spectrometry. T4 fibritin foldon (T4Ff) is a well-studied miniprotein, which together with its biotinylated version served as model system to represent a compactly folded protein to which an Intrinsically Disordered Region (IDR) was attached. The apparent enthalpies of the gas phase dissociation reactions of the homo-trimeric foldon F-F-F and of the homo-trimeric triply biotinylated foldon bF-bF-bF have been determined to be rather similar (3.32 kJ/mol and 3.85 kJ/mol) but quite distinct from those of the singly and doubly biotinylated hetero-trimers F-F-bF and F-bF-bF (1.86 kJ/mol and 1.08 kJ/mol). Molecular dynamics simulations suggest that the ground states of the (biotinylated) T4Ff trimers are highly symmetric and well comparable to each other, indicating that the energy levels of all four (biotinylated) T4Ff trimer ground states are nearly indistinguishable. The experimentally determined differences and/or similarities in enthalpies of the complex dissociation reactions are explained by entropic spring effects, which are noticeable in the T4Ff hetero-trimers but not in the T4Ff homo-trimers. A lowering of the transition state energy levels of the T4Ff hetero-trimers seems likely because the biotin moieties, mimicking intrinsically disordered regions (IDRs), induced asymmetries in the transition states of the biotinylated T4Ff hetero-trimers. This transition state energy level lowering effect is absent in the T4Ff homo-trimer, as well as in the triply biotinylated T4Ff homo-trimer. In the latter, the IDR-associated entropic spring effects on complex stability cancel each other out. ITEM-FIVE enabled semi-quantitative determination of energy differences of complex dissociation reactions, whose differences were modulated by IDRs attached to compactly folded proteins.


Epitope Mapping , Molecular Dynamics Simulation , Epitope Mapping/methods , Protein Folding , Thermodynamics , Biotinylation , Protein Multimerization , Mass Spectrometry
6.
Biomolecules ; 14(3)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38540792

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Encephalitis Virus, Japanese , Hydrogen , Animals , Mice , Epitope Mapping/methods , Encephalitis Virus, Japanese/metabolism , Deuterium/chemistry , Antibodies, Viral , Epitopes/chemistry , Antibodies, Neutralizing , Mass Spectrometry/methods , Antibodies, Monoclonal
7.
Biochim Biophys Acta Proteins Proteom ; 1872(4): 141011, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38499233

Understanding protein-protein interactions is crucial for drug design and investigating biological processes. Various techniques, such as CryoEM, X-ray spectroscopy, linear epitope mapping, and mass spectrometry-based methods, can be employed to map binding regions on proteins. Commonly used mass spectrometry-based techniques are cross-linking and hydrogen­deuterium exchange (HDX). Another approach, hydroxyl radical protein footprinting (HRPF), identifies binding residues on proteins but faces challenges due to high initial costs and complex setups. This study introduces a generally applicable method using Fenton chemistry for epitope mapping in a standard mass spectrometry laboratory. It emphasizes the importance of controls, particularly the inclusion of a negative antibody control, not widely utilized in HRPF epitope mapping. Quantification by TMT labelling is introduced to reduce false positives, enabling direct comparison between sample conditions and biological triplicates. Additionally, six technical replicates were incorporated to enhance the depth of analysis. Observations on the receptor-binding domain (RBD) of SARS-CoV-2 Spike Protein, Alpha and Delta variants, revealed both binding and opening regions. Significantly changed peptides upon mixing with a negative control antibody suggested structural alterations or nonspecific binding induced by the antibody alone. Integration of negative control antibody experiments and high overlap between biological triplicates led to the exclusion of 40% of significantly changed regions. The final identified binding region correlated with existing literature on neutralizing antibodies against RBD. The presented method offers a straightforward implementation for HRPF analysis in a generic mass spectrometry-based laboratory. Enhanced data reliability was achieved through increased technical and biological replicates alongside negative antibody controls.


Epitope Mapping , Hydroxyl Radical , Protein Footprinting , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epitope Mapping/methods , Protein Footprinting/methods , SARS-CoV-2/immunology , SARS-CoV-2/chemistry , Hydroxyl Radical/chemistry , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/chemistry , Protein Binding , COVID-19/virology , COVID-19/immunology , Binding Sites , Antibodies, Viral/immunology , Antibodies, Viral/chemistry , Mass Spectrometry/methods , Protein Domains
8.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Article En | MEDLINE | ID: mdl-38342664

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Peptide Library , Peptides , Epitope Mapping/methods , Cost-Benefit Analysis , Peptides/genetics , Peptides/chemistry , Antibodies, Monoclonal/genetics , Epitopes/genetics , Epitopes/chemistry , Ribosomes/genetics , High-Throughput Nucleotide Sequencing , Computational Biology , RNA, Messenger
9.
Mol Cell Proteomics ; 23(3): 100734, 2024 Mar.
Article En | MEDLINE | ID: mdl-38342408

Antigen-antibody interactions play a key role in the immune response post vaccination and the mechanism of action of antibody-based biopharmaceuticals. 4CMenB is a multicomponent vaccine against Neisseria meningitidis serogroup B in which factor H binding protein (fHbp) is one of the key antigens. In this study, we use hydrogen/deuterium exchange mass spectrometry (HDX-MS) to identify epitopes in fHbp recognized by polyclonal antibodies (pAb) from two human donors (HDs) vaccinated with 4CMenB. Our HDX-MS data reveal several epitopes recognized by the complex mixture of human pAb. Furthermore, we show that the pAb from the two HDs recognize the same epitope regions. Epitope mapping of total pAb and purified fHbp-specific pAb from the same HD reveals that the two antibody samples recognize the same main epitopes, showing that HDX-MS based epitope mapping can, in this case at least, be performed directly using total IgG pAb samples that have not undergone Ab-selective purification. Two monoclonal antibodies (mAb) were previously produced from B-cell repertoire sequences from one of the HDs and used for epitope mapping of fHbp with HDX-MS. The epitopes identified for the pAb from the same HD in this study, overlap with the epitopes recognized by the two individual mAbs. Overall, HDX-MS epitope mapping appears highly suitable for simultaneous identification of epitopes recognized by pAb from human donors and to thus both guide vaccine development and study basic human immunity to pathogens, including viruses.


Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis , Humans , Epitope Mapping/methods , Neisseria meningitidis/metabolism , Deuterium/metabolism , Bacterial Proteins/metabolism , Meningococcal Infections/prevention & control , Carrier Proteins , Deuterium Exchange Measurement , Complement Factor H , Antigens, Bacterial , Epitopes , Antibodies, Monoclonal/metabolism , Hydrogen Deuterium Exchange-Mass Spectrometry
10.
J Chem Inf Model ; 64(11): 4436-4461, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38423996

The world has witnessed a revolution in therapeutics with the development of biological medicines such as antibodies and antibody fragments, notably nanobodies. These nanobodies possess unique characteristics including high specificity and modulatory activity, making them promising candidates for therapeutic applications. Identifying their binding mode is essential for their development. Experimental structural techniques are effective to get such information, but they are expensive and time-consuming. Here, we propose a computational approach, aiming to identify the epitope of a nanobody that acts as an agonist and a positive allosteric modulator at the rat metabotropic glutamate receptor 5. We employed multiple structure modeling tools, including various artificial intelligence algorithms for epitope mapping. The computationally identified epitope was experimentally validated, confirming the success of our approach. Additional dynamics studies provided further insights on the modulatory activity of the nanobody. The employed methodologies and approaches initiate a discussion on the efficacy of diverse techniques for epitope mapping and later nanobody engineering.


Deep Learning , Epitopes , Receptor, Metabotropic Glutamate 5 , Single-Domain Antibodies , Receptor, Metabotropic Glutamate 5/chemistry , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/immunology , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/immunology , Epitopes/immunology , Epitopes/chemistry , Animals , Rats , Models, Molecular , Epitope Mapping/methods , Molecular Dynamics Simulation , Protein Conformation
11.
Nat Commun ; 15(1): 1577, 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383452

We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.


Bacteriophages , Peptide Library , Humans , Epitopes , Amino Acid Sequence , Peptides/genetics , Antibodies , Bacteriophages/genetics , Epitope Mapping/methods
12.
Emerg Microbes Infect ; 13(1): 2302106, 2024 Dec.
Article En | MEDLINE | ID: mdl-38170506

The highly pathogenic avian influenza H5 2.3.4.4 and 2.3.2.1c subclades have distinct antigenic properties and are responsible for the majority of human infections. Therefore, it is essential to understand the processes by which antibodies inhibit these subclade viruses to develop effective therapies and vaccines to prevent their escape from neutralizing antibodies. Herein, we report the epitopes of two specific monoclonal antibodies (mAbs) targeting haemagglutinin (HA) of the H5 2.3.4.4b subclade and their neutralizing abilities. The results indicated that the two mAbs provided specific protection against the H5 2.3.4.4b clade viral challenge in MDCK cells and mouse models. Through epitope identification and docking studies, we showed that these novel sites (which are located near the 130-loop (S136, T143) and 190-helix (N199, N205) of HA receptor-binding sites that contribute to the binding affinity of neutralizing mAbs and six residues of the complementarity-determining regions) can be targeted to generate antibodies with enhanced cross-neutralization. This can also help in understanding escape mutations that differ among the H5 2.3.4.4b, h, and 2.3.2.1c subclades. These results provide specific information to facilitate future vaccine design and therapeutics for both subclade viruses, which are dominant and pose a serious threat to humans.


Influenza A Virus, H5N1 Subtype , Influenza Vaccines , Influenza in Birds , Animals , Mice , Humans , Antibodies, Neutralizing , Antibodies, Viral , Epitope Mapping/methods , Influenza A Virus, H5N1 Subtype/genetics , Epitopes , Antibodies, Monoclonal , Hemagglutinin Glycoproteins, Influenza Virus
13.
J Med Virol ; 96(1): e29388, 2024 Jan.
Article En | MEDLINE | ID: mdl-38235845

The use of precise epitope peptides as antigens is essential for accurate serological diagnosis of viral-infected individuals, but now it remains an unsolvable problem for mapping precise B cell epitopes (BCEs) recognized by human serum. To address this challenge, we propose a novel epitope delimitation (ED) method to uncover BCEs in the delineated human IgG-reactive (HR) antigenic peptides (APs). Specifically, the method based on the rationale of similarities in humoral immune responses between mammalian species consists of a pair of elements: experimentally delineated HR-AP and rabbit-recognized (RR) BCE motif and corresponding pair of sequence alignment analysis. As a result of using the ED approach, after decoding four RR-epitomes of human papillomavirus types 16/18-E6 and E7 proteins utilizing rabbit serum against each recombinant protein and sequence alignment analysis of HR-APs and RR-BCEs, 19 fine BCEs in 17 of 22 known HR-APs were defined based on each corresponding RR-BCE motifs, including the type-specificity of each delimited BCE in homologous proteins. The test with 22 known 16/20mer HR-APs demonstrated that the ED method is effective and efficient, indicating that it can be used as an alternative method to the conventional identification of fine BCEs using overlapping 8mer peptides.


Oncogene Proteins, Viral , Peptides , Animals , Humans , Rabbits , Amino Acid Sequence , Peptides/genetics , Epitopes, B-Lymphocyte , Sequence Alignment , Immunoglobulin G , Epitope Mapping/methods , Mammals
14.
Monoclon Antib Immunodiagn Immunother ; 42(6): 189-193, 2023 Dec.
Article En | MEDLINE | ID: mdl-38156889

In small animal models of severe acute respiratory syndrome coronaviruses (SARS-CoV and SARS-CoV-2) infection, ferrets (Mustela putorius furo) have been used to investigate the pathogenesis. Podoplanin (PDPN) is an essential marker in lung type I alveolar epithelial cells, kidney podocytes, and lymphatic endothelial cells. Monoclonal antibodies (mAbs) against ferret PDPN (ferPDPN) are useful for the pathological analyses of those tissues. We previously established an anti-ferPDPN mAb, PMab-292 using the Cell-Based Immunization and Screening (CBIS) method. In this study, we determined the critical epitope of PMab-292 using flow cytometry. The ferPDPN deletion mutants analysis revealed that the Val34 is located at the N-terminus of the PMab-292 epitope. Furthermore, the PA tag-substituted analysis (PA scanning) showed that Asp39 is located at the C-terminus of PMab-292 epitope. The epitope sequence (VRPEDD) also exists between Val26 and Asp31 of ferPDPN, indicating that PMab-292 recognizes the tandem repeat of the VRPEDD sequence of ferPDPN.


Ferrets , Severe acute respiratory syndrome-related coronavirus , Animals , Cricetinae , Epitope Mapping/methods , Antibodies, Monoclonal , Endothelial Cells , SARS-CoV-2 , Membrane Glycoproteins/genetics , Epitopes , CHO Cells , Transcription Factors , Cricetulus , Antibody Specificity
15.
MAbs ; 15(1): 2285285, 2023.
Article En | MEDLINE | ID: mdl-38010385

Monoclonal antibodies have become an important class of therapeutics in the last 30 years. Because the mechanism of action of therapeutic antibodies is intimately linked to their binding epitopes, identification of the epitope of an antibody to the antigen plays a central role during antibody drug development. The gold standard of epitope mapping, X-ray crystallography, requires a high degree of proficiency with no guarantee of success. Here, we evaluated six widely used alternative methods for epitope identification (peptide array, alanine scan, domain exchange, hydrogen-deuterium exchange, chemical cross-linking, and hydroxyl radical footprinting) in five antibody-antigen combinations (pembrolizumab+PD1, nivolumab+PD1, ipilimumab+CTLA4, tremelimumab+CTLA4, and MK-5890+CD27). The advantages and disadvantages of each technique are demonstrated by our data and practical advice on when and how to apply specific epitope mapping techniques during the drug development process is provided. Our results suggest chemical cross-linking most accurately identifies the epitope as defined by crystallography.


Antibodies, Monoclonal , Antigens , Epitope Mapping/methods , Antibodies, Monoclonal/chemistry , CTLA-4 Antigen , Epitopes
16.
Front Immunol ; 14: 1192385, 2023.
Article En | MEDLINE | ID: mdl-37818363

Following viral infection, viral antigens bind specifically to receptors on the surface of lymphocytes thereby activating adaptive immunity in the host. An epitope, the smallest structural and functional unit of an antigen, binds specifically to an antibody or antigen receptor, to serve as key sites for the activation of adaptive immunity. The complexity and diverse range of epitopes are essential to study and map for the diagnosis of disease, the design of vaccines and for immunotherapy. Mapping the location of these specific epitopes has become a hot topic in immunology and immune therapy. Recently, epitope mapping techniques have evolved to become multiplexed, with the advent of high-throughput sequencing and techniques such as bacteriophage-display libraries and deep mutational scanning. Here, we briefly introduce the principles, advantages, and disadvantages of the latest epitope mapping techniques with examples for viral antigen discovery.


Antigens, Viral , Antigens , Epitope Mapping/methods , Epitopes , Cell Surface Display Techniques/methods
17.
Microb Pathog ; 185: 106331, 2023 Dec.
Article En | MEDLINE | ID: mdl-37678657

Influenza virus infection can cause kidney damage. However, the link between influenza infection and disease is still unclear. The purpose of this study was to analyze the relationship between heterophilic epitopes on H5N1 hemagglutinin (HA) and disease. The monoclonal antibody (mAb) against H5N1 was prepared, mAbs binding to human kidney tissue were screened, and the reactivities of mAbs with five different subtypes of influenza virus were detected. Design and synthesize the peptides according to the common amino acid sequence of these antigens, and analyze the distribution of the epitope on the crystal structure of HA. Immunological methods were used to detect whether the heterophilic epitopes could induce the production of antibodies that cross-react with kidney tissue. The results showed that H5-30 mA b binding to human kidney tissue recognized the heterophilic epitope 191-LVLWGIHHP-199 on the head of HA. The key amino acid were V192, L193, W194 and I196, which were highly conserved in human and avian influenza virus HA. The heterophilic epitope could induce mice to produce different mAbs binding to kidney tissue. Such heterophilic antibodies were also detected in the serum of the patients. It can provide materials for the mechanism of renal diseases caused by influenza virus infection.


Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Influenza, Human , Humans , Animals , Mice , Epitopes , Hemagglutinins , Epitope Mapping/methods , Hemagglutinin Glycoproteins, Influenza Virus , Antibodies, Viral , Antibodies, Monoclonal , Kidney
18.
ACS Synth Biol ; 12(10): 2812-2818, 2023 10 20.
Article En | MEDLINE | ID: mdl-37703075

Epitopes are specific regions on an antigen's surface that the immune system recognizes. Epitopes are usually protein regions on foreign immune-stimulating entities such as viruses and bacteria, and in some cases, endogenous proteins may act as antigens. Identifying epitopes is crucial for accelerating the development of vaccines and immunotherapies. However, mapping epitopes in pathogen proteomes is challenging using conventional methods. Screening artificial neoepitope libraries against antibodies can overcome this issue. Here, we applied conventional sequence analysis and methods inspired in natural language processing to reveal specific sequence patterns in the linear epitopes deposited in the Immune Epitope Database (www.iedb.org) that can serve as building blocks for the design of universal epitope libraries. Our results reveal that amino acid frequency in annotated linear epitopes differs from that in the human proteome. Aromatic residues are overrepresented, while the presence of cysteines is practically null in epitopes. Byte pair encoding tokenization shows high frequencies of tryptophan in tokens of 5, 6, and 7 amino acids, corroborating the findings of the conventional sequence analysis. These results can be applied to reduce the diversity of linear epitope libraries by orders of magnitude.


Viruses , Humans , Epitopes/genetics , Amino Acid Sequence , Epitope Mapping/methods , Proteome , Amino Acids
19.
J Proteome Res ; 22(9): 3096-3102, 2023 09 01.
Article En | MEDLINE | ID: mdl-37526474

Structural proteomics techniques are useful for the determination of protein interaction interfaces. Each technique provides orthogonal structural information on the structure and the location of protein interaction sites. Here, we have characterized a monoclonal antibody epitope for a protein antigen by a combination of differential photoreactive surface modification (SM), cross-linking (CL), differential hydrogen-deuterium exchange (HDX), and epitope extraction/excision. We found that experimental data from different approaches agree with each other in determining the epitope of the monoclonal antibody on the protein antigens using the HIV-1 p24-mAb E complex as an illustrative example. A combination of these multiple structural proteomics approaches results in a detailed picture of the interaction of the proteins and increases confidence in the determination of the final structure of the protein interaction interface. Data are available via ProteomeXchange with identifier PXD040902.


Antibodies, Monoclonal , Proteomics , Epitopes/chemistry , Antibodies, Monoclonal/chemistry , Epitope Mapping/methods , Mass Spectrometry/methods
20.
Protein Sci ; 32(10): e4726, 2023 10.
Article En | MEDLINE | ID: mdl-37421602

Efficient identification of epitopes is crucial for drug discovery and design as it enables the selection of optimal epitopes, expansion of lead antibody diversity, and verification of binding interface. Although high-resolution low throughput methods like x-ray crystallography can determine epitopes or protein-protein interactions accurately, they are time-consuming and can only be applied to a limited number of complexes. To overcome these limitations, we have developed a rapid computational method that incorporates N-linked glycans to mask epitopes or protein interaction surfaces, thereby providing a mapping of these regions. Using human coagulation factor IXa (fIXa) as a model system, we computationally screened 158 positions and expressed 98 variants to test experimentally for epitope mapping. We were able to delineate epitopes rapidly and reliably through the insertion of N-linked glycans that efficiently disrupted binding in a site-selective manner. To validate the efficacy of our method, we conducted ELISA experiments and high-throughput yeast surface display assays. Furthermore, x-ray crystallography was employed to verify the results, thereby recapitulating through the method of N-linked glycans a coarse-grained mapping of the epitope.


Drug Discovery , High-Throughput Screening Assays , Humans , Epitopes/chemistry , Epitope Mapping/methods , High-Throughput Screening Assays/methods
...