Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 601
Filter
1.
Vet Res Commun ; 48(5): 3355-3363, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38972932

ABSTRACT

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.


Subject(s)
Escherichia coli Infections , Escherichia coli , beta-Lactamases , Animals , Cattle , beta-Lactamases/genetics , Brazil , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/drug effects , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Female , One Health , Cattle Diseases/microbiology , Anti-Bacterial Agents/pharmacology , Dairying
2.
Biomolecules ; 14(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39062466

ABSTRACT

Dihydroxyacetone phosphate (DHAP)-dependent aldolases catalyze the aldol addition of DHAP to a variety of aldehydes and generate compounds with two stereocenters. This reaction is useful to synthesize chiral acyclic nucleosides, which constitute a well-known class of antiviral drugs currently used. In such compounds, the chirality of the aliphatic chain, which mimics the open pentose residue, is crucial for activity. In this work, three DHAP-dependent aldolases: fructose-1,6-biphosphate aldolase from rabbit muscle, rhanmulose-1-phosphate aldolase from Thermotoga maritima, and fuculose-1-phosphate aldolase from Escherichia coli, were used as biocatalysts. Aldehyde derivatives of thymine and cytosine were used as acceptor substrates, generating new acyclic nucleoside analogues containing two new stereocenters with conversion yields between 70% and 90%. Moreover, structural analyses by molecular docking were carried out to gain insights into the diasteromeric excess observed.


Subject(s)
Aldehyde-Lyases , Escherichia coli , Fructose-Bisphosphate Aldolase , Molecular Docking Simulation , Pyrimidine Nucleosides , Thermotoga maritima , Animals , Escherichia coli/enzymology , Pyrimidine Nucleosides/chemistry , Pyrimidine Nucleosides/chemical synthesis , Aldehyde-Lyases/metabolism , Aldehyde-Lyases/chemistry , Rabbits , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/metabolism , Thermotoga maritima/enzymology , Dihydroxyacetone Phosphate/metabolism , Dihydroxyacetone Phosphate/chemistry , Stereoisomerism
3.
Int J Food Microbiol ; 420: 110765, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38838541

ABSTRACT

Resistance to carbapenems emerged in clinical settings and has rapidly spread to other sectors, such as food and the environment, representing a One Health problem. In this regard, vegetables contaminated by critical priority pathogens have raised global concerns. Here, we have performed a whole-genome sequence-based analysis of extensively drug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa strains isolated from cabbage, spinach, and lettuce, respectively. Genomic analysis revealed the emergence of international and high-risk clones belonging to ST340, ST155, and ST233, harboring a broad resistome to clinically important antimicrobials. In this context, K. pneumoniae, E. coli, and P. aeruginosa strains carried blaKPC-2, blaNDM-1, and blaVIM-2, respectively. The blaKPC-2 gene with a non-Tn4401 element (NTEKPC-Ic) was located on an IncX3-IncU plasmid, while the blaVIM-2 gene was associated with a Tn402-like class 1 integron, In559, on the chromosome. Curiously, the blaNDM-1 gene coexisted with the blaPER-2 gene on an IncC plasmid and the regions harboring both genes contained sequences of Tn3-like element ISKox2-like family transposase. Comparative genomic analysis showed interspecies and clonal transmission of carbapenemase-encoding genes at the human-animal-environmental interface. These findings raise a food safety alert about hospital-associated carbapenemase producers, supporting that fresh vegetables can act as a vehicle for the spread of high-risk clones.


Subject(s)
Vegetables , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Vegetables/microbiology , Food Safety , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/drug effects , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/drug effects , Escherichia coli/enzymology , Food Microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Whole Genome Sequencing , Humans
5.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38821516

ABSTRACT

This study aimed to analyze ESBL-producing Escherichia coli prevalence in urine samples collected between 2011-2019 in Curitiba, a large city in Brazil, and relating it to antibiotic consumption and sanitary conditions. This is a longitudinal study correlating prevalence of ESBL-producing E. coli isolates from urine samples with district-level antibiotic consumption and sociodemographic data during 2011-2019. E. coli isolates were tested for antibiotic susceptibility and ESBL by an automated method. Statistical analysis applied linear regressions, pooled ordinary least squares, and fixed effects models for districts or years. The Chow and Hausman tests indicated that the fixed effects model for individual districts fitted best. Chi-square test was used for qualitative variables (statistical significance was set when P < 0.05). Among the 886 535 urine sample cultures, 9.9% of isolates were ESBL-producing E. coli. Their prevalence increased from 4.7% in 2012 to 19.3% in 2019 (P < 0.0001; R2 = 0.922). This progressive increase correlated with age (P = 0.007; R2 = 0.8725) and male gender (P < 0.001) and increased antibiotic consumption (P = 0.0386; R2 = 0.47). The fixed effects model showed that district influences ESBL prevalence and that antibiotic consumption explains 20%-30% of this variation, with an increase of one defined daily dose accounting for an increase of 0.02084 percentage points of ESBL. The increasing prevalence of ESBL-producing E. coli can, to a considerable extent, be explained by increasing antibiotic consumption.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli , beta-Lactamases , Humans , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/enzymology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Male , Female , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/urine , Escherichia coli Infections/drug therapy , beta-Lactamases/metabolism , Brazil/epidemiology , Prevalence , Middle Aged , Adult , Young Adult , Adolescent , Aged , Child , Child, Preschool , Longitudinal Studies , Microbial Sensitivity Tests , Infant , Urinary Tract Infections/microbiology , Urinary Tract Infections/epidemiology , Urinary Tract Infections/drug therapy
6.
Microbiol Spectr ; 10(1): e0201521, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019697

ABSTRACT

Emergency department areas were repurposed as intensive care units (ICUs) for patients with acute respiratory distress syndrome during the initial months of the coronavirus disease 2019 (COVID-19) pandemic. We describe an outbreak of New Delhi metallo-ß-lactamase 1 (NDM-1)-producing Escherichia coli infections in critically ill COVID-19 patients admitted to one of the repurposed units. Seven patients developed infections (6 ventilator-associated pneumonia [VAP] and 1 urinary tract infection [UTI]) due to carbapenem-resistant E. coli, and only two survived. Five of the affected patients and four additional patients had rectal carriage of carbapenem-resistant E. coli. The E. coli strain from the affected patients corresponded to a single sequence type. Rectal screening identified isolates of two other sequence types bearing blaNDM-1. Isolates of all three sequence types harbored an IncFII plasmid. The plasmid was confirmed to carry blaNDM-1 through conjugation. An outbreak of clonal NDM-1-producing E. coli isolates and subsequent dissemination of NDM-1 through mobile elements to other E. coli strains occurred after hospital conversion during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This emphasizes the need for infection control practices in surge scenarios. IMPORTANCE The SARS-CoV-2 pandemic has resulted in a surge of critically ill patients. Hospitals have had to adapt to the demand by repurposing areas as intensive care units. This has resulted in high workload and disruption of usual hospital workflows. Surge capacity guidelines and pandemic response plans do not contemplate how to limit collateral damage from issues like hospital-acquired infections. It is vital to ensure quality of care in surge scenarios.


Subject(s)
Cross Infection/microbiology , Escherichia coli Infections/microbiology , Escherichia coli/enzymology , Escherichia coli/isolation & purification , beta-Lactamases/metabolism , Adult , Aged , COVID-19/epidemiology , COVID-19/virology , Conjugation, Genetic , Cross Infection/epidemiology , Disease Outbreaks , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/mortality , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Mexico/epidemiology , Middle Aged , Plasmids/genetics , SARS-CoV-2/physiology , Tertiary Care Centers/statistics & numerical data , beta-Lactamases/genetics
7.
Electron. j. biotechnol ; Electron. j. biotechnol;54: 26-36, nov.2021. ilus, graf
Article in English | LILACS | ID: biblio-1510830

ABSTRACT

BACKGROUND The heterologous expression of parasitic proteins is challenging because the sequence composition often differs significantly from host preferences. However, the production of such proteins is important because they are potential drug targets and can be screened for interactions with new lead compounds. Here we compared two expression systems for the production of an active recombinant aldehyde dehydrogenase (SmALDH_312) from Schistosoma mansoni, which causes the neglected tropical disease schistosomiasis. RESULTS We produced SmALDH_312 successfully in the bacterium Escherichia coli and in the baculovirus expression vector system (BEVS). Both versions of the recombinant protein were found to be active in vitro, but the BEVS-derived enzyme showed 3.7-fold higher specific activity and was selected for further characterization. We investigated the influence of Mg2+, Ca2+ and Mn2+, and found out that the specific activity of the enzyme increased 1.5-fold in the presence of 0.5 mM Mg2+. Finally, we characterized the kinetic properties of the enzyme using a design-of-experiment approach, revealing optimal activity at pH 7.6 and 41C. CONCLUSIONS Although, E. coli has many advantages, such as rapid expression, high yields and low costs, this system was outperformed by BEVS for the production of a schistosome ALDH. BEVS therefore rovides an opportunity for the expression and subsequent evaluation of schistosome enzymes as drug targets


Subject(s)
Baculoviridae/enzymology , Escherichia coli/enzymology , Schistosomiasis/drug therapy , Kinetics , Proteins/pharmacokinetics , Baculoviridae/chemistry , Escherichia coli/chemistry
8.
mBio ; 12(5): e0183621, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34579567

ABSTRACT

The emergence and worldwide dissemination of carbapenemase-producing Gram-negative bacteria are a major public health threat. Metallo-ß-lactamases (MBLs) represent the largest family of carbapenemases. Regrettably, these resistance determinants are spreading worldwide. Among them, the New Delhi metallo-ß-lactamase (NDM-1) is experiencing the fastest and largest geographical spread. NDM-1 ß-lactamase is anchored to the bacterial outer membrane, while most MBLs are soluble, periplasmic enzymes. This unique cellular localization favors the selective secretion of active NDM-1 into outer membrane vesicles (OMVs). Here, we advance the idea that NDM-containing vesicles serve as vehicles for the local dissemination of NDM-1. We show that OMVs with NDM-1 can protect a carbapenem-susceptible strain of Escherichia coli upon treatment with meropenem in a Galleria mellonella infection model. Survival curves of G. mellonella revealed that vesicle encapsulation enhances the action of NDM-1, prolonging and favoring bacterial protection against meropenem inside the larva hemolymph. We also demonstrate that E. coli cells expressing NDM-1 protect a susceptible Pseudomonas aeruginosa strain within the larvae in the presence of meropenem. By using E. coli variants engineered to secrete variable amounts of NDM-1, we demonstrate that the protective effect correlates with the amount of NDM-1 secreted into vesicles. We conclude that secretion of NDM-1 into OMVs contributes to the survival of otherwise susceptible nearby bacteria at infection sites. These results disclose that OMVs play a role in the establishment of bacterial communities, in addition to traditional horizontal gene transfer mechanisms. IMPORTANCE Resistance to carbapenems, last-resort antibiotics, is spreading worldwide, raising great concern. NDM-1 is one of the most potent and widely disseminated carbapenem-hydrolyzing enzymes spread among many bacteria and is secreted to the extracellular medium within outer membrane vesicles. We show that vesicles carrying NDM-1 can protect carbapenem-susceptible strains of E. coli and P. aeruginosa upon treatment with meropenem in a live infection model. These vesicles act as nanoparticles that encapsulate and transport NDM-1, prolonging and favoring its action against meropenem inside a living organism. Secretion of NDM-1 into vesicles contributes to the survival of otherwise susceptible nearby bacteria at infection sites. We propose that vesicles play a role in the establishment of bacterial communities and the dissemination of antibiotic resistance, in addition to traditional horizontal gene transfer mechanisms.


Subject(s)
Escherichia coli/drug effects , Escherichia coli/enzymology , beta-Lactamases/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane , Bacterial Proteins , Carbapenems , Drug Resistance, Multiple, Bacterial , Escherichia coli/genetics , Escherichia coli Proteins , Gene Transfer, Horizontal , Humans , Meropenem , Microbial Sensitivity Tests , Moths , Pseudomonas aeruginosa/drug effects , beta-Lactamases/genetics
9.
Protein Sci ; 30(10): 2106-2120, 2021 10.
Article in English | MEDLINE | ID: mdl-34382711

ABSTRACT

Ferredoxin-NADP+ reductases (FNRs) are ubiquitous flavoenzymes involved in redox metabolisms. FNRs catalyze the reversible electron transfer between NADP(H) and ferredoxin or flavodoxin. They are classified as plant- and mitochondrial-type FNR. Plant-type FNRs are divided into plastidic and bacterial classes. The plastidic FNRs show turnover numbers between 20 and 100 times higher than bacterial enzymes and these differences have been related to their physiological functions. We demonstrated that purified Escherichia coli FPR (EcFPR) contains tightly bound NADP+ , which does not occur in plastidic type FNRs. The three-dimensional structure of EcFPR evidenced that NADP+ interacts with three arginines (R144, R174, and R184) which could generate a very high affinity and structured site. These arginines are conserved in other bacterial FNRs but not in the plastidic enzymes. We have cross-substituted EcFPR arginines with residues present in analogous positions in the Pisum sativum FNR (PsFNR) and replaced these amino acids by arginines in PsFNR. We analyzed all proteins by structural, kinetic, and stability studies. We found that EcFPR mutants do not contain bound NADP+ and showed increased Km for this nucleotide. The EcFPR activity was inhibited by NADP+ but this behavior disappeared as arginines were removed. A NADP+ analog of the nicotinamide portion produced an activating effect on EcFPR and promoted the NADP+ release. Our results give evidence for a new model of NADP+ binding and catalysis in bacterial FNRs.We propose that this tight NADP+ binding constitutes an essential catalytic and regulatory mechanism of bacterial FNRs involved in redox homeostasis.


Subject(s)
Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Ferredoxin-NADP Reductase/chemistry , NADP/chemistry , Kinetics , Pisum sativum/enzymology , Protein Binding
11.
J Microbiol Methods ; 187: 106268, 2021 08.
Article in English | MEDLINE | ID: mdl-34118333

ABSTRACT

BACKGROUND: Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), commonly used for microorganism identification, can also be applied for the detection of carbapenemase-producing bacteria by the evaluation of carbapenem hydrolysis. Since KPC- and NDM-producing bacteria are related to high mortality rates, diagnostic assays for its detection are essential. The aim of this study was to develop and evaluate a method to establish a quantitative measure (hydrolysis index - HI) to detect meropenem hydrolysis by MLADI-TOF MS. METHODS: blaKPC and blaNDM positive and negative Klebsiella pneumoniae isolates and Escherichia coli ATCC 25922 (control) were incubated in a meropenem solution for 2 h. Protein extraction from these suspensions were submitted to MALDI-TOF MS analysis. The intensity of peaks at 384 m/z and 379 m/z of each isolate were used to establish the HI as follows: HI = (Peak intensity384 Test / Peak intensity379 Test) / (Peak intensity384 Control / Peak intensity379 Control). Receiver Operating Characteristic curve was used to determine a cutoff value to differentiate carbapenemase-producing from carbapenemase non-producing bacteria. RESULTS: As all carbapenemase-producing K. pneumoniae presented HI ≤0.55 and all carbapenemase non-producing isolates presented a HI ≥0.57, the index of 0.56 was established as a cutoff value to differentiate carbapenemase (KPC and NDM) producing and non-producing bacteria.


Subject(s)
Bacterial Proteins/biosynthesis , Escherichia coli/enzymology , Klebsiella pneumoniae/enzymology , Meropenem/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , beta-Lactamases/biosynthesis , Escherichia coli/isolation & purification , Hydrolysis , Klebsiella pneumoniae/isolation & purification , ROC Curve
12.
Braz J Microbiol ; 52(3): 1225-1233, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34008152

ABSTRACT

We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.


Subject(s)
Escherichia coli/enzymology , Transglutaminases/biosynthesis , Bacillus amyloliquefaciens/enzymology , Bacillus amyloliquefaciens/genetics , Bioreactors , Culture Media , Escherichia coli/genetics , Glucose , Plasmids/genetics , Transglutaminases/genetics
13.
FEBS Lett ; 595(11): 1525-1541, 2021 06.
Article in English | MEDLINE | ID: mdl-33792910

ABSTRACT

In the N-degron pathway of protein degradation of Escherichia coli, the N-recognin ClpS identifies substrates bearing N-terminal phenylalanine, tyrosine, tryptophan, or leucine and delivers them to the caseinolytic protease (Clp). Chloroplasts contain the Clp system, but whether chloroplastic ClpS1 adheres to the same constraints is unknown. Moreover, the structural underpinnings of substrate recognition are not completely defined. We show that ClpS1 recognizes canonical residues of the E. coli N-degron pathway. The residue in second position influences recognition (especially in N-terminal ends starting with leucine). N-terminal acetylation abrogates recognition. ClpF, a ClpS1-interacting partner, does not alter its specificity. Substrate binding provokes local remodeling of residues in the substrate-binding cavity of ClpS1. Our work strongly supports the existence of a chloroplastic N-degron pathway.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Arabidopsis Proteins/chemistry , Arabidopsis/enzymology , Carrier Proteins/chemistry , Chloroplasts/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Binding Sites , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloroplasts/genetics , Cloning, Molecular , Conserved Sequence , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Leucine/chemistry , Leucine/metabolism , Models, Molecular , Phenylalanine/chemistry , Phenylalanine/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Tryptophan/chemistry , Tryptophan/metabolism , Tyrosine/chemistry , Tyrosine/metabolism
14.
Antimicrob Resist Infect Control ; 10(1): 2, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407927

ABSTRACT

BACKGROUND: The rapid spread of extended-spectrum beta-lactamase-producing E. coli (ESBL-EC) is an urgent global health threat. We examined child caretaker knowledge, attitudes, and practices (KAP) towards proper antimicrobial agent use and whether certain KAP were associated with ESBL-EC colonization of their children. METHODS: Child caretakers living in semi-rural neighborhoods in peri-urban Quito, Ecuador were visited and surveyed about their KAP towards antibiotics. Fecal samples from one child (less than 5 years of age) per household were collected at two time points between July 2018 and May 2019 and screened for ESBL-EC. A repeated measures analysis with logistic regression was used to assess the relationship between KAP levels and child colonization with ESBL-EC. RESULTS: We analyzed 740 stool samples from 444 children living in households representing a range of environmental conditions. Of 374 children who provided fecal samples at the first household visit, 44 children were colonized with ESBL-EC (11.8%) and 161 were colonized with multidrug-resistant E. coli (43%). The prevalences of ESBL-EC and multidrug-resistant E. coli were similar at the second visit (11.2% and 41.3%, respectively; N = 366). Only 8% of caretakers knew that antibiotics killed bacteria but not viruses, and over a third reported that they "always" give their children antibiotics when the child's throat hurts (35%). Few associations were observed between KAP variables and ESBL-EC carriage among children. The odds of ESBL-EC carriage were 2.17 times greater (95% CI: 1.18-3.99) among children whose caregivers incorrectly stated that antibiotics do not kill bacteria compared to children whose caregivers correctly stated that antibiotics kill bacteria. Children from households where the caretaker answered the question "When your child's throat hurts, do you give them antibiotics?" with "sometimes" had lower odds of ESBL-EC carriage than those with a caretaker response of "never" (OR 0.48, 95% CI 0.27-0.87). CONCLUSION: Caregivers in our study population generally demonstrated low knowledge regarding appropriate use of antibiotics. Our findings suggest that misinformation about the types of infections (i.e. bacterial or viral) antibiotics should be used for may be associated with elevated odds of carriage of ESBL-EC. Understanding that using antibiotics is appropriate to treat infections some of the time may reduce the odds of ESBL-EC carriage. Overall, however, KAP measures of appropriate use of antibiotics were not strongly associated with ESBL-EC carriage. Other individual- and community-level environmental factors may overshadow the effect of KAP on ESBL-EC colonization. Intervention studies are needed to assess the true effect of improving KAP on laboratory-confirmed carriage of antimicrobial resistant bacteria, and should consider community-level studies for more effective management.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Carrier State , Escherichia coli Infections/epidemiology , Escherichia coli , Health Knowledge, Attitudes, Practice , Adult , Caregivers , Carrier State/epidemiology , Carrier State/microbiology , Child , Drug Resistance, Multiple, Bacterial , Ecuador/epidemiology , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli Infections/microbiology , Feces/microbiology , Female , Humans , Male , Prevalence , Surveys and Questionnaires , beta-Lactamases
15.
Antimicrob Resist Infect Control ; 9(1): 168, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33121527

ABSTRACT

BACKGROUND: The aim of this study was to detect CMY-type beta-lactamases in E. coli isolates obtained from paediatric patients. METHODS: In total, 404 infection-causing E. coli isolates resistant to third and fourth generation cephalosporins (3GC, 4GC) were collected from paediatric patients over a 2 years period. The identification and susceptibility profiles were determined with an automated microbiology system. Typing of blaCMY and other beta-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaVIM, blaIMP, blaKPC, blaNDM, blaOXA and blaGES) was realized by PCR and sequencing. Phenotypic detection of AmpC-type enzymes was performed using boronic acid (20 mg/mL) and cloxacillin (20 mg/mL) as inhibitors, and the production of extended-spectrum beta-lactamases was determined with the double-disk diffusion test with cefotaxime (CTX) and ceftazidime (CAZ) discs alone and in combination with clavulanic acid. The CarbaNP test and modified carbapenem inhibition method (mCIM) were used for isolates with decreased susceptibility to carbapenems. The clonal origin of the isolates was established by pulsed-field gel electrophoresis (PFGE), phylotyping method and multilocus sequence typing. RESULTS: CMY-type beta-lactamases were detected in 18 isolates (4.5%). The allelic variants found were CMY-2 (n = 14) and CMY-42 (n = 4). Of the E. coli strains with CMY, the AmpC phenotypic production test was positive in 11 isolates with cloxacillin and in 15 with boronic acid. ESBL production was detected in 13 isolates. Coexistence with other beta-lactamases was observed such as CTX-M-15 ESBL and original spectrum beta-lactamases TEM-1 and TEM-190. In one isolate, the CarbaNP test was negative, the mCIM was positive, and OXA-48 carbapenemase was detected. Phylogroup A was the most frequent (n = 9) followed by B2, E and F (n = 2, respectively), and through PFGE, no clonal relationship was observed. Eleven different sequence types (ST) were found, with ST10 high-risk clone being the most frequent (n = 4). Seventy-two percent of the isolates were from health care-associated infections; the mortality rate was 11.1%. CONCLUSIONS: This is the first report in Mexico of E. coli producing CMY isolated from paediatric patients, demonstrating a frequency of 4.5%. In addition, this is the first finding of E. coli ST10 with CMY-2 and OXA-48.


Subject(s)
Escherichia coli/enzymology , beta-Lactamases/analysis , Adolescent , Child , Child, Preschool , Escherichia coli/classification , Escherichia coli/genetics , Female , Humans , Infant , Male , Molecular Typing , Phenotype , Tertiary Care Centers , beta-Lactamases/genetics
16.
Rev Peru Med Exp Salud Publica ; 37(2): 282-286, 2020.
Article in Spanish, English | MEDLINE | ID: mdl-32876218

ABSTRACT

Descriptive study conducted in order to determine the presence of the fimH and afa genes in urinary isolates of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli. Isolates from project TO-06/09 of the Instituto Nacional de Salud del Niño in Lima, Peru were used. A total of 75 urinary isolates of Escherichia coli were included. Gene identification was performed by polymerase chain reaction. From the 75 isolates, 74 (98.7%) were positive for the fimH gene and 6 (8.0%) were positive for the afa gene. Virulence factors produced by the fimH and afa genes were evident in urinary isolates of ESBL producing Escherichia coli.


Con el objetivo de determinar la presencia de los genes fimH y afa en aislamientos urinarios de Escherichia coli productoras de betalactamasas de espectro extendido (BLEE), se realizó un estudio descriptivo, con aislamientos del cepario del proyecto TO-06/09 del Instituto Nacional de Salud del Niño en Lima, Perú. Se incluyeron 75 aislamientos urinarios de Escherichia coli. La identificación de genes se realizó por reacción en cadena de la polimerasa. De los 75 aislamientos, 74 (98,7%) fueron positivos para el gen fimH y 6 (8,0%) fueron positivos para el gen afa. Se evidenció la presencia de los factores de virulencia producidos por los genes fimH y afa en aislamientos urinarios de Escherichia coli productoras de BLEE.


Subject(s)
Adhesins, Escherichia coli , Fimbriae Proteins , beta-Lactamases , Adhesins, Escherichia coli/genetics , Escherichia coli/enzymology , Fimbriae Proteins/genetics , Humans , Peru , Virulence Factors/genetics , beta-Lactamases/biosynthesis , beta-Lactamases/genetics , beta-Lactamases/isolation & purification , beta-Lactamases/urine
17.
Biotechnol Lett ; 42(11): 2333-2344, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32638188

ABSTRACT

Acute lymphoblastic leukaemia (ALL) affects lymphoblastic cells and is the most common neoplasm during childhood. Among the pharmaceuticals used in the treatment protocols for ALL, Asparaginase (ASNase) from Escherichia coli (EcAII) is an essential biodrug. Meanwhile, the use of EcAII in neoplastic treatments causes several side effects, such as immunological reactions, hepatotoxicity, neurotoxicity, depression, and coagulation abnormalities. Commercial EcAII is expressed as a recombinant protein, similar to novel enzymes from different organisms; in fact, EcAII is a tetrameric enzyme with high molecular weight (140 kDa), and its overexpression in recombinant systems often results in bacterial cell death or the production of aggregated or inactive EcAII protein, which is related to the formation of inclusion bodies. On the other hand, several commercial expression strains have been developed to overcome these expression issues, but no studies on a systematic evaluation of the E. coli strains aiming to express recombinant asparaginases have been performed to date. In this study, we evaluated eleven expression strains at a low temperature (16 °C) with different characteristics to determine which is the most appropriate for asparaginase expression; recombinant wild-type EcAII (rEcAII) was used as a prototype enzyme and the secondary structure content, oligomeric state, aggregation and specific activity of the enzymes were assessed. Structural analysis suggested that a correctly folded tetrameric rEcAII was obtained using ArcticExpress (DE3), a strain that co-express chaperonins, while all other strains produced poorly folded proteins. Additionally, the enzymatic assays showed high specific activity of proteins expressed by ArcticExpress (DE3) when compared to the other strains used in this work.


Subject(s)
Asparaginase/chemistry , Asparaginase/metabolism , Escherichia coli/enzymology , Asparaginase/genetics , Chromatography, Gel , Circular Dichroism , Cold Temperature , Cytosol/metabolism , Escherichia coli/chemistry , Escherichia coli/classification , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Protein Structure, Secondary
18.
Appl Microbiol Biotechnol ; 104(15): 6707-6717, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32488312

ABSTRACT

Multiple interlinked factors are associated with the global resistome, whereas multidrug-resistant (MDR) pathogens have been related to increased mortality rates in humans and animals. CTX-M-type is the most prevalent extended-spectrum ß-lactamase (ESBL) among Enterobacteriaceae, which raises concern worldwide. Zoological gardens have a high density of animals that live very close to each other and to humans. Therefore, this study aimed to investigate through the whole-genome sequencing (WGS) MDR Escherichia coli lineages obtained from captivity wild animals in a zoo. Genetic background showed a wide resistome for antimicrobials (e.g., blaCTX-M-65, blaCTX-M-8, blaCMY-2, qnrB19), metals (e.g., pcoABCDERS, silABCEP, merACDEPRT), and antibacterial biocides (e.g., sugE, mdfA) among MDR CTX-M-producing E. coli belonging to CC155 and CC156. Mobilome analysis revealed several plasmids, and eight of them were completely characterized, which showed different backbone-encoding genes. Comparative analysis of plasmids blaCTX-M-65/IncHI2-ST3, blaCTX-M-8/IncI1-ST113, and IncQ1 showed a high identity among plasmids obtained from humans and animals worldwide distributed. Besides, several virulence genes, CRISPR, and prophage-related sequences were also detected. The occurrence of MDR E. coli belonging to CCs closely related to humans and food-producing animals and the high similarity among the plasmids from MDR E. coli carrying clinically significant antimicrobial resistance genes may indicate intercontinental dissemination of these lineages and plasmids. Therefore, these findings contribute to the monitoring of antimicrobial resistance and the human-animal-environment interface worldwide. Key Points • Wide resistome for antimicrobials, metals, and antibacterial biocides. • Multidrug resistance plasmids (blaCTX-M-65/IncHI2-ST3, blaCTX-M-8/IncI1-ST113). • Co-occurrence of plasmid-mediated resistance and virulence genes.


Subject(s)
Animals, Wild/microbiology , Animals, Zoo/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Genetic Background , Plasmids/genetics , Animals , Escherichia coli/classification , Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Food Microbiology , Genome, Bacterial , Whole Genome Sequencing , beta-Lactamases/genetics
19.
Rev. peru. med. exp. salud publica ; 37(2): 282-286, abr.-jun. 2020. tab, graf
Article in Spanish | LILACS | ID: biblio-1127150

ABSTRACT

RESUMEN Con el objetivo de determinar la presencia de los genes fimH y afa en aislamientos urinarios de Escherichia coli productoras de betalactamasas de espectro extendido (BLEE), se realizó un estudio descriptivo, con aislamientos del cepario del proyecto TO-06/09 del Instituto Nacional de Salud del Niño en Lima, Perú. Se incluyeron 75 aislamientos urinarios de Escherichia coli. La identificación de genes se realizó por reacción en cadena de la polimerasa. De los 75 aislamientos, 74 (98,7%) fueron positivos para el gen fimH y 6 (8,0%) fueron positivos para el gen afa. Se evidenció la presencia de los factores de virulencia producidos por los genes fimH y afa en aislamientos urinarios de Escherichia coli productoras de BLEE.


ABSTRACT Descriptive study conducted in order to determine the presence of the fimH and afa genes in urinary isolates of extended-spectrum beta-lactamases (ESBL) producing Escherichia coli. Isolates from project TO-06/09 of the Instituto Nacional de Salud del Niño in Lima, Peru were used. A total of 75 urinary isolates of Escherichia coli were included. Gene identification was performed by polymerase chain reaction. From the 75 isolates, 74 (98.7%) were positive for the fimH gene and 6 (8.0%) were positive for the afa gene. Virulence factors produced by the fimH and afa genes were evident in urinary isolates of ESBL producing Escherichia coli.


Subject(s)
Humans , Adhesins, Escherichia coli , Fimbriae Proteins , Peru , beta-Lactamases , beta-Lactamases/urine , beta-Lactamases/isolation & purification , beta-Lactamases/biosynthesis , beta-Lactamases/genetics , Adhesins, Escherichia coli/genetics , Fimbriae Proteins/genetics , Virulence Factors , Virulence Factors/genetics , Escherichia coli , Escherichia coli/enzymology
20.
Biomedica ; 40(Supl. 1): 139-147, 2020 05 01.
Article in English, Spanish | MEDLINE | ID: mdl-32463616

ABSTRACT

Introduction: The appearance of multidrug-resistant and beta-lactamase producing enterobacteria in outpatient care facilities represent a public health problem in Perú. Objective: To compare the resistance profiles of uropathogenic Escherichia coli and to identify extended-spectrum beta-lactamase-producing phenotypes in three private health facilities located in the Peruvian coast, Andean and jungle regions. Materials and methods: We conducted a descriptive study on 98 urine samples from Lima (coast), Juliaca (Andean region) and Iquitos (jungle region) during 2016. We determined the antimicrobial susceptibility in 35 samples from Lima, 38 from Juliaca and 25 from Iquitos using eight antibiotic disks in samples from patients diagnosed with urinary infection. We also evaluated the production of extended-spectrum beta-lactamases with cefotaxime and ceftazidime disks and a combination of both with clavulanic acid on Mueller-Hinton agar. Results: We identified 18 resistance profiles ranging from those sensitive to others simultaneously resistant to seven antibiotics: 18.4% resistant to one and 54.0% to multiple antibiotics. We detected beta-lactamase production in 28.6% of the strains from the Puno region. Likewise, we observed a greater number of cases with resistance to ceftazidime, ceftriaxone, gentamicin, and trimethoprim-sulfamethoxazole in Puno's health facility in patients within the 31 to 45 year age range. Conclusion: Resistance profiles varied according to the geographical location of the health facilities under study. Resistance to antibiotics was higher in the Andean region with 28.6% of strains producing extended-spectrum beta-lactamases.


Introducción. La aparición de enterobacterias multirresistentes y productoras de betalactamasas de espectro extendido en pacientes ambulatorios con infecciones urinarias representa un problema de salud pública en Perú. Objetivo. Comparar los perfiles de resistencia de Escherichia coli uropatógenas e identificar los fenotipos de cepas productoras de betalactamasas de espectro extendido en tres establecimientos privados de salud localizados en las regiones de la costa, la sierra y la selva de Perú. Materiales y métodos. Se llevó a cabo durante el 2016 un estudio descriptivo de 98 muestras de orina de pacientes con infección urinaria, 35 procedentes de Lima (costa), 38 de Juliaca (sierra) y 25 de Iquitos (selva), en el que se determinó la sensibilidad antimicrobiana utilizando ocho discos antibióticos. Asimismo, se evaluó la producción de betalactamasas de espectro extendido con discos de cefotaxima, de ceftazidima o de su combinación, con ácido clavulánico en agar Mueller-Hinton. Resultados. Se identificaron 18 perfiles de resistencia que incluían desde los sensibles a todos los antibióticos hasta los resistentes simultáneamente a siete antibióticos, con el 18,4 % de aislamientos resistentes a un antibiótico y el 54,0 % de multirresistentes. Se detectó producción de betalactamasas en el 28,6 % de las cepas procedentes de la región de Puno. También, se observó un mayor número de casos en el rango de edad de 31 a 45 años con resistencia a ceftazidima, ceftriaxona, gentamicina y trimetoprim-sulfametoxazol en el establecimiento de salud de Puno. Conclusión. Los perfiles de resistencia variaron según la localización geográfica del establecimiento de salud.


Subject(s)
Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Escherichia coli/drug effects , Escherichia coli/enzymology , Urinary Tract Infections/drug therapy , Urinary Tract Infections/microbiology , beta-Lactamases/biosynthesis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Drug Resistance, Bacterial , Escherichia coli/genetics , Health Facilities , Humans , Infant , Middle Aged , Peru , Phenotype , Private Facilities , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL