Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 453
Filter
1.
J Infect Public Health ; 17(7): 102462, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824738

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder influenced by age, sex, genetic factors, immune alterations, and infections. Multiple lines of evidence suggest that changes in antibody response are linked to AD pathology. METHODS: To elucidate the mechanisms underlying AD development, we investigated antibodies that target autoimmune epitopes using high-resolution epitope microarrays. Our study compared two groups: individuals with AD (n = 19) and non-demented (ND) controls (n = 19). To validate the results, we measured antibody levels in plasma samples from AD patients (n = 96), mild cognitive impairment (MCI; n = 91), and ND controls (n = 97). To further explore the invlovement of EBV, we performed epitope masking immunofluorescence microscopy analysis and tests to induce lytic replication using the B95-8 cell line. RESULTS: In this study, we analyzed high-resolution epitope-specific serum antibody levels in AD, revealing significant disparities in antibodies targeting multiple epitopes between the AD and control groups. Particularly noteworthy was the significant down-regulation of antibody (anti-DG#29) targeting an epitope of Epstein-Barr virus nuclear antigen 1 (EBNA1). This down-regulation increased AD risk in female patients (odds ratio up to 6.6), but not in male patients. Our investigation further revealed that the down-regulation of the antibody (anti-DG#29) is associated with EBV reactivation in AD, as indicated by the analysis of EBV VCA IgG or IgM levels. Additionally, our data demonstrated that the epitope region on EBNA1 for the antibody is hidden during the EBV lytic reactivation of B95-8 cells. CONCLUSION: Our findings suggest a potential relationship of EBV in the development of AD in female. Moreover, we propose that antibodies targeting the epitope (DG#29) of EBNA1 could serve as valuable indicators of AD risk in female.


Subject(s)
Alzheimer Disease , Antibodies, Viral , Epitopes , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Humans , Alzheimer Disease/immunology , Alzheimer Disease/virology , Alzheimer Disease/blood , Female , Male , Epstein-Barr Virus Nuclear Antigens/immunology , Aged , Antibodies, Viral/blood , Epitopes/immunology , Herpesvirus 4, Human/immunology , Cognitive Dysfunction/immunology , Aged, 80 and over , Epstein-Barr Virus Infections/immunology , Middle Aged
2.
PLoS Pathog ; 20(6): e1012177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38843296

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) is a likely prerequisite for multiple sclerosis (MS) but the underlying mechanisms are unknown. We investigated antibody and T cell responses to EBV in persons with MS (pwMS), healthy EBV-seropositive controls (HC) and post-infectious mononucleosis (POST-IM) individuals up to 6 months after disease resolution. The ability of EBV-specific T cell responses to target antigens from the central nervous system (CNS) was also investigated. METHODS: Untreated persons with relapsing-remitting MS, POST-IM individuals and HC were, as far as possible, matched for gender, age and HLA-DRB1*15:01. EBV load was determined by qPCR, and IgG responses to key EBV antigens were determined by ELISA, immunofluorescence and Western blot, and tetanus toxoid antibody responses by multiplex bead array. EBV-specific T cell responses were determined ex vivo by intracellular cytokine staining (ICS) and cross-reactivity of in vitro-expanded responses probed against 9 novel Modified Vaccinia Ankara (MVA) viruses expressing candidate CNS autoantigens. RESULTS: EBV load in peripheral blood mononuclear cells (PBMC) was unchanged in pwMS compared to HC. Serologically, while tetanus toxoid responses were unchanged between groups, IgG responses to EBNA1 and virus capsid antigen (VCA) were significantly elevated (EBNA1 p = 0.0079, VCA p = 0.0298) but, importantly, IgG responses to EBNA2 and the EBNA3 family antigens were also more frequently detected in pwMS (EBNA2 p = 0.042 and EBNA3 p = 0.005). In ex vivo assays, T cell responses to autologous EBV-transformed B cells and to EBNA1 were largely unchanged numerically, but significantly increased IL-2 production was observed in response to certain stimuli in pwMS. EBV-specific polyclonal T cell lines from both MS and HC showed high levels of autoantigen recognition by ICS, and several neuronal proteins emerged as common targets including MOG, MBP, PLP and MOBP. DISCUSSION: Elevated serum EBV-specific antibody responses in the MS group were found to extend beyond EBNA1, suggesting a larger dysregulation of EBV-specific antibody responses than previously recognised. Differences in T cell responses to EBV were more difficult to discern, however stimulating EBV-expanded polyclonal T cell lines with 9 candidate CNS autoantigens revealed a high level of autoreactivity and indicate a far-reaching ability of the virus-induced T cell compartment to damage the CNS.


Subject(s)
Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/immunology , Female , Male , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Adult , Antibodies, Viral/immunology , Middle Aged , Cross Reactions/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , T-Lymphocytes/immunology , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/virology , Antigens, Viral/immunology , Viral Load , Infectious Mononucleosis/immunology , Infectious Mononucleosis/virology , Epstein-Barr Virus Nuclear Antigens/immunology , Immunoglobulin G/immunology
3.
Front Immunol ; 15: 1384411, 2024.
Article in English | MEDLINE | ID: mdl-38911861

ABSTRACT

Background: Although fingolimod, a sphingosine 1-phosphate receptor agonist, has shown to be an effective treatment reducing relapse rate and also slowing down the disability progression in relapsing-remitting multiple sclerosis (RRMS) patients, it is important to quickly identify those suboptimal responders. Objective: The main objective was to assess different clinical, radiological, genetic and environmental factors as possible early predictors of response in MS patients treated with fingolimod for 24 months. The secondary objective was to analyze the possible contribution of the environmental factors analyzed to the progression and activity of the disease along the 2-years of follow-up. Methods: A retrospective study with 151 patients diagnosed with MS, under fingolimod treatment for 24 months, with serum samples at initiation and six months later, and with clinical and radiological data at initiation and 24 months later, were included in the study. Clinical and radiological variables were collected to establish NEDA-3 (no evidence of disease activity: patients without relapses, disability progression and new T2 lesions or Gd+ lesions) and EDA (evidence of disease activity: patients with relapses and/or progression and/or new T2 lesions or gadolinium-positive [Gd+] lesions) conditions. Human leukocyte antigen II (HLA-II), EBNA-1 IgG and VCA IgG from Epstein-Barr virus (EBV) and antibody titers against Human herpesvirus 6A/B (HHV-6A/B) were also analyzed. Results: A total of 151 MS patients fulfilled the inclusion criteria: 27.8% was NEDA-3 (37.5% among those previously treated with high efficacy therapies >24 months). The following early predictors were statistically significantly associated with NEDA-3 condition: sex (male; p=0.002), age at baseline (older; p=0.009), relapses 2-years before fingolimod initiation ≤1 (p=0.010), and absence of Gd+ lesions at baseline (p=0.006). Regarding the possible contribution of the environmental factors included in the study to the activity or the progression of the disease, we only found that EBNA-1 IgG titers decreased in 20.0% of PIRA (progression independent from relapse activity) patients vs. 73.3% of RAW (relapse-associated worsening) patients (p=0.006; O.R. = 11.0). Conclusion: MS patients that are male, older, and with a low clinical and radiological activity at fingolimod initiation have a greater probability to reach NEDA-3 condition after two years with this therapy. An intriguing association of EBV with the progression of the disease has also been described, but it should be further study in a larger cohort to confirm these results.


Subject(s)
Disease Progression , Epstein-Barr Virus Nuclear Antigens , Fingolimod Hydrochloride , Immunoglobulin G , Humans , Fingolimod Hydrochloride/therapeutic use , Female , Male , Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Retrospective Studies , Immunoglobulin G/blood , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/immunology , Multiple Sclerosis, Relapsing-Remitting/blood , Treatment Outcome , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/immunology , Multiple Sclerosis/blood
4.
Ann Neurol ; 96(2): 302-305, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38860471

ABSTRACT

Synergistic interactions between human herpesvirus 6A (HHV-6A) and Epstein-Barr virus (EBV) are hypothesized in the etiopathogenesis of multiple sclerosis (MS). This study investigated if HHV-6A and EBV seroreactivities interact regarding the risk of developing MS. Antibodies against viral antigens were analyzed in biobank samples from 670 individuals who later developed MS and matched controls. Additive interactions were analyzed. A significant interaction between HHV-6A and EBNA-1 seroreactivities was observed in study participants above the median age of 24.9 years (attributable proportion due to interaction = 0.45). This finding supports the hypothesis that HHV-6A and EBV infections interact in MS development. ANN NEUROL 2024;96:302-305.


Subject(s)
Antibodies, Viral , Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Herpesvirus 6, Human , Multiple Sclerosis , Roseolovirus Infections , Humans , Herpesvirus 6, Human/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/immunology , Herpesvirus 4, Human/immunology , Female , Case-Control Studies , Male , Adult , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/complications , Antibodies, Viral/blood , Antibodies, Viral/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Roseolovirus Infections/immunology , Roseolovirus Infections/complications , Young Adult , Middle Aged , Adolescent
5.
JAMA Neurol ; 81(5): 515-524, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38497939

ABSTRACT

Importance: It remains unclear why only a small proportion of individuals infected with the Epstein-Barr virus (EBV) develop multiple sclerosis (MS) and what the underlying mechanisms are. Objective: To assess the serologic response to all EBV peptides before the first symptoms of MS occur, determine whether the disease is associated with a distinct immune response to EBV, and evaluate whether specific EBV epitopes drive this response. Design, Setting, and Participants: In this prospective, nested case-control study, individuals were selected among US military personnel with serum samples stored in the US Department of Defense Serum Repository. Individuals with MS had serum collected at a median 1 year before onset (reported to the military in 2000-2011) and were matched to controls for age, sex, race and ethnicity, blood collection, and military branch. No individuals were excluded. The data were analyzed between September 1, 2022, and August 31, 2023. Exposure: Antibodies (enrichment z scores) to the human virome measured using VirScan (phage-displayed immunoprecipitation and sequencing). Main Outcome and Measure: Rate ratios (RRs) for MS for antibodies to 2263 EBV peptides (the EBV peptidome) were estimated using conditional logistic regression, adjusting for total anti-EBV nuclear antigen 1 (EBNA-1) antibodies, which have consistently been associated with a higher MS risk. The role of antibodies against other viral peptides was also explored. Results: A total of 30 individuals with MS were matched with 30 controls. Mean (SD) age at sample collection was 27.8 (6.5) years; 46 of 60 participants (76.7%) were male. The antibody response to the EBV peptidome was stronger in individuals with MS, but without a discernible pattern. The antibody responses to 66 EBV peptides, the majority mapping to EBNA antigens, were significantly higher in preonset sera from individuals with MS (RR of highest vs lowest tertile of antibody enrichment, 33.4; 95% CI, 2.5-448.4; P for trend = .008). Higher total anti-EBNA-1 antibodies were also associated with an elevated MS risk (top vs bottom tertile: RR, 27.6; 95% CI, 2.3-327.6; P for trend = .008). After adjusting for total anti-EBNA-1 antibodies, risk estimates from most EBV peptides analyses were attenuated, with 4 remaining significantly associated with MS, the strongest within EBNA-6/EBNA-3C, while the association between total anti-EBNA-1 antibodies and MS persisted. Conclusion and Relevance: These findings suggest that antibody response to EBNA-1 may be the strongest serologic risk factor for MS. No single EBV peptide stood out as being selectively targeted in individuals with MS but not controls. Larger investigations are needed to explore possible heterogeneity of anti-EBV humoral immunity in MS.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Female , Male , Herpesvirus 4, Human/immunology , Multiple Sclerosis/blood , Multiple Sclerosis/immunology , Case-Control Studies , Adult , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/blood , Military Personnel , Antibodies, Viral/blood , Prospective Studies , Young Adult , Epstein-Barr Virus Nuclear Antigens/immunology , Epstein-Barr Virus Nuclear Antigens/blood , Peptides/immunology , Peptides/blood
6.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200217, 2024 May.
Article in English | MEDLINE | ID: mdl-38547427

ABSTRACT

BACKGROUND AND OBJECTIVES: Epstein-Barr virus (EBV) has been strongly implicated in the pathogenesis of multiple sclerosis (MS). Despite this, there are no routinely used tests to measure cellular response to EBV. In this study, we analyzed the cellular response to EBV nuclear antigen-1 (EBNA-1) in people with MS (pwMS) using a whole blood assay. METHODS: This cross-sectional study took place in a dedicated MS clinic in a university hospital. We recruited healthy controls, people with epilepsy (PWE), and pwMS taking a range of disease-modifying treatments (DMTs) including natalizumab, anti-CD20 monoclonal antibodies (mAbs), dimethyl fumarate (DMF), and also treatment naïve. Whole blood samples were stimulated with commercially available PepTivator EBNA1 peptides and a control virus-cytomegalovirus (CMV) peptide. We recorded the cellular response to stimulation with both interferon gamma (IFN-γ) and interleukin-2 (IL-2). We also compared the cellular responses to EBNA1 with IgG responses to EBNA1, viral capsid antigen (VCA), and EBV viral load. RESULTS: We recruited 86 pwMS, with relapsing remitting MS, in this group, and we observed a higher level of cellular response recorded with IFN-γ (0.79 IU/mL ± 1.36) vs healthy controls (0.29 IU/mL ± 0.90, p = 0.0048) and PWE (0.17 IU/mL ± 0.33, p = 0.0088). Treatment with either anti-CD20 mAbs (0.28 IU/mL ± 0.57) or DMF (0.07 IU/mL ± 0.15) resulted in a cellular response equivalent to control levels or in PWE (p = 0.26). The results of recording IL-2 response were concordant with IFN-γ: with suppression also seen with anti-CD20 mAbs and DMF. By contrast, we did not record any differential effect of DMTs on the levels of IgG to either EBNA-1 or VCA. Nor did we observe differences in cellular response to cytomegalovirus between groups. DISCUSSION: This study demonstrates how testing and recording the cellular response to EBNA-1 in pwMS may be beneficial. EBNA-1 stimulation of whole blood samples produced higher levels of IFN-γ and IL-2 in pwMS compared with controls and PWE. In addition, we show a differential effect of currently available DMTs on this response. The functional assay deployed uses whole blood samples with minimal preprocessing suggesting that employment as a treatment response measure in clinical trials targeting EBV may be possible.


Subject(s)
Epstein-Barr Virus Nuclear Antigens , Herpesvirus 4, Human , Multiple Sclerosis , Humans , Antibodies, Viral , Antigens, Viral , Capsid Proteins , Cross-Sectional Studies , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/immunology , Immunity, Cellular , Immunoglobulin G , Interferon-gamma , Interleukin-2 , Multiple Sclerosis/drug therapy , Multiple Sclerosis/virology
7.
Neurol Neurochir Pol ; 56(3): 236-245, 2022.
Article in English | MEDLINE | ID: mdl-35726751

ABSTRACT

INTRODUCTION: Fatigue is the most frequent symptom in multiple sclerosis (MS), although it is still poorly understood due to its complexity and subjective nature. There is an urgent need to identify reliable biomarkers to improve disease prognosis and therapeutic strategies. Epstein-Barr virus (EBV) is the major environmental risk factor associated with MS aetiology, and trials with EBV-targeted T cell therapies have reduced fatigue severity in MS patients. AIM OF THE STUDY: We investigated whether the serum amount of immunoglobulin (Ig)G-specific for EBV antigens could be a suitable prognostic marker for the assessment of MS-related fatigue. MATERIAL AND METHODS: A total of 194 MS patients were enrolled. We quantified EBV nuclear antigen 1 (EBNA1) and EBV viral capsid antigen (VCA) immunoglobulin (Ig) G levels and B cell-activating factor of the tumour necrosis factor family (BAFF) concentration in the serum of patients with relapsing-remitting MS (RRMS) and chronic progressive MS (CPMS), and we analysed their correlation with aspects of fatigue and other clinical disease parameters. RESULTS: A complete EBV seropositivity could be detected in our cohort. After adjusting for confounding variables and covariates, neither EBNA1 nor VCA antibody titres were associated with levels of fatigue, sleepiness, depression, or with any of the clinical values such as expanded disability status scale, lesion count, annual relapse rate, or disease duration. However, patients with RRMS had significantly higher EBNA1 IgG titre than those with CPMS, whereas this was not the case under therapies targeting CD20+ cells. BAFF levels in serum were inversely proportional to anti-EBNA1 IgG. CONCLUSIONS AND CLINICAL IMPLICATIONS: Our results show that EBNA1 IgG titre is not associated with the presence or level of fatigue. Whether the increased EBNA1 titre in RRMS plays a direct role in disease progression, or is only a consequence of excessive B cell activation, remains to be answered in future studies.


Subject(s)
Antibodies, Viral , Epstein-Barr Virus Infections , Fatigue , Immunoglobulin G , Multiple Sclerosis , Antibodies, Viral/blood , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens/immunology , Fatigue/complications , Herpesvirus 4, Human , Humans , Immunoglobulin G/blood , Multiple Sclerosis/complications , Multiple Sclerosis/virology
9.
Intervirology ; 65(3): 144-150, 2022.
Article in English | MEDLINE | ID: mdl-35158367

ABSTRACT

INTRODUCTION: Epstein-Barr virus (EBV/HHV-4) has been implicated in the pathogenesis of multiple sclerosis (MS). This study was conducted to investigate the levels of pro-inflammatory cytokines IL-1ß and IL-6 in healthy EBV carriers and MS patients with prior EBV infection in response to treatment with EBV nuclear antigen 1 (EBNA-1) and replication and transcription activator (BRLF-1/Rta) peptide antigens in whole blood cell culture to assess the cytokine expression across all cells in the peripheral blood. METHODS: Isolated whole blood cells from the included participants were incubated at a concentration of 106 cells/mL with BRLF-1 or EBNA-1. The amount of IL-1ß and IL-6 transcripts were measured with quantitative RT-PCR at day 3 after incubation. MTT assay was conducted to examine cytotoxicity of the peptides and their effect on cell viability. Changes in cytokine expression and cell viability were analyzed using one-way and two-way ANOVA, respectively. RESULTS: Ten MS patients and ten healthy donors were enrolled in the study. Treatment with the peptide antigens resulted in increased cytokines expression in both MS patients and healthy subjects. Furthermore, IL-1ß levels were higher in MS patients compared to healthy EBV carriers. MTT assay revealed no significant difference in cell viability between the two groups. DISCUSSION: The higher levels of IL-1ß in response to EBV antigens in MS patients may reflect the host neuroinflammatory environment and support the notion that immune response against EBV has a role as an aggravating factor in the progression of MS by contributing to the neuroinflammatory cascade.


Subject(s)
Epstein-Barr Virus Infections , Epstein-Barr Virus Nuclear Antigens , Immediate-Early Proteins , Multiple Sclerosis , Trans-Activators , Cytokines/metabolism , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human , Humans , Immediate-Early Proteins/immunology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Multiple Sclerosis/drug therapy , Trans-Activators/immunology
10.
Front Immunol ; 12: 757302, 2021.
Article in English | MEDLINE | ID: mdl-34790199

ABSTRACT

Roles for viral infections and aberrant immune responses in driving localized neuroinflammation and neurodegeneration in multiple sclerosis (MS) are the focus of intense research. Epstein-Barr virus (EBV), as a persistent and frequently reactivating virus with major immunogenic influences and a near 100% epidemiological association with MS, is considered to play a leading role in MS pathogenesis, triggering localized inflammation near or within the central nervous system (CNS). This triggering may occur directly via viral products (RNA and protein) and/or indirectly via antigenic mimicry involving B-cells, T-cells and cytokine-activated astrocytes and microglia cells damaging the myelin sheath of neurons. The genetic MS-risk factor HLA-DR2b (DRB1*1501ß, DRA1*0101α) may contribute to aberrant EBV antigen-presentation and anti-EBV reactivity but also to mimicry-induced autoimmune responses characteristic of MS. A central role is proposed for inflammatory EBER1, EBV-miRNA and LMP1 containing exosomes secreted by viable reactivating EBV+ B-cells and repetitive release of EBNA1-DNA complexes from apoptotic EBV+ B-cells, forming reactive immune complexes with EBNA1-IgG and complement. This may be accompanied by cytokine- or EBV-induced expression of human endogenous retrovirus-W/-K (HERV-W/-K) elements and possibly by activation of human herpesvirus-6A (HHV-6A) in early-stage CNS lesions, each contributing to an inflammatory cascade causing the relapsing-remitting neuro-inflammatory and/or progressive features characteristic of MS. Elimination of EBV-carrying B-cells by antibody- and EBV-specific T-cell therapy may hold the promise of reducing EBV activity in the CNS, thereby limiting CNS inflammation, MS symptoms and possibly reversing disease. Other approaches targeting HHV-6 and HERV-W and limiting inflammatory kinase-signaling to treat MS are also being tested with promising results. This article presents an overview of the evidence that EBV, HHV-6, and HERV-W may have a pathogenic role in initiating and promoting MS and possible approaches to mitigate development of the disease.


Subject(s)
Endogenous Retroviruses/pathogenicity , Herpesvirus 4, Human/pathogenicity , Herpesvirus 6, Human/pathogenicity , Multiple Sclerosis/etiology , Neuroinflammatory Diseases/virology , Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Autoimmunity , B-Lymphocytes/immunology , Blood-Brain Barrier , Brain/virology , Coinfection , DNA, Viral/immunology , Endogenous Retroviruses/physiology , Epstein-Barr Virus Nuclear Antigens/genetics , Epstein-Barr Virus Nuclear Antigens/immunology , Gene Products, env/physiology , Genetic Predisposition to Disease , Herpesviridae Infections/complications , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Herpesvirus 4, Human/immunology , Herpesvirus 6, Human/immunology , Humans , Lymph Nodes/virology , Models, Immunological , Molecular Mimicry , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Multiple Sclerosis/virology , Myelin Sheath/immunology , Myelin Sheath/pathology , Neuroinflammatory Diseases/etiology , Pregnancy Proteins/physiology , Transcriptional Activation , Virus Activation , Virus Latency
11.
mBio ; 12(6): e0224321, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34781735

ABSTRACT

The innate immune system serves as frontline defense against pathogens, such as bacteria and viruses. Natural killer (NK) cells are a part of innate immunity and can both secrete cytokines and directly target cells for lysis. NK cells express several cell surface receptors, including NKG2D, which bind multiple ligands. People with deficiencies in NK cells are often susceptible to uncontrolled infection by herpesviruses, such as Epstein-Barr virus (EBV). Infection with EBV stimulates both innate and adaptive immunity, yet the virus establishes lifelong latent infection in memory B cells. We show that the EBV oncogene EBNA1, previously known to be necessary for maintaining EBV genomes in latently infected cells, also plays an important role in suppressing NK cell responses and cell death in newly infected cells. EBNA1 does so by downregulating the NKG2D ligands ULBP1 and ULBP5 and modulating expression of c-Myc. B cells infected with a derivative of EBV that lacks EBNA1 are more susceptible to NK cell-mediated killing and show increased levels of apoptosis. Thus, EBNA1 performs a previously unappreciated role in reducing immune response and programmed cell death after EBV infection, helping infected cells avoid immune surveillance and apoptosis and thus persist for the lifetime of the host. IMPORTANCE Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting up to 95% of the world's adult population. Initial infection with EBV can cause infectious mononucleosis. EBV is also linked to several human malignancies, including lymphomas and carcinomas. Although infection by EBV alerts the immune system and causes an immune response, the virus persists for life in memory B cells. We show that the EBV protein EBNA1 can downregulate several components of the innate immune system linked to natural killer (NK) cells. This downregulation of NK cell activity translates to lower killing of EBV-infected cells and is likely one way that EBV escapes immune surveillance after infection. Additionally, we show that EBNA1 reduces apoptosis in newly infected B cells, allowing more of these cells to survive. Taken together, our findings uncover new functions of EBNA1 and provide insights into viral strategies to survive the initial immune response postinfection.


Subject(s)
Apoptosis , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/physiology , Killer Cells, Natural/immunology , Memory B Cells/virology , Cell Line , Epstein-Barr Virus Infections/physiopathology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , GPI-Linked Proteins/genetics , GPI-Linked Proteins/immunology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/immunology , Host-Pathogen Interactions , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/immunology , Killer Cells, Natural/cytology , Memory B Cells/cytology , Memory B Cells/immunology
12.
Diagn Microbiol Infect Dis ; 101(3): 115443, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34304105

ABSTRACT

We evaluated the analytical performance of the Elecsys® Epstein-Barr virus (EBV) immunoassay panel for the in vitro detection of EBV immunoglobulin M (IgM), EBV viral capsid antigen immunoglobulin G (VCA IgG), and EBV nuclear antigen immunoglobulin G (EBNA IgG). Relative sensitivity/specificity were assessed using 1,734 human blood samples (1,068 residual samples from routine EBV testing; 467 presumed acute infection; 199 presumed seronegative) tested with the Elecsys EBV and 2 comparator panels (ARCHITECT EBV; Liaison EBV). EBV infection status was defined by majority approach. The three panels demonstrated comparable relative sensitivities/specificities, ranging between values (%) of 98.3-99.5 / 96.9-97.4 (EBV IgM); 96.3-98.4 / 98.4-98.7 (EBV VCA IgG); and 98.1-99.5 / 99.1-99.5 (EBV EBNA IgG). The Elecsys EBV IgM assay demonstrated superior analytical specificity in samples containing potential interferents. Utilizing the Elecsys EBV panel for the EBNA-first approach showed 97.5% overall agreement versus the majority approach in samples with clear EBV status.


Subject(s)
Antibodies, Viral/blood , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human/immunology , Immunoassay/standards , Reagent Kits, Diagnostic/standards , Antigens, Viral/immunology , Capsid Proteins/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Humans , Immunoassay/methods , Immunoglobulin G/blood , Immunoglobulin M/blood , Sensitivity and Specificity
14.
ACS Appl Mater Interfaces ; 13(23): 27645-27655, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34081862

ABSTRACT

A combined approach to signal enhancement in fluorescence affinity biosensors and assays is reported. It is based on the compaction of specifically captured target molecules at the sensor surface followed by optical probing with a tightly confined surface plasmon (SP) field. This concept is utilized by using a thermoresponsive hydrogel (HG) binding matrix that is prepared from a terpolymer derived from poly(N-isopropylacrylamide) (pNIPAAm) and attached to a metallic sensor surface. Epi-illumination fluorescence and SP-enhanced total internal reflection fluorescence readouts of affinity binding events are performed to spatially interrogate the fluorescent signal in the direction parallel and perpendicular to the sensor surface. The pNIPAAm-based HG binding matrix is arranged in arrays of sensing spots and employed for the specific detection of human IgG antibodies against the Epstein-Barr virus (EBV). The detection is performed in diluted human plasma or with isolated human IgG by using a set of peptide ligands mapping the epitope of the EBV nuclear antigen. Alkyne-terminated peptides were covalently coupled to the pNIPAAm-based HG carrying azide moieties. Importantly, using such low-molecular-weight ligands allowed preserving the thermoresponsive properties of the pNIPAAm-based architecture, which was not possible for amine coupling of regular antibodies that have a higher molecular weight.


Subject(s)
Acrylic Resins/chemistry , Biosensing Techniques/methods , Epstein-Barr Virus Infections/diagnosis , Epstein-Barr Virus Nuclear Antigens/immunology , Hydrogels/chemistry , Immunoglobulin G/analysis , Peptide Fragments/metabolism , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/virology , Fluorescence , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/isolation & purification , Humans , Hydrogels/metabolism , Immunoglobulin G/immunology , Peptide Fragments/immunology , Polymers/chemistry
15.
Front Immunol ; 12: 650713, 2021.
Article in English | MEDLINE | ID: mdl-33777048

ABSTRACT

Objectives: To study Epstein-Barr virus (EBV) antibody patterns in twin individuals with rheumatoid arthritis (RA) and their healthy co-twins, and to determine the heritability of antibody responses against the EBV encoded EBNA1 protein. Methods: Isotypes of EBNA1 antibodies were measured in 137 RA affected- and 150 healthy twin pairs. We estimated the effect of RA and RA predisposition, anti-citrullinated antibodies (ACPA), IgM rheumatoid factor (RF), the shared epitope (SE) and the PTPN22-T allele (PTPN22) on the level of EBNA1 antibodies. We also determined the heritability of EBNA1 antibody levels. Results: IgA-EBNA1 antibody levels were increased in twins from RA discordant twin pairs irrespective of RA, ACPA or IgM-RF status. The IgG-EBNA1 antibody level was elevated in healthy co-twins from RA discordant twin pairs but not in RA affected twins. The IgM-EBNA1 antibody level was elevated in both RA twins and their healthy co-twins. The effect of RA on the IgA-EBNA1 antibody level was reversed when SE was present and with no effect of PTPN22. The heritability of IgA-, IgG- and IgM-EBNA1 antibody level was 40.6, 65.5, and 54.3%, with no effect of environment shared by the twins. Conclusion: EBNA1 antibody levels are distinctively different between patients with RA and healthy subjects but also between relatives of RA strongly predisposed to RA and healthy subjects. The high level of IgA EBNA1 antibodies associated with RA and a family predisposition to RA is attributable to both genetics incl. the shared epitope and environmental variation.


Subject(s)
Antibody Formation/immunology , Arthritis, Rheumatoid/immunology , Epstein-Barr Virus Infections/immunology , Herpesvirus 4, Human/immunology , Twin Studies as Topic , Adolescent , Adult , Aged , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/immunology , Female , Genetic Predisposition to Disease/genetics , Genotype , Healthy Volunteers , Herpesvirus 4, Human/physiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Young Adult
16.
J Immunother Cancer ; 9(2)2021 02.
Article in English | MEDLINE | ID: mdl-33589524

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV), an oncogenic human gammaherpesvirus, is associated with a wide range of human malignancies of epithelial and B-cell origin. Recent studies have demonstrated promising safety and clinical efficacy of allogeneic 'off-the-shelf' virus-specific T-cell therapies for post-transplant viral complications. METHODS: Taking a clue from these studies, we developed a highly efficient EBV-specific T-cell expansion process using a replication-deficient AdE1-LMPpoly vector that specifically targets EBV-encoded nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2), expressed in latency II malignancies. RESULTS: These allogeneic EBV-specific T cells efficiently recognized human leukocyte antigen (HLA)-matched EBNA1-expressing and/or LMP1 and LMP2-expressing malignant cells and demonstrated therapeutic potential in a number of in vivo models, including EBV lymphomas that emerged spontaneously in humanized mice following EBV infection. Interestingly, we were able to override resistance to T-cell therapy in vivo using a 'restriction-switching' approach, through sequential infusion of two different allogeneic T-cell therapies restricted through different HLA alleles. Furthermore, we have shown that inhibition of the programmed cell death protein-1/programmed death-ligand 1 axis in combination with EBV-specific T-cell therapy significantly improved overall survival of tumor-bearing mice when compared with monotherapy. CONCLUSION: These findings suggest that restriction switching by sequential infusion of allogeneic T-cell therapies that target EBV through distinct HLA alleles may improve clinical response.


Subject(s)
Epstein-Barr Virus Infections/therapy , Epstein-Barr Virus Nuclear Antigens/immunology , Herpesvirus 4, Human/immunology , Immune Checkpoint Inhibitors/administration & dosage , Lymphoma/virology , T-Lymphocytes/transplantation , Viral Matrix Proteins/immunology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Epstein-Barr Virus Infections/immunology , Female , HLA Antigens , Humans , Immune Checkpoint Inhibitors/pharmacology , Lymphoma/immunology , Lymphoma/therapy , Mice , T-Lymphocytes/immunology , Transplantation, Homologous , Xenograft Model Antitumor Assays
17.
Mol Immunol ; 132: 41-52, 2021 04.
Article in English | MEDLINE | ID: mdl-33545624

ABSTRACT

Pathogens such as the Epstein Barr virus (EBV) have long been implicated in the etiology of systemic lupus erythematosus (SLE). The Epstein Barr virus nuclear antigen I (EBNA-1) has been shown to play a role in the development of anti-nuclear antibodies characteristic of SLE. One mechanism by which EBV may play a role in SLE is molecular mimicry. We previously generated two monoclonal antibodies (mAbs) to EBNA-1 and demonstrated that they cross-react with double-stranded DNA (dsDNA). In the present study, we demonstrate that these mAbs have pathogenic potential. We show that they can bind to isolated rat glomeruli and that binding can be greatly diminished by pretreatment of glomeruli with DNase I, suggesting that these mAbs bind dsDNA in the kidney. We also demonstrate that these antibodies can deposit in the kidney when injected into mice and can induce proteinuria and elicit histopathological alterations consistent with glomerulonephritis. Finally, we show that these antibodies can cross-react with laminin and collagen IV in the extracellular matrix suggesting that direct binding to the glomerular basement membrane or mesangial matrix may also contribute to the antibody deposition in the kidney. In summary, our results indicate that EBNA-1 can elicit antibodies that cross-react with dsDNA, that can deposit in the kidney, and induce kidney damage. These results are significant because they support the role of a viral protein in SLE and lupus nephritis.


Subject(s)
Antibodies, Antinuclear/toxicity , Antibodies, Monoclonal/toxicity , Antibodies, Viral/immunology , DNA/immunology , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Kidney Glomerulus/immunology , Animals , Antibodies, Antinuclear/immunology , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Collagen/immunology , Cross Reactions/immunology , Deoxyribonuclease I , Epstein-Barr Virus Infections/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/immunology , Female , Glomerular Basement Membrane/immunology , Glomerular Basement Membrane/metabolism , Glomerulonephritis/immunology , Glomerulonephritis/pathology , Glomerulonephritis/virology , HEK293 Cells , Humans , Immunoglobulin G/immunology , Kidney Glomerulus/pathology , Laminin/immunology , Mice , Mice, Inbred BALB C , Molecular Mimicry , Proteinuria/immunology , Rats , Rats, Sprague-Dawley
18.
Virology ; 557: 44-54, 2021 05.
Article in English | MEDLINE | ID: mdl-33639481

ABSTRACT

Epstein-Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of malignancy. RNAseq of peripheral blood primary B cell samples infected with wild-type EBV revealed that expression of programmed cell death ligand-1 (PD-L1) is markedly induced by infection. This induction of PD-L1 was alleviated by knockout of the EBNA2 gene, but knockout of LMP1 had little effect. ChIPseq, ChIA-PET, and reporter assays further confirmed that EBNA2-binding sites in the promoter region and at 130 kb downstream of the PD-L1 gene played important roles in PD-L1 induction. Our results indicate that EBV mainly utilizes the EBNA2 gene for induction of PD-L1 and to evade host immunity on infection of primary B cells. Furthermore, pathway analysis revealed that genes involved in the cell cycle, metabolic processes, membrane morphogenesis, and vesicle regulation were induced by EBNA2, and that EBNA2 suppressed genes related to immune signaling.


Subject(s)
B-Lymphocytes/virology , B7-H1 Antigen/genetics , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/immunology , Sequence Analysis, RNA/methods , Viral Proteins/genetics , B-Lymphocytes/immunology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cells, Cultured , Epstein-Barr Virus Nuclear Antigens/immunology , Epstein-Barr Virus Nuclear Antigens/metabolism , HEK293 Cells , Herpesvirus 4, Human/genetics , Humans , Viral Proteins/immunology , Viral Proteins/metabolism
19.
Cancer Res Treat ; 53(4): 991-1003, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33494127

ABSTRACT

PURPOSE: This study assessed the correlation between Epstein-Barr virus (EBV) biomarkers and the eighth American Joint Committee on Cancer staging system and the prognostic values of IgG antibodies against replication and transcription activator (Rta-IgG), IgA antibodies against Epstein-Barr nuclear antigen 1, and BamH1 Z transactivator (Zta-IgA) in locoregionally advanced nasopharyngeal carcinoma (NPC) patients. MATERIALS AND METHODS: Serum EBV antibody levels were measured by enzyme-linked immunosorbent assay in 435 newly diagnosed stage III-IVA NPC patients administered intensity-modulated radiation therapy±chemotherapy. The primary endpoint was progression-free survival (PFS). RESULTS: Rta-IgG and Zta-IgA levels were positively correlated with the N category and clinical stage. Patients with high Rta-IgG levels (> 29.07 U/mL) showed a significantly inferior prognosis as indicated by PFS (77% vs. 89.8%, p=0.004), distant metastasis-free survival (DMFS) (88.3% vs. 95.8%, p=0.021), and local recurrence-free survival (LRFS) (91.2% vs. 98.3%, p=0.009). High Rta-IgG levels were also significantly associated with inferior PFS and LRFS in multivariable analyses. In the low-level EBV DNA group (≤ 1,500 copies/mL), patients with high Rta-IgG levels had significantly inferior PFS and DMFS (both p < 0.05). However, in the high-level EBV DNA group, Rta-IgG levels were not significantly associated with PFS, DMFS, and LRFS. In the advanced T category (T3-4) subgroup, high Rta-IgG levels were also significantly associated with inferior PFS, DMFS, and LRFS (both p < 0.05). CONCLUSION: Rta-IgG and Zta-IgA levels were strongly correlated with the TNM classification. Rta-IgG level was a negative prognostic factor in locoregionally advanced NPC patients, especially those with advanced T category or low EBV DNA level.


Subject(s)
Antibodies, Viral/blood , Biomarkers, Tumor/blood , Chemoradiotherapy/mortality , Epstein-Barr Virus Infections/complications , Nasopharyngeal Carcinoma/pathology , Neoplasm Recurrence, Local/pathology , Radiotherapy, Intensity-Modulated/mortality , Epstein-Barr Virus Infections/blood , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/immunology , Female , Follow-Up Studies , Herpesvirus 4, Human/immunology , Herpesvirus 4, Human/isolation & purification , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Male , Middle Aged , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/virology , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/therapy , Neoplasm Recurrence, Local/virology , Prognosis , Retrospective Studies , Survival Rate
20.
Article in English | MEDLINE | ID: mdl-33465039

ABSTRACT

OBJECTIVE: Because obesity affects the cellular immune response to infections, we aimed to investigate whether high body mass index (BMI) in young adulthood and high Epstein-Barr nuclear antigen 1 (EBNA-1) antibody levels interact with regard to MS risk. We also aimed at exploring potential 3-way interactions between BMI at age 20 years, aspects of Epstein-Barr virus (EBV) infection (high EBNA-1 antibody levels and infectious mononucleosis [IM] history, respectively) and the human leukocyte antigen (HLA)-DRB1*15:01 allele. METHODS: Using Swedish population-based case-control studies (5,460 cases and 7,275 controls), we assessed MS risk in relation to interactions between overweight/obesity at age 20 years, IM history, EBNA-1 levels, and HLA-DRB1*15:01 status by calculating ORs with 95% CIs using logistic regression. Potential interactions were evaluated on the additive scale. RESULTS: Overweight/obesity, compared with normal weight, interacted significantly with high (>50th percentile) EBNA-1 antibody levels (attributable proportion due to interaction 0.2, 95% CI 0.1-0.4). The strength of the interaction increased with higher category of EBNA-1 antibody levels. Furthermore, 3-way interactions were present between HLA-DRB1*15:01, overweight/obesity at age 20 years, and each aspect of EBV infection. CONCLUSIONS: With regard to MS risk, overweight/obesity in young adulthood acts synergistically with both aspects of EBV infection, predominantly among those with a genetic susceptibility to the disease. The obese state both induces a chronic immune-mediated inflammation and affects the cellular immune response to infections, which may contribute to explain our findings.


Subject(s)
HLA-DRB1 Chains/genetics , Infectious Mononucleosis/complications , Multiple Sclerosis/epidemiology , Obesity/complications , Overweight/complications , Antibodies, Viral/blood , Body Mass Index , Case-Control Studies , Epstein-Barr Virus Nuclear Antigens/immunology , Female , Humans , Male , Risk Factors , Sweden , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL