Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 678
Filter
1.
Nat Commun ; 15(1): 6297, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090106

ABSTRACT

Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.


Subject(s)
Adaptation, Physiological , Euphausiacea , Genomics , Animals , Euphausiacea/genetics , Atlantic Ocean , Adaptation, Physiological/genetics , Mediterranean Sea , Polymorphism, Single Nucleotide , Genome , Zooplankton/genetics , Gene Flow , Genetic Variation
2.
J Oleo Sci ; 73(8): 1069-1082, 2024.
Article in English | MEDLINE | ID: mdl-39085082

ABSTRACT

Diabetic liver injury (DLI) has raised attention in recent years. Liver injury results from type 2 diabetes mellitus (T2DM), and in turn accelerates T2DM development by exacerbating insulin resistance. However, effective approaches for mitigating DLI are surprisingly rare. Krill oil (KO) is an alternative source of omega-3 polyunsaturated fatty acids, possessing antioxidant and anti-inflammatory capacities. Here we investigated the effect of KO supplementation on DLI in a mouse model of T2DM induced by streptozotocin and high-fat diet. The diabetic mice developed glucose intolerance, elevated serum alanine aminotransferase and aspartate aminotransferase, and hepatic pathological injuries such as vacuolation, lipid accumulation and fibrosis deposition, the effects of which were mitigated by KO. Further investigation showed that KO ameliorated the DM-induced expression of fibrotic and inflammatory genes. Notably, KO dramatically reduced hepatic oxidative gene expression, lipid peroxidation and ROS production, all of which are hallmarks of ferroptosis. The inhibitory effect of KO on ferroptosis was confirmed by the KO-decreased hepatic expression of GPX4, COX2 and ACSL4, as well as the KO-reduced hepatic iron deposition. Further, KO restored hepatic NRF2 antioxidant signaling which combats ferroptosis. The present study may provide KO supplementation as a viable approach for the intervention of DLI.


Subject(s)
Antioxidants , Diabetes Mellitus, Experimental , Euphausiacea , Ferroptosis , NF-E2-Related Factor 2 , Oils , Animals , Euphausiacea/chemistry , Antioxidants/pharmacology , Ferroptosis/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Oils/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects , Mice , Fatty Acids, Omega-3/pharmacology , Diet, High-Fat/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Gene Expression/drug effects , Liver Diseases/etiology , Liver Diseases/prevention & control , Liver Diseases/metabolism , Liver Diseases/drug therapy , Liver Diseases/pathology
3.
Sci Rep ; 14(1): 16963, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043920

ABSTRACT

Antarctic krill (Euphausia superba, hereafter krill) is a pelagic living crustacean and a key species in the Southern Ocean ecosystem. Krill builds up a huge biomass and its synchronized behavioral patterns, such as diel vertical migration (DVM), substantially impact ecosystem structure and carbon sequestration. However, the mechanistic basis of krill DVM is unknown and previous studies of krill behavior in the laboratory were challenged by complex behavior and large variability. Using a new experimental set-up, we recorded the swimming activity of individual wild-caught krill under light-dark cycles. Krill individuals exhibited differential phototactic responses to the light regime provided. However, using a new activity metric, we showed for the first time a consistent nocturnal increase in krill swimming activity in a controlled environment. Krill swimming activity in the new set-up was strongly synchronized with the light-dark cycle, similar to the diel vertical migration pattern of krill in the field when the krill were sampled for the experiment, demonstrated by hydroacoustic recordings. The new set-up presents a promising tool for investigating the mechanisms underlying krill behavioral patterns, which will increase our understanding of ecological interactions, the spatial distribution of populations, and their effects on biogeochemical cycles in the future.


Subject(s)
Euphausiacea , Swimming , Animals , Euphausiacea/physiology , Swimming/physiology , Antarctic Regions , Ecosystem , Behavior, Animal/physiology , Photoperiod , Animal Migration/physiology
4.
Food Chem ; 459: 140376, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39002334

ABSTRACT

The reddish-orange color of Antarctic krill oil fades during storage, and the mechanism remains unclear. Model systems containing different combinations of astaxanthin (ASTA), phosphatidylethanolamine (PE), and tocopherol were subjected to accelerated storage. Among all groups containing ASTA, only the ones with added PE showed significant fading. Meanwhile, the specific UV-visible absorption (A470 and A495) showed a similar trend. Peroxide value and thiobarbituric acid reactive substances increased during storage, while ASTA and PE contents decreased. Correlation analysis suggested that oxidized PE promoted fading by accelerating the transformation of ASTA. PE content exceeded the critical micelle concentration (1µg/g) indicating the formation of reverse micelles. Molecular docking analysis indicated that PE also interacted with ASTA in an anchor-like manner. Therefore, it is speculated that amphiphilic ASTA is more readily distributed at the oil-water interface of reverse micelles and captured by oxidized PE, which facilitates oxidation transfer, leading to ASTA oxidation and color fading.


Subject(s)
Color , Euphausiacea , Food Storage , Euphausiacea/chemistry , Animals , Molecular Docking Simulation , Oxidation-Reduction , Xanthophylls/chemistry , Phosphatidylethanolamines/chemistry , Antarctic Regions
5.
Food Chem ; 459: 140465, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39024888

ABSTRACT

The aim of the present study was to explore changes in the profile of volatile compounds (VCs) in canned Antarctic krill (Euphausia superba) at different processing stages using partial least squares discriminant analysis (PLS-DA) and gas chromatography-mass spectrometry (GC-IMS). A total of 43 VCs were detected using GC-IMS in all krill meat samples, which included mainly alcohols, aldehydes, ketones, esters, and furans. Considering the different processing stages, the highest variation in VCs and the highest VC content were observed in krill meat which underwent both blanching and salt addition. PLS-DA further revealed flavor differences in canned Antarctic krill meat at different processing stages, with octanal, 2-hexanol, 2-octane, 2,3,5-trimethyl pyrazine, and cis-3-hexanol as the main contributors to observed differences in VC profiles. These findings contribute to the production of high-quality canned krill meat, enhancing its flavor quality and providing a feasible theoretical basis for future krill meat pretreatment and industry development.


Subject(s)
Euphausiacea , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Animals , Euphausiacea/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Taste , Discriminant Analysis , Least-Squares Analysis , Food, Preserved/analysis
6.
PLoS One ; 19(7): e0303633, 2024.
Article in English | MEDLINE | ID: mdl-38980882

ABSTRACT

Estimating the densities of marine prey observed in animal-borne video loggers when encountered by foraging predators represents an important challenge for understanding predator-prey interactions in the marine environment. We used video images collected during the foraging trip of one chinstrap penguin (Pygoscelis antarcticus) from Cape Shirreff, Livingston Island, Antarctica to develop a novel approach for estimating the density of Antarctic krill (Euphausia superba) encountered during foraging activities. Using the open-source Video and Image Analytics for a Marine Environment (VIAME), we trained a neural network model to identify video frames containing krill. Our image classifier has an overall accuracy of 73%, with a positive predictive value of 83% for prediction of frames containing krill. We then developed a method to estimate the volume of water imaged, thus the density (N·m-3) of krill, in the 2-dimensional images. The method is based on the maximum range from the camera where krill remain visibly resolvable and assumes that mean krill length is known, and that the distribution of orientation angles of krill is uniform. From 1,932 images identified as containing krill, we manually identified a subset of 124 images from across the video record that contained resolvable and unresolvable krill necessary to estimate the resolvable range and imaged volume for the video sensor. Krill swarm density encountered by the penguins ranged from 2 to 307 krill·m-3 and mean density of krill was 48 krill·m-3 (sd = 61 krill·m-3). Mean krill biomass density was 25 g·m-3. Our frame-level image classifier model and krill density estimation method provide a new approach to efficiently process video-logger data and estimate krill density from 2D imagery, providing key information on prey aggregations that may affect predator foraging performance. The approach should be directly applicable to other marine predators feeding on aggregations of prey.


Subject(s)
Euphausiacea , Predatory Behavior , Spheniscidae , Animals , Spheniscidae/physiology , Euphausiacea/physiology , Predatory Behavior/physiology , Antarctic Regions , Population Density , Video Recording/methods , Image Processing, Computer-Assisted/methods
7.
Lupus Sci Med ; 11(2)2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39009356

ABSTRACT

OBJECTIVE: Omega-3 polyunsaturated fatty acids (PUFAs) play a critical role in regulating inflammation and lipid metabolism. This study sought to ascertain the frequency of omega-3 deficiency in patients with SLE and investigate whether supplementation with krill oil concentrate (KOC) could replenish omega-3 levels and decrease SLE disease activity. METHODS: A multicentre, randomised, double-blind, placebo-controlled trial was conducted in adult patients with active SLE. Eligible patients were randomised to receive 4 g/day KOC or placebo (vegetable oil mixture) for the first 24 weeks, and thereafter patients could opt to enter an open-label extension. The primary end point was improvement of the red blood cell Omega-3 Index from baseline to week 24. Changes in clinical features, including SLE Disease Activity Index 2000 (SLEDAI-2K) disease activity scores, were also monitored. RESULTS: Seventy-eight patients met eligibility criteria and were randomised to a treatment group (n=39 per group). The baseline Omega-3 Index in the total SLE cohort was a mean 4.43% (±SD 1.04%). After 4 weeks of KOC treatment, the Omega-3 Index rapidly increased to 7.17%±1.48% (n=38) and after 24 weeks to 8.05%±1.79% (n=25) (each p<0.001 vs baseline), whereas no significant change from baseline was noted in patients receiving placebo. Increases in the Omega-3 Index in KOC-treated patients persisted through week 48. After patients switched from placebo to KOC at 24 weeks, the mean Omega-3 Index showed a rapid and significant increase (from 4.63%±1.39% at week 24 (n=26) to 7.50%±1.75% at week 48 (n=12); p<0.001). Although there were no changes in disease activity in the study population overall, SLEDAI-2K scores decreased significantly in the KOC group during the 24-week randomised period among those who had high disease activity at baseline (SLEDAI-2K ≥9) (p=0.04, p=0.02 and p=0.01 vs placebo at 4, 8 and 16 weeks, respectively; n=9 per group). KOC was well-tolerated, with no significant safety concerns. CONCLUSION: KOC corrected omega-3 deficiency in patients with SLE. Supplementation with KOC was safe and decreased disease activity in those with more active disease. These findings warrant further evaluation of omega-3 fatty acid supplementation with KOC in the management of SLE. TRIAL REGISTRATION NUMBER: NCT03626311.


Subject(s)
Dietary Supplements , Euphausiacea , Fatty Acids, Omega-3 , Lupus Erythematosus, Systemic , Humans , Double-Blind Method , Female , Fatty Acids, Omega-3/therapeutic use , Male , Adult , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/complications , Middle Aged , Animals , Treatment Outcome , Severity of Illness Index
8.
J Hazard Mater ; 477: 135324, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39068890

ABSTRACT

Plastic pollution poses a significant threat to marine ecosystems. Microfibres from fabrics have become the most prevalent shape of microplastic found in the marine environment. The northern krill (Meganyctiphanes norvegica) is the most abundant euphausiid species in the northern hemisphere, playing a crucial role in various pelagic ecosystems. Anthropogenic microparticles in northern krill was assessed for the first time in samples collected in the Azores on two occasions - April 2019 (n = 480) and April 2023 (n = 480). Analysis of all individuals revealed 533 anthropogenic particles, with an average abundance of 0.56 ± 0.14 items per individual and, no significant differences between years. Microfibres were the most common shape (94.8 %), with the remaining items being fragments (5.2 %), and blue and black were the predominant colours. MicroFourier transform infrared spectroscopy analysis (µFTIR) of 22.1 % of the total number of particles, showed that they were mainly cellulosic (65.3 %) - either natural or semisynthetic - followed by polyester (7.6 %). Our finding of microplastics in the northern krill raises important questions due to its crucial role in marine food webs. The intake of anthropogenic particles, particularly those that are 100 % synthetic, suggests that the northern krill may act as a transfer vector of these pollutants to higher trophic levels.


Subject(s)
Euphausiacea , Food Chain , Animals , Azores , Water Pollutants, Chemical/analysis , Microplastics/analysis , Environmental Monitoring
9.
Mar Drugs ; 22(7)2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39057431

ABSTRACT

High Fischer ratio oligopeptides (HFOs) have a variety of biological activities, but their mechanisms of action for anti-fatigue are less systematically studied at present. This study aimed to systematically evaluate the anti-fatigue efficacy of HFOs from Antarctic krill (HFOs-AK) and explore its mechanism of action through establishing the fatigue model of endurance swimming in mice. Therefore, according to the comparison with the endurance swimming model group, HFOs-AK were able to dose-dependently prolong the endurance swimming time, reduce the levels of the metabolites (lactic acid, blood urea nitrogen, and blood ammonia), increase the content of blood glucose, muscle glycogen, and liver glycogen, reduce lactate dehydrogenase and creatine kinase extravasation, and protect muscle tissue from damage in the endurance swimming mice. HFOs-AK were shown to enhance Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities and increase ATP content in muscle tissue. Meanwhile, HFOs-AK also showed significantly antioxidant ability by increasing the activities of superoxide dismutase and glutathione peroxidase in the liver and decreasing the level of malondialdehyde. Further studies showed that HFOs-AK could regulate the body's energy metabolism and thus exert its anti-fatigue effects by activating the AMPK signaling pathway and up-regulating the expression of p-AMPK and PGC-α proteins. Therefore, HFOs-AK can be used as an auxiliary functional dietary molecules to exert its good anti-fatigue activity and be applied to anti-fatigue functional foods.


Subject(s)
Euphausiacea , Fatigue , Oligopeptides , Animals , Mice , Fatigue/drug therapy , Euphausiacea/chemistry , Oligopeptides/pharmacology , Male , Swimming , Energy Metabolism/drug effects , Physical Conditioning, Animal , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Liver/drug effects , Liver/metabolism , Antioxidants/pharmacology
10.
BMC Oral Health ; 24(1): 862, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075386

ABSTRACT

BACKGROUND: The purpose of this study was to assess the effects of systemically given krill oil (KO) on the development of new bone formation in the sutura palatina media following rapid maxillary expansion (RME). METHODS: 28 4-5 week-old male Wistar albino rats were randomly divided into 4 groups: Control (C), Only Expansion (OE) (no supplement but undergoing expansion and retention), KE (supplemented during both the expansion and retention phases), Krill Oil Nursery Group (KN) (supplemented during the 40-day nursery phase as well as during the expansion and retention phases). A 5-day RME was followed by a 12-day retention period. All rats were euthanized simultaneously. Micro-computerized tomography (Micro-CT), hemotoxylen-eosin (H&E) staining, and immunohistochemical analysis were conducted. Kruskal-Wallis and Dunn tests with Bonferonni corrrection were applied (p < 0.05). RESULTS: Expansion and KO supplementation did not cause a statistically significant change in bone mineral density (BMD), bone volume fraction (BV/TV), spesific bone surface (BS/BV) and trabecular thickness (Tb.Th). While the expansion prosedure increased the trabecular seperation (Tb.Sp), KO supplemantation mitigated this effect. The KE group exhibited a statistically significantly increase in trabecular number (Tb.N) compared to the OE group. Although receptor activator of nuclear factor-kappa-Β ligand (RANKL)/osteoprotegerin (OPG) ratios did not show significant differences between groups, the KE and OE groups demonstrated the lowest and highest value, respectively. KE showed a reduced amount of tartrate-resistant acid phosphatase (TRAP) compared to the OE. CONCLUSION: KO positively affected the architecture of the new bone formed in the mid-palatal suture. In this rat model of RME, results support the idea that administering of KO during the expansion period or beginning before the RME procedure may reduce relapse and enhance bone formation within the mid-palatal suture.


Subject(s)
Euphausiacea , Osteogenesis , Palatal Expansion Technique , Rats, Wistar , X-Ray Microtomography , Animals , X-Ray Microtomography/methods , Male , Rats , Osteogenesis/drug effects , Bone Density/drug effects , Immunohistochemistry , Oils/pharmacology , Random Allocation , Palate/diagnostic imaging , Palate/pathology , Cranial Sutures/drug effects , Cranial Sutures/diagnostic imaging , Maxilla/diagnostic imaging , Maxilla/drug effects
11.
Int J Biol Macromol ; 277(Pt 2): 133364, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38917919

ABSTRACT

Antarctic krill shell waste (AKSW), a byproduct of Antarctic krill processing, has substantial quantity but low utilization. Utilizing microbial-based cell factories, with Pseudomonas putida as a promising candidate, offers an ecofriendly and sustainable approach to producing valuable bioproducts from renewable sources. However, the high fluoride content in AKSW impedes the cell growth of P. putida. This study aims to investigate the transcriptional response of P. putida to fluoride stress from AKSW and subsequently conduct genetic modification of the strain based on insights gained from transcriptomic analysis. Notably, the engineered strain KT+16840+03100 exhibited a remarkable 33.7-fold increase in cell growth, capable of fermenting AKSW for medium-chain-length-polyhydroxyalkanoates (mcl-PHA) biosynthesis, achieving a 40.3-fold increase in mcl-PHA yield compared to the control strain. This research advances our understanding of how P. putida responds to fluoride stress from AKSW and provides engineered strains that serve as excellent platforms for producing mcl-PHA through AKSW.


Subject(s)
Euphausiacea , Polyhydroxyalkanoates , Polyhydroxyalkanoates/biosynthesis , Euphausiacea/metabolism , Animals , Antarctic Regions , Animal Shells/metabolism , Pseudomonas putida/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/growth & development , Fermentation , Fluorides/metabolism
12.
Food Res Int ; 190: 114589, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945608

ABSTRACT

Food-grade biopolymer-based complexes are of particular interest in the field of biologic ingredient delivery owing to unique controlled-release properties. Herein, three calcium-loaded complexes using Antarctic krill protein (P) and pectin (HMP) with different blending sequences were designed, named P + Ca + HMP, P + HMP + Ca and HMP + Ca + P, respectively. The calcium-loaded capacity, structural properties, and in vitro gastrointestinal calcium release of the complexes were investigated. The results demonstrated that the calcium binding rate and content of the P + Ca + HMP complex were the highest, reaching to 90.3 % and 39.0 mg/g, respectively. Particularly, the P + Ca + HMP complex exhibited a more stable fruit tree-like structure. Furthermore, the structural analysis confirmed that the primary interaction forces involved hydrogen bond, electrostatic, hydrophobic and ionic bond interaction. Ultimately, the P + Ca + HMP complex demonstrated superior calcium delivery. In conclusion, a novel calcium delivery system was successfully developed based on optimized the self-assembly sequence, which held significant importance in promoting the high-value utilization of Antarctic krill protein and enhancing the in vitro bioaccessibility of calcium.


Subject(s)
Calcium , Euphausiacea , Pectins , Pectins/chemistry , Euphausiacea/chemistry , Animals , Calcium/chemistry , Calcium/metabolism , Proteins/chemistry , Proteins/metabolism
13.
Mar Pollut Bull ; 204: 116524, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38843705

ABSTRACT

We investigated the recent spatial variation in the mesozooplankton community on the broad shelf of the RSR MPA during the bloom season. The mesozooplankton community was geographically divided into three regions: the Terra Nova Bay polynya, the Ross Sea polynya, and the marginal polynya. Larval euphausiids were dominant in the two polynya regions, whereas copepods were predominant in the marginal polynya region. Salinity, sea ice, and dissolved oxygen related to the different water mass compositions were the most significant factors distinguishing the mesozooplankton community. The key environmental variable separating the three groups was salinity. In accordance with the relatively high mesozooplankton abundance in the polynya regions, the occurrence and size of the polynyas in the December Ross Sea are thought to affect the spatial distribution of mesozooplankton. Consequently, this study indicates that two polynyas in the Ross Sea are vital habitats for krill during summer. Our observation results provide fundamental information for evaluating marine ecosystems and establishing a management plan for the RSR MPA.


Subject(s)
Copepoda , Ecosystem , Seasons , Zooplankton , Animals , Salinity , Environmental Monitoring , Euphausiacea , Conservation of Natural Resources
14.
Sci Total Environ ; 931: 172939, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38701928

ABSTRACT

Southern hemisphere humpback whale (Megaptera novaeangliae, SHHW) breeding populations follow a high-fidelity Antarctic krill (Euphausia superba) diet while feeding in distinct sectors of the Southern Ocean. Their capital breeding life history requires predictable ecosystem productivity to fuel migration and migration-related behaviours. It is therefore postulated that populations feeding in areas subject to the strongest climate change impacts are more likely to show the first signs of a departure from a high-fidelity krill diet. We tested this hypothesis by investigating blubber fatty acid profiles and skin stable isotopes obtained from five SHHW populations in 2019, and comparing them to Antarctic krill stable isotopes sampled in three SHHW feeding areas in the Southern Ocean in 2019. Fatty acid profiles and δ13C and δ15N varied significantly among all five populations, however, calculated trophic positions did not (2.7 to 3.1). Similarly, fatty acid ratios, 16:1ω7c/16:0 and 20:5ω3/22:6ω3 were above 1, showing that whales from all five populations are secondary heterotrophs following an omnivorous diet with a diatom-origin. Thus, evidence for a potential departure from a high-fidelity Antarctic krill diet was not seen in any population. δ13C of all populations were similar to δ13C of krill sampled in productive upwelling areas or the marginal sea-ice zone. Consistency in trophic position and diet origin but significant fatty acid and stable isotope differences demonstrate that the observed variability arises at lower trophic levels. Our results indicate that, at present, there is no evidence of a divergence from a high-fidelity krill diet. Nevertheless, the characteristic isotopic signal of whales feeding in productive upwelling areas, or in the marginal sea-ice zone, implies that future cryosphere reductions could impact their feeding ecology.


Subject(s)
Diet , Euphausiacea , Humpback Whale , Animals , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , Antarctic Regions , Fatty Acids/analysis , Climate Change
15.
Food Chem ; 451: 139469, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703727

ABSTRACT

Excipient selection is crucial to address the oxidation and solubility challenges of bioactive substances, impacting their safety and efficacy. AKPL, a novel ω-3 polyunsaturated fatty acids (PUFAs) esterified phospholipid derived from Antarctic krill, demonstrates unique antioxidant capabilities and synergistic effects. It exhibits pronounced surface activity and electronegativity at physiological pH, as evidenced by a critical micelle concentration (CMC) of 0.15 g/L and ζ-potential of -49.9 mV. In aqueous environments, AKPL self-assembles into liposomal structures, offering high biocompatibility and promoting cell proliferation. Its polyunsaturated bond-rich structure provides additional oxidation sites, imparting antioxidant properties superior to other phospholipids like DSPC and DOPC. Additionally, AKPL augments the efficacy of lipophilic antioxidants, such as alpha-tocopherol and curcumin, in aqueous media through both intermolecular and intramolecular interactions. In sum, AKPL emerges as an innovative unsaturated phospholipid, offering new strategies for encapsulating and delivering oxygen-sensitive agents.


Subject(s)
Antioxidants , Euphausiacea , Phospholipids , Euphausiacea/chemistry , Animals , Phospholipids/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Colloids/chemistry , Humans , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Antarctic Regions , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/pharmacology
16.
JAMA ; 331(23): 1997-2006, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38776073

ABSTRACT

Importance: Knee osteoarthritis is disabling, with few effective treatments. Preliminary evidence suggested that krill oil supplementation improved knee pain, but effects on knee osteoarthritis remain unclear. Objective: To evaluate efficacy of krill oil supplementation, compared with placebo, on knee pain in people with knee osteoarthritis who have significant knee pain and effusion-synovitis. Design, Setting, and Participants: Multicenter, randomized, double-blind, placebo-controlled clinical trial in 5 Australian cities. Participants with clinical knee osteoarthritis, significant knee pain, and effusion-synovitis on magnetic resonance imaging were enrolled from December 2016 to June 2019; final follow-up occurred on February 7, 2020. Interventions: Participants were randomized to 2 g/d of krill oil (n = 130) or matching placebo (n = 132) for 24 weeks. Main Outcomes and Measures: The primary outcome was change in knee pain as assessed by visual analog scale (range, 0-100; 0 indicating least pain; minimum clinically important improvement = 15) over 24 weeks. Results: Of 262 participants randomized (mean age, 61.6 [SD, 9.6] years; 53% women), 222 (85%) completed the trial. Krill oil did not improve knee pain compared with placebo (mean change in VAS score, -19.9 [krill oil] vs -20.2 [placebo]; between-group mean difference, -0.3; 95% CI, -6.9 to 6.4) over 24 weeks. One or more adverse events was reported by 51% in the krill oil group (67/130) and by 54% in the placebo group (71/132). The most common adverse events were musculoskeletal and connective tissue disorders, which occurred 32 times in the krill oil group and 42 times in the placebo group, including knee pain (n = 10 with krill oil; n = 9 with placebo), lower extremity pain (n = 1 with krill oil; n = 5 with placebo), and hip pain (n = 3 with krill oil; n = 2 with placebo). Conclusions and Relevance: Among people with knee osteoarthritis who have significant knee pain and effusion-synovitis on magnetic resonance imaging, 2 g/d of daily krill oil supplementation did not improve knee pain over 24 weeks compared with placebo. These findings do not support krill oil for treating knee pain in this population. Trial Registration: Australian New Zealand Clinical Trials Registry Identifier: ACTRN12616000726459; Universal Trial Number: U1111-1181-7087.


Subject(s)
Euphausiacea , Fish Oils , Osteoarthritis, Knee , Aged , Animals , Female , Humans , Male , Middle Aged , Arthralgia/drug therapy , Arthralgia/etiology , Dietary Supplements/adverse effects , Double-Blind Method , Magnetic Resonance Imaging , Oils/therapeutic use , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/complications , Pain Measurement , Synovitis/drug therapy , Synovitis/etiology , Fish Oils/therapeutic use
17.
PeerJ ; 12: e17372, 2024.
Article in English | MEDLINE | ID: mdl-38770096

ABSTRACT

Quantifying the tropic position (TP) of an animal species is key to understanding its ecosystem function. While both bulk and compound-specific analyses of stable isotopes are widely used for this purpose, few studies have assessed the consistency between and within such approaches. Champsocephalus gunnari is a specialist teleost that predates almost exclusively on Antarctic krill Euphausia superba. This well-known and nearly constant trophic relationship makes C. gunnari particularly suitable for assessing consistency between TP methods under field conditions. In the present work, we produced and compared TP estimates for C. gunnari and its main prey using a standard bulk and two amino acid-specific stable isotope approaches (CSI-AA). One based on the difference between glutamate and phenylalanine (TPGlx-Phe), and the other on the proline-phenylalanine difference (TPPro-Phe). To do that, samples from C. gunnari, E. superba and four other pelagic invertebrate and fish species, all potential prey for C.gunnari, were collected off the South Orkney Islands between January and March 2019, analyzed using standard isotopic ratio mass spectrometry methods and interpreted following a Bayesian approach. Median estimates (CI95%) for C. gunnari were similar between TPbulk (3.6; CI95%: 3.0-4.8) and TPGlx-Phe(3.4; CI95%:3.2-3.6), and lower for TPPro-Phe (3.1; CI95%:3.0-3.3). TP differences between C. gunnari and E. superba were 1.4, 1.1 and 1.2, all compatible with expectations from the monospecific diet of this predator (ΔTP=1). While these results suggest greater accuracy for Glx-Phe and Pro-Phe, differences observed between both CSI-AA approaches suggests these methods may require further validation before becoming a standard tool for trophic ecology.


Subject(s)
Food Chain , Perciformes , Animals , Perciformes/metabolism , Phenylalanine/analysis , Phenylalanine/metabolism , Antarctic Regions , Euphausiacea/chemistry , Ecosystem , Bayes Theorem , Glutamic Acid/analysis , Glutamic Acid/metabolism , Proline/analysis
18.
Food Res Int ; 183: 114190, 2024 May.
Article in English | MEDLINE | ID: mdl-38760127

ABSTRACT

This study aimed to determine the effect of different frozen temperatures during storage on the quality of Antarctic krill (Euphausia superba) and assess the change at the metabolite level via a combination of physicochemical property analysis, liquid chromatography-tandem mass spectrometry (LC-MS) based non-targeted metabolomics profiling. Regarding samples stored at -20 °C, the expressions of 7055 metabolites were elevated, while 2313 were downregulated. Lipids and lipid molecules had the highest proportion of differential metabolites. A total of 432 discriminatory metabolites with Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs was obtained. We also observed that the concentrations of differential bitter free amino acids (FAAs) and oxidation products of arachidonic and linoleic acid increased. Moreover, as the storage temperature increased, the freshness, umami, and sweetness components were considerably reduced. Furthermore, results indicated that the color, pH and water-holding capacity (WHC) were potential indicators of quality deterioration, while inosinic acid was a probable biomarker for umami degradation of frozen Antarctic krill. In conclusion, this study demonstrates that storage at lower temperatures can be beneficial for maintaining the freshness of Antarctic krill from macro and micro perspectives.


Subject(s)
Euphausiacea , Freezing , Metabolomics , Tandem Mass Spectrometry , Animals , Euphausiacea/chemistry , Antarctic Regions , Food Storage/methods , Taste , Hydrogen-Ion Concentration , Seafood/analysis , Chromatography, Liquid
19.
Biomolecules ; 14(4)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38672464

ABSTRACT

Krill oil is extracted from krill, a small crustacean in the Antarctic Ocean. It has received growing attention because of krill oil's unique properties and diverse health benefits. Recent experimental and clinical studies suggest that it has potential therapeutic benefits in preventing the development of a range of chronic conditions, including inflammatory bowel disease (IBD). Krill oil is enriched with long-chain n-3 polyunsaturated fatty acids, especially eicosapentaenoic and docosahexaenoic acids, and the potent antioxidant astaxanthin, contributing to its therapeutic properties. The possible underlying mechanisms of krill oil's health benefits include anti-inflammatory and antioxidant actions, maintaining intestinal barrier functions, and modulating gut microbiota. This review aims to provide an overview of the beneficial effects of krill oil and its bioactive components on intestinal inflammation and to discuss the findings on the molecular mechanisms associated with the role of krill oil in IBD prevention and treatment.


Subject(s)
Euphausiacea , Inflammatory Bowel Diseases , Euphausiacea/chemistry , Animals , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Humans , Gastrointestinal Microbiome/drug effects , Oils/chemistry , Oils/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/therapeutic use , Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-3/therapeutic use , Fatty Acids, Omega-3/chemistry
20.
J Agric Food Chem ; 72(17): 9955-9966, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38628059

ABSTRACT

Cold-adapted proteases are capable of efficient protein hydrolysis at reduced temperatures, which offer significant potential applications in the area of low temperature food processing. In this paper, we attempted to characterize cold-adapted proteases from Antarctic krill. Antarctic krill possesses an extremely active autolytic enzyme system in their bodies, and the production of peptides and free amino acids accompanies the rapid breakdown of muscle proteins following the death. The crucial role of trypsin in this process is recognized. A cold-adapted trypsin named OUC-Pp-20 from Antarctic krill genome was cloned and expressed in Pichia pastoris. Recombinant trypsin is a monomeric protein of 26.8 ± 1.0 kDa with optimum reaction temperature at 25 °C. In addition, the catalytic specificity of OUC-Pp-20 was assessed by identifying its hydrolysis sites through LC-MS/MS. OUC-Pp-20 appeared to prefer Gln and Asn at the P1 position, which is an amino acid with an amide group in its side chain. Hydrolysis reactions on milk and shrimp meat revealed that it can effectively degrade allergenic components in milk and arginine kinase in shrimp meat. These findings update the current knowledge of cold-adapted trypsin and demonstrate the potential application of OUC-Pp-20 in low temperature food processing.


Subject(s)
Cold Temperature , Euphausiacea , Trypsin , Animals , Euphausiacea/chemistry , Euphausiacea/enzymology , Euphausiacea/genetics , Euphausiacea/metabolism , Hydrolysis , Trypsin/metabolism , Trypsin/chemistry , Trypsin/genetics , Substrate Specificity , Amino Acid Sequence , Tandem Mass Spectrometry , Enzyme Stability , Antarctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL