Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 852
Filter
1.
Molecules ; 29(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38998987

ABSTRACT

The inhibition of soluble epoxide hydrolase (sEH) can reduce the level of dihydroxyeicosatrienoic acids (DHETs) effectively maintaining endogenous epoxyeicosatrienoic acids (EETs) levels, resulting in the amelioration of inflammation and pain. Consequently, the development of sEH inhibitors has been a prominent research area for over two decades. In the present study, we synthesized and evaluated sulfonyl urea derivatives for their potential to inhibit sEH. These compounds underwent extensive in vitro investigation, revealing their potency against human and mouse sEH, with 4f showing the most promising sEH inhibitory potential. When subjected to lipopolysaccharide (LPS)-induced acute lung injury (ALI) in studies in mice, compound 4f manifested promising anti-inflammatory efficacy. We investigated the analgesic efficacy of sEH inhibitor 4f in a murine pain model of tail-flick reflex. These results validate the role of sEH inhibition in inflammatory diseases and pave the way for the rational design and optimization of sEH inhibitors based on a sulfonyl urea template.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Urea , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Humans , Urea/pharmacology , Urea/analogs & derivatives , Urea/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/chemical synthesis , Anti-Inflammatory Agents/therapeutic use , Lipopolysaccharides , Structure-Activity Relationship , Solubility , Disease Models, Animal , Pain/drug therapy
2.
Biochem Biophys Res Commun ; 725: 150261, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897040

ABSTRACT

GOAL: The long-term goal of our research is to develop safe and effective soluble epoxide hydrolase (sEH) inhibitors. The objective of this study is to evaluate the potency and selectivity of six natural isothiocyanates (ITCs) as sEH inhibitors. METHODS: Molecular docking was used to model likely interactions between the ligands and receptors. The sEH inhibitory activity was tested using a validated fluorescence-based assay and PHOME as a substrate. To evaluate their selectivity as sEH inhibitors, the inhibitory potential of the ITCs was determined on microsomal epoxide hydrolase (mEH) and cytochrome P450 (CYP) enzymes in human liver microsomes. Probe substrates such as styrene oxide (mEH substrate) and established substrates for CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were used in this study. The metabolites of these substrates were analyzed using validated LC-MS/MS and HPLC-UV assays. RESULTS: Molecular Docking revealed significant differences in binding site preference among the ITCs in silico and pointed to important interactions between the ligands and the catalytic residues of the sEH enzyme. In vitro, the ITCs showed varying degrees of sEH inhibition, but sulforaphane (SFN) and phenyl isothiocyanate (PITC) were the most potent inhibitors with IC50 values of 3.65 and 7.5 µM, respectively. mEH was not significantly inhibited by any of the ITCs. Erucin and iberin were the only ITCs that did not inhibit the activity of any of the tested CYP enzymes. CONCLUSION: Our results demonstrate that natural ITCs have the potential to offer safe, selective, and potent sEH inhibition.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Isothiocyanates , Microsomes, Liver , Molecular Docking Simulation , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/metabolism , Humans , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Solubility
3.
Prostaglandins Other Lipid Mediat ; 173: 106850, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735559

ABSTRACT

Midlife metabolic syndrome (MetS) is associated with cognitive impairment in late life. The mechanism of delayed MetS-related cognitive dysfunction (MetSCD) is not clear, but it has been linked to systemic inflammation and chronic cerebral microangiopathy. Currently there is no treatment for late life MetSCD other than early risk factor modification. We investigated the effect of soluble epoxide hydrolase (sEH) inhibitor 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (t-AUCB) on cognitive performance, cerebral blood flow (CBF), and central and peripheral inflammation in the high-fat diet (HFD) model of MetS in mice. At 6 weeks of age, male mice were randomly assigned to receive either HFD or standard chow (STD) for 6 months. Mice received either t-AUCB or vehicle for 4 weeks. Cognitive performance was evaluated, followed by CBF measurement using magnetic resonance imaging (MRI). At the end of the study, blood was collected for measurement of eicosanoids and inflammatory cytokines. The brains were then analyzed by immunohistochemistry for glial activation markers. The HFD caused a significant impairment in novel object recognition. Treatment with t-AUCB increased plasma levels of 14,15-EET, prevented this cognitive impairment and modified hippocampal glial activation and plasma cytokine levels, without affecting CBF in mice on HFD. In conclusion, sEH inhibition for four weeks prevents cognitive deficits in mice on chronic HFD by modulating inflammatory processes without affecting CBF.


Subject(s)
Cognitive Dysfunction , Disease Models, Animal , Epoxide Hydrolases , Inflammation , Metabolic Syndrome , Animals , Male , Mice , Benzoates/pharmacology , Benzoates/therapeutic use , Cerebrovascular Circulation/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Cognitive Dysfunction/metabolism , Diet, High-Fat/adverse effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Inflammation/drug therapy , Inflammation/pathology , Metabolic Syndrome/drug therapy , Metabolic Syndrome/complications , Metabolic Syndrome/pathology , Mice, Inbred C57BL
4.
FASEB J ; 38(10): e23692, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38786655

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs). This study aimed to investigate the impact of sEH inhibition on the host response to SARS-CoV-2 infection in a mouse model with human angiotensin-converting enzyme 2 (ACE2) expression. Mice were infected with SARS-CoV-2 and treated with either vehicle or the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU). At day 5 post-infection, SARS-CoV-2 induced weight loss, clinical signs, a cytokine storm, an eicosanoid storm, and severe lung inflammation with ~50% mortality on days 6-8 post-infection. SARS-CoV-2 infection induced lung expression of phospholipase A2 (PLA2), cyclooxygenase (COX) and lipoxygenase (LOX) pathway genes, while suppressing expression of most cytochrome P450 genes. Treatment with the sEH inhibitor TPPU delayed weight loss but did not alter clinical signs, lung cytokine expression or overall survival of infected mice. Interestingly, TPPU treatment significantly reversed the eicosanoid storm and attenuated viral-induced elevation of 39 fatty acids and oxylipins from COX, LOX and P450 pathways, which suggests the effects at the level of PLA2 activation. The suppression of the eicosanoid storm by TPPU without corresponding changes in lung cytokines, lung inflammation or mortality reveals a surprising dissociation between systemic oxylipin and cytokine signaling pathways during SARS-CoV-2 infection and suggests that the cytokine storm is primarily responsible for morbidity and mortality in this animal model.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , Eicosanoids , Epoxide Hydrolases , SARS-CoV-2 , Animals , Mice , Eicosanoids/metabolism , COVID-19/immunology , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/drug effects , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Cytokine Release Syndrome/drug therapy , Piperidines/pharmacology , Piperidines/therapeutic use , Cytokines/metabolism , Humans , Lung/virology , Lung/metabolism , Lung/pathology , Lung/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Disease Models, Animal , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Female
5.
Eur J Med Chem ; 272: 116459, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704942

ABSTRACT

Activation of the aminopeptidase (AP) activity of leukotriene A4 hydrolase (LTA4H) presents a potential therapeutic strategy for resolving chronic inflammation. Previously, ARM1 and derivatives were found to activate the AP activity using the alanine-p-nitroanilide (Ala-pNA) as a reporter group in an enzyme kinetics assay. As an extension of this previous work, novel ARM1 derivatives were synthesized using a palladium-catalyzed Ullmann coupling reaction and screened using the same assay. Analogue 5, an aminopyrazole (AMP) analogue of ARM1, was found to be a potent AP activator with an AC50 of 0.12 µM. An X-ray crystal structure of LTA4H in complex with AMP was refined at 2.7 Å. Despite its AP activity with Ala-pNA substrate, AMP did not affect hydrolysis of the previously proposed natural ligand of LTA4H, Pro-Gly-Pro (PGP). This result highlights a discrepancy between the hydrolysis of more conveniently monitored chromogenic synthetic peptides typically employed in assays and endogenous peptides. The epoxide hydrolase (EH) activity of AMP was measured in vivo and the compound significantly reduced leukotriene B4 (LTB4) levels in a murine bacterial pneumonia model. However, AMP did not enhance survival in the murine pneumonia model over a 14-day period. A liver microsome stability assay showed metabolic stability of AMP. The results suggested that accelerated Ala-pNA cleavage is not sufficient for predicting therapeutic potential, even when the full mechanism of activation is known.


Subject(s)
Epoxide Hydrolases , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Mice , Structure-Activity Relationship , Humans , Molecular Structure , Aminopeptidases/metabolism , Aminopeptidases/antagonists & inhibitors , Ethers/pharmacology , Ethers/chemistry , Ethers/chemical synthesis , Dose-Response Relationship, Drug , Models, Molecular , Crystallography, X-Ray
6.
J Chem Inf Model ; 64(10): 4263-4276, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38728062

ABSTRACT

In this work, we present PharmaCore: a new, completely automatic workflow aimed at generating three-dimensional (3D) structure-based pharmacophore models toward any target of interest. The proposed approach relies on using cocrystallized ligands to create the input files for generating the pharmacophore hypotheses, integrating not only the three-dimensional structural information on the ligand but also data concerning the binding mode of these molecules put in the protein cavity. We developed a Python library that, starting from the specific UniProt ID of the protein under investigation as the only element that requires user intervention, subsequently collects and aligns the corresponding structures bearing a known ligand in a fully automated fashion, bringing them all into the same coordinate system. The protocol includes a final phase in which the aligned small molecules are used to produce the pharmacophore hypotheses directly onto the protein structure using a specific software, e.g., Phase (Schrödinger LLC). To validate the entire procedure and highlight the possible applications in the field of drug discovery and repositioning, we first generated pharmacophores for soluble epoxide hydrolase (sEH) and compared with already-published ones. Then, we reproduced the binding profile of a reported selective binder of ATAD2 bromodomain (AM879), testing it against a panel of 1741 pharmacophores related to 16 epigenetic proteins and automatically generated with PharmaCore, finally disclosing putative unprecedented off-targets. The computational predictions were successfully validated with AlphaScreen assays, highlighting the applicability of the proposed workflow in drug discovery and repositioning. Finally, the process was also validated on tankyrase 2 and SARS-CoV-2 MPro, confirming the robustness of PharmaCore.


Subject(s)
Models, Molecular , Ligands , Drug Discovery/methods , Proteins/chemistry , Proteins/metabolism , Protein Conformation , Humans , Protein Binding , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , SARS-CoV-2/drug effects , Molecular Docking Simulation , Automation , Software , Pharmacophore
7.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673942

ABSTRACT

Soluble epoxide hydrolase (sEH) is an enzyme targeted for the treatment of inflammation and cardiovascular diseases. Activated inflammatory cells produce nitric oxide (NO), which induces oxidative stress and exacerbates inflammation. We identify an inhibitor able to suppress sEH and thus NO production. Five flavonoids 1-5 isolated from Inula britannica flowers were evaluated for their abilities to inhibit sEH with IC50 values of 12.1 ± 0.1 to 62.8 ± 1.8 µM and for their effects on enzyme kinetics. A simulation study using computational chemistry was conducted as well. Furthermore, five inhibitors (1-5) were confirmed to suppress NO levels at 10 µM. The results showed that flavonoids 1-5 exhibited inhibitory activity in all tests, with compound 3 exhibiting the most significant efficacy. Thus, in the development of anti-inflammatory inhibitors, compound 3 is a promising natural candidate.


Subject(s)
Epoxide Hydrolases , Flavonoids , Inula , Nitric Oxide , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Nitric Oxide/metabolism , Mice , RAW 264.7 Cells , Flavonoids/pharmacology , Flavonoids/chemistry , Flavonoids/isolation & purification , Inula/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Molecular Docking Simulation , Kinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Flowers/chemistry
8.
Biochimie ; 223: 13-22, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38531484

ABSTRACT

The blood-brain barrier (BBB) is a protective semi-permeable structure that regulates the exchange of biomolecules between the peripheral blood and the central nervous system (CNS). Due to its specialized tight junctions and low vesicle trafficking, the BBB strictly limits the paracellular passage and transcellular transport of molecules to maintain the physiological condition of brain tissues. BBB breakdown is associated with many CNS disorders. Soluble epoxide hydrolase (sEH) is a hydrolase enzyme that converts epoxy-fatty acids (EpFAs) to their corresponding diols and is involved in the onset and progression of multiple diseases. EpFAs play a protective role in the central nervous system via preventing neuroinflammation, making sEH a potential therapeutic target for CNS diseases. Recent studies showed that sEH inhibition prevented BBB impairment caused by stroke, hemorrhage, traumatic brain injury, hyperglycemia and sepsis via regulating the expression of tight junctions. In this review, the protective actions of sEH inhibition on BBB and potential mechanisms are summarized, and some important questions that remain to be resolved are also addressed.


Subject(s)
Blood-Brain Barrier , Epoxide Hydrolases , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Blood-Brain Barrier/metabolism , Humans , Animals , Tight Junctions/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
9.
J Pharm Biomed Anal ; 244: 116116, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38537542

ABSTRACT

EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.


Subject(s)
Epoxide Hydrolases , Rats, Wistar , Tandem Mass Spectrometry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Rats , Tandem Mass Spectrometry/methods , Male , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Chromatography, Liquid/methods , Hydroxylation , Administration, Oral , Spectrometry, Mass, Electrospray Ionization/methods
10.
Biomed Pharmacother ; 172: 116301, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377737

ABSTRACT

Soluble epoxide hydrolase (sEH) inhibition has been shown multiple beneficial effects against brain injuries of Intracerebral hemorrhage (ICH). However, the underlying mechanism of its neuroprotective effects after ICH has not been explained fully. Ferroptosis, a new form of iron-dependent programmed cell death, has been shown to be implicated in the secondary injuries after ICH. In this study, We examined whether sEH inhibition can alleviate brain injuries of ICH through inhibiting ferroptosis. Expression of several markers for ferroptosis was observed in the peri-hematomal brain tissues in mice after ICH. lip-1, a ferroptosis inhibitor, alleviated iron accumulation, lipid peroxidation and the secondary damages post-ICH in mice model. Intraperitoneal injection of 1-Trifluoromethoxyphenyl-3- (1-propionylpiperidin-4-yl)urea (TPPU), a highly selective sEH inhibitor, could inhibit ferroptosis and alleviate brain damages in ICH mice. Furthermore, RNA-sequencing was applied to explore the potential regulatory mechanism underlying the effects of TPPU in ferroptosis after ICH. C-C chemokine ligand 5 (CCL5) may be the key factor by which TPPU regulated ferroptosis after ICH since CCL5 antagonist could mimic the effects of TPPU and CCL5 reversed the inhibitive effect of TPPU on ferroptosis and the neuroprotective effects of TPPU on secondary damage after ICH. Taken together, these data indicate that ferroptosis is a key pathological feature of ICH and Soluble epoxide hydrolase inhibitor can exert neuroprotective effect by preventing ferroptosis after ICH.


Subject(s)
Cerebral Hemorrhage , Epoxide Hydrolases , Ferroptosis , Phenylurea Compounds , Piperidines , Animals , Mice , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Epoxide Hydrolases/antagonists & inhibitors , Iron , Ligands , Neuroprotective Agents/pharmacology , Phenylurea Compounds/pharmacology , Piperidines/pharmacology
11.
J Med Chem ; 67(3): 2095-2117, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38236416

ABSTRACT

Epoxyeicosatrienoic acids with anti-inflammatory effects are inactivated by soluble epoxide hydrolase (sEH). Both sEH and histone deacetylase 6 (HDAC6) inhibitors are being developed as neuropathic pain relieving agents. Based on the structural similarity, we designed a new group of compounds with inhibition of both HDAC6 and sEH and obtained compound M9. M9 exhibits selective inhibition of HDAC6 over class I HDACs in cells. M9 shows good microsomal stability, moderate plasma protein binding rate, and oral bioavailability. M9 exhibited a strong analgesic effect in vivo, and its analgesic tolerance was better than gabapentin. M9 improved the survival time of mice treated with lipopolysaccharide (LPS) and reversed the levels of inflammatory factors induced by LPS in mouse plasma. M9 represents the first sEH/HDAC6 dual inhibitors with in vivo antineuropathic pain and anti-inflammation.


Subject(s)
Lipopolysaccharides , Neuralgia , Animals , Mice , Analgesics/pharmacology , Analgesics/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Gabapentin , Histone Deacetylase 6/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Neuralgia/chemically induced , Neuralgia/drug therapy , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology
12.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 9-16, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37953590

ABSTRACT

Soluble epoxide hydrolase (sEH) inhibition has currently emerged as a therapeutic target in the treatment of various neuroinflammatory neurodegenerative diseases, including multiple sclerosis. Previously, we reported that treatment of mice with a sEH-selective inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl]urea; TPPU), ameliorated chronic experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein 35-55 peptide immunization followed by injection of pertussis toxin to mice via regulating pro-inflammatory and anti-inflammatory pathways in the central nervous system. This study tested the hypothesis that the pro-inflammatory G protein-coupled receptor (GPR) 75 and anti-apoptotic phospholipase C (PLC) signaling pathways also contribute to the ameliorating effect of TPPU on chronic EAE. Brains and spinal cords of phosphate-buffered saline-, dimethyl sulfoxide-, or TPPU (3 mg/kg)-treated mice were used for the measurement of sEH, GPR75, Gaq/11, activator protein (AP)-1, PLC ß4, phosphoinositide 3-kinase (PI3K) p85a, Akt1, mitogen-activated protein kinase kinase (MEK) 1/2, extracellular signal-regulated kinase (ERK) 1/2, cyclic adenosine monophosphate-response element-binding protein (CREB) 1, B-cell lymphoma (Bcl)-2, semaphorin (SEMA) 3A, and myelin proteolipid protein (PLP) expression and/or activity by using the immunoblotting method. Expression of sEH, GPR75, Gaq/11, c-jun, phosphorylated c-Jun, and SEMA3A was lower, while PLCß4, phosphorylated PI3K p85a, phosphorylated Akt1, phosphorylated MEK1/2, phosphorylated ERK1/2, phosphorylated CREB1, Bcl-2, and myelin PLP expression was higher in the tissues of TPPU (3 mg/kg)-treated mice as compared with the EAE and vehicle control groups. Inhibition of sEH by TPPU ameliorates chronic EAE through suppressing pro-inflammatory GPR75/Gaq/11/AP-1 pathway and reducing expression of the remyelination inhibitor, SEMA3A, as well as increasing anti-apoptotic PLC/PI3K/Akt1/MEK1/2/ERK1/2/CREB1/Bcl-2 pathway activity and myelin PLP expression.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Phospholipases , Receptors, G-Protein-Coupled , Signal Transduction , Animals , Mice , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Mice, Inbred C57BL , Myelin Proteolipid Protein/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phospholipases/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Semaphorin-3A , Receptors, G-Protein-Coupled/metabolism
13.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35897843

ABSTRACT

We previously found that the disorder of soluble epoxide hydrolase (sEH)/cyclooxygenase-2 (COX-2)-mediated arachidonic acid (ARA) metabolism contributes to the pathogenesis of the non-alcoholic fatty liver disease (NAFLD) in mice. However, the exact mechanism has not been elucidated. Accumulating evidence points to the essential role of cellular senescence in NAFLD. Herein, we investigated whether restoring the balance of sEH/COX-2-mediated ARA metabolism attenuated NAFLD via hepatocyte senescence. A promised dual inhibitor of sEH and COX-2, PTUPB, was used in our study to restore the balance of sEH/COX-2-mediated ARA metabolism. In vivo, NAFLD was induced by a high-fat diet (HFD) using C57BL/6J mice. In vitro, mouse hepatocytes (AML12) and mouse hepatic astrocytes (JS1) were used to investigate the effects of PTUPB on palmitic acid (PA)-induced hepatocyte senescence and its mechanism. PTUPB alleviated liver injury, decreased collagen and lipid accumulation, restored glucose tolerance, and reduced hepatic triglyceride levels in HFD-induced NAFLD mice. Importantly, PTUPB significantly reduced the expression of liver senescence-related molecules p16, p53, and p21 in HFD mice. In vitro, the protein levels of γH2AX, p53, p21, COX-2, and sEH were increased in AML12 hepatocytes treated with PA, while Ki67 and PCNA were significantly decreased. PTUPB decreased the lipid content, the number of ß-gal positive cells, and the expression of p53, p21, and γH2AX proteins in AML12 cells. Meanwhile, PTUPB reduced the activation of hepatic astrocytes JS1 by slowing the senescence of AML12 cells in a co-culture system. It was further observed that PTUPB enhanced the ratio of autophagy-related protein LC3II/I in AML12 cells, up-regulated the expression of Fundc1 protein, reduced p62 protein, and suppressed hepatocyte senescence. In addition, PTUPB enhanced hepatocyte autophagy by inhibiting the PI3K/AKT/mTOR pathway through Sirt1, contributing to the suppression of senescence. PTUPB inhibits the PI3K/AKT/mTOR pathway through Sirt1, improves autophagy, slows down the senescence of hepatocytes, and alleviates NAFLD.


Subject(s)
Epoxide Hydrolases/antagonists & inhibitors , Non-alcoholic Fatty Liver Disease , Animals , Autophagy , Cyclooxygenase 2/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Diet, High-Fat , Hepatocytes/metabolism , Liver/metabolism , Membrane Proteins , Mice , Mice, Inbred C57BL , Mitochondrial Proteins , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Palmitic Acid/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Sirtuin 1/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Suppressor Protein p53/metabolism
14.
Vascul Pharmacol ; 145: 107086, 2022 08.
Article in English | MEDLINE | ID: mdl-35752378

ABSTRACT

Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their molecular mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Animals , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Epoxide Hydrolases/antagonists & inhibitors , Homocysteine , Humans , Inflammation/pathology , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , NADP , NADPH Oxidase 4/genetics , Phenotype , Urea
15.
J Mol Biol ; 434(17): 167600, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35460669

ABSTRACT

The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.


Subject(s)
Epoxide Hydrolases , Linoleic Acids , Nitro Compounds , Allosteric Regulation/drug effects , Cysteine/metabolism , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Epoxide Hydrolases/metabolism , Humans , Linoleic Acids/chemistry , Linoleic Acids/pharmacology , Nitro Compounds/chemistry , Nitro Compounds/pharmacology
16.
J Med Chem ; 65(6): 4909-4925, 2022 03 24.
Article in English | MEDLINE | ID: mdl-35271276

ABSTRACT

With innumerable clinical failures of target-specific drug candidates for multifactorial diseases, such as Alzheimer's disease (AD), which remains inefficiently treated, the advent of multitarget drug discovery has brought a new breath of hope. Here, we disclose a class of 6-chlorotacrine (huprine)-TPPU hybrids as dual inhibitors of the enzymes soluble epoxide hydrolase (sEH) and acetylcholinesterase (AChE), a multitarget profile to provide cumulative effects against neuroinflammation and memory impairment. Computational studies confirmed the gorge-wide occupancy of both enzymes, from the main site to a secondary site, including a so far non-described AChE cryptic pocket. The lead compound displayed in vitro dual nanomolar potencies, adequate brain permeability, aqueous solubility, human microsomal stability, lack of neurotoxicity, and it rescued memory, synaptic plasticity, and neuroinflammation in an AD mouse model, after low dose chronic oral administration.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Epoxide Hydrolases , Alzheimer Disease/drug therapy , Animals , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/therapeutic use , Disease Models, Animal , Epoxide Hydrolases/antagonists & inhibitors , Mice
17.
Proc Natl Acad Sci U S A ; 119(10): e2110647119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35238649

ABSTRACT

SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.


Subject(s)
Enzyme Inhibitors/metabolism , Epoxide Hydrolases , Influenza A Virus, H1N1 Subtype/metabolism , Leukotriene A4/metabolism , Orthomyxoviridae Infections/enzymology , Salivary Glands , Salivary Proteins and Peptides/metabolism , Virus Diseases , Animals , Chiroptera , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Mice , Salivary Glands/enzymology , Salivary Glands/virology
18.
Mol Cell Biochem ; 477(3): 877-884, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35067781

ABSTRACT

Matrix metalloproteinase (MMP) and soluble epoxide hydrolase (sEH) have completely unrelated biological functions; however, their dysregulation produce similar effects on biological systems. Based on the similarity in the reported structural requirements for their inhibition, the current study aimed to identify a simultaneous inhibitor for MMP and sEH. Six compounds were identified as potential simultaneous MMP/sEH inhibitors and tested for their capacity to inhibit MMP and sEH. Inhibition of MMP and sEH activity using their endogenous and exogenous substrates was measured by liquid chromatography/mass spectrometry, spectrophotometry, and zymography. Two compounds, CTK8G1143 and ONO-4817, were identified to inhibit both MMP and sEH activity. CTK8G1143 and ONO-4817 inhibited the recombinant human sEH activity by an average of 67.4% and 55.2%, respectively. The IC50 values for CTK8G1143 and ONO-4817 to inhibit recombinant human sEH were 5.2 and 3.5 µM, respectively, whereas their maximal inhibition values were 71.4% and 42.8%, respectively. Also, MMP and sEH activity of human cardiomyocytes were simultaneously inhibited by CTK8G1143 and ONO-4817. Regarding other compounds, they showed either MMP or sEH inhibitory activity but not both. In conclusion, these two simultaneous inhibitors of MMP and sEH could provide a promising intervention for the prevention and control of several diseases, especially cardiovascular diseases.


Subject(s)
Epoxide Hydrolases , Matrix Metalloproteinase 2/chemistry , Matrix Metalloproteinase Inhibitors/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/chemistry , Humans
19.
Neurocrit Care ; 36(3): 905-915, 2022 06.
Article in English | MEDLINE | ID: mdl-34873674

ABSTRACT

BACKGROUND: Epoxyeicosatrienoates (EETs) are endogenous regulators of neuroinflammation and cerebral blood flow. Their metabolism to dihydroxyeicosatrienoates (DHETs) is catalyzed by soluble epoxide hydrolase (sEH). After subarachnoid hemorrhage (SAH), EETs' pathway amplification may be a therapeutic target for the prevention of delayed cerebral ischemia (DCI). We conducted a double-blind, placebo-controlled, phase Ib randomized trial of GSK2256294, a pharmacologic inhibitor of sEH, to evaluate the safety profile and to assess biomarkers of neurovascular inflammation in patients with aneurysmal SAH. METHODS: Patients were randomly assigned to receive 10 mg of GSK2256294 or a placebo treatment once daily for 10 days, beginning within 72 hours after aneurysm rupture. The primary study end point was safety. Secondary end points included serum and cerebrospinal fluid (CSF) EETs-to-DHETs ratio, cytokine levels, and serum endothelial injury biomarkers, measured at day 7 and day 10 after SAH. Tertiary end points included neurologic status, disposition, length of stay, incidence of DCI, and mortality; these were assessed at hospital discharge and at 90 days. RESULTS: Ten patients received GSK2256294 and nine patients received a placebo. There were no adverse events related to the study drug. GSK2256294 administration resulted in a significant increase in the EET/DHET ratio at day 7 and day 10 in serum, but not in the CSF. There was a trend for decreased CSF inflammatory cytokines following GSK2256294 administration, but this did not reach statistical significance. CONCLUSIONS: GSK2256294 administration was safe and well tolerated in critically ill patients with SAH, producing an increase in serum EETs and the EET-to-DHET ratio. Our findings support future studies in a larger population to evaluate the role of sEH inhibition in the prevention of DCI after SAH and other forms of brain injury and inflammatory conditions. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT03318783.


Subject(s)
Brain Ischemia , Cyclohexylamines , Enzyme Inhibitors , Epoxide Hydrolases , Subarachnoid Hemorrhage , Triazines , Brain Ischemia/drug therapy , Brain Ischemia/etiology , Brain Ischemia/prevention & control , Cerebral Infarction/complications , Cyclohexylamines/therapeutic use , Double-Blind Method , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Humans , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/drug therapy , Triazines/therapeutic use
20.
Biochem Pharmacol ; 195: 114866, 2022 01.
Article in English | MEDLINE | ID: mdl-34863976

ABSTRACT

Cardiovascular and heart diseases are leading causes of morbidity and mortality. Coronary artery endothelial and vascular dysfunction, inflammation, and mitochondrial dysfunction contribute to progression of heart diseases such as arrhythmias, congestive heart failure, and heart attacks. Classes of fatty acid epoxylipids and their enzymatic regulation by soluble epoxide hydrolase (sEH) have been implicated in coronary artery dysfunction, inflammation, and mitochondrial dysfunction in heart diseases. Likewise, genetic and pharmacological manipulations of epoxylipids have been demonstrated to have therapeutic benefits for heart diseases. Increasing epoxylipids reduce cardiac hypertrophy and fibrosis and improve cardiac function. Beneficial actions for epoxylipids have been demonstrated in cardiac ischemia reperfusion injury, electrical conductance abnormalities and arrhythmias, and ventricular tachycardia. This review discusses past and recent findings on the contribution of epoxylipids in heart diseases and the potential for their manipulation to treat heart attacks, arrhythmias, ventricular tachycardia, and heart failure.


Subject(s)
Epoxide Hydrolases/metabolism , Epoxy Compounds/metabolism , Fatty Acids/metabolism , Heart Diseases/metabolism , Animals , Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/metabolism , Enzyme Inhibitors/therapeutic use , Epoxide Hydrolases/antagonists & inhibitors , Epoxy Compounds/chemistry , Heart Diseases/drug therapy , Heart Diseases/enzymology , Heart Failure/drug therapy , Heart Failure/enzymology , Heart Failure/metabolism , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/enzymology , Myocardial Infarction/metabolism , Solubility , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/enzymology , Tachycardia, Ventricular/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL