Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Br J Pharmacol ; 181(16): 2905-2922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38679932

ABSTRACT

BACKGROUND AND PURPOSE: ATP is highly accumulated in secretory vesicles and secreted upon exocytosis from neurons and endocrine cells. In adrenal chromaffin granules, intraluminal ATP reaches concentrations over 100 mM. However, how these large amounts of ATP contribute to exocytosis has not been investigated. EXPERIMENTAL APPROACH: Exocytotic events in bovine and mouse adrenal chromaffin cells were measured with single cell amperometry. Cytosolic Ca2+ measurements were carried out in Fluo-4 loaded cells. Submembrane Ca2+ was examined in PC12 cells transfected with a membrane-tethered Ca2+ indicator Lck-GCaMP3. ATP release was measured using the luciferin/luciferase assay. Knockdown of P2X7 receptors was induced with short interfering RNA (siRNA). Direct Ca2+ influx through this receptor was measured using a P2X7 receptor-GCamp6 construct. KEY RESULTS: ATP induced exocytosis in chromaffin cells, whereas the ectonucleotidase apyrase reduced the release events induced by the nicotinic agonist dimethylphenylpiperazinium (DMPP), high KCl, or ionomycin. The purinergic agonist BzATP also promoted a secretory response that was dependent on extracellular Ca2+. A740003, a P2X7 receptor antagonist, abolished secretory responses of these secretagogues. Exocytosis was also diminished in chromaffin cells when P2X7 receptors were silenced using siRNAs and in cells of P2X7 receptor knockout mice. In PC12 cells, DMPP induced ATP release, triggering Ca2+ influx through P2X7 receptors. Furthermore, BzATP, DMPP, and KCl allowed the formation of submembrane Ca2+ microdomains inhibited by A740003. CONCLUSION AND IMPLICATIONS: Autocrine activation of P2X7 receptors constitutes a crucial feedback system that amplifies the secretion of catecholamines in chromaffin cells by favouring submembrane Ca2+ microdomains.


Subject(s)
Adenosine Triphosphate , Catecholamines , Chromaffin Cells , Exocytosis , Receptors, Purinergic P2X7 , Animals , Receptors, Purinergic P2X7/metabolism , Chromaffin Cells/metabolism , Chromaffin Cells/drug effects , Cattle , Adenosine Triphosphate/metabolism , Mice , Catecholamines/metabolism , Exocytosis/drug effects , PC12 Cells , Rats , Calcium/metabolism , Autocrine Communication , Mice, Inbred C57BL , Cells, Cultured , Male
2.
J Biol Chem ; 299(9): 105119, 2023 09.
Article in English | MEDLINE | ID: mdl-37527778

ABSTRACT

Serratia marcescens is an opportunistic human pathogen involved in antibiotic-resistant hospital acquired infections. Upon contact with the host epithelial cell and prior to internalization, Serratia induces an early autophagic response that is entirely dependent on the ShlA toxin. Once Serratia invades the eukaryotic cell and multiples inside an intracellular vacuole, ShlA expression also promotes an exocytic event that allows bacterial egress from the host cell without compromising its integrity. Several toxins, including ShlA, were shown to induce ATP efflux from eukaryotic cells. Here, we demonstrate that ShlA triggered a nonlytic release of ATP from Chinese hamster ovary (CHO) cells. Enzymatic removal of accumulated extracellular ATP (eATP) or pharmacological blockage of the eATP-P2Y2 purinergic receptor inhibited the ShlA-promoted autophagic response in CHO cells. Despite the intrinsic ecto-ATPase activity of CHO cells, the effective concentration and kinetic profile of eATP was consistent with the established affinity of the P2Y2 receptor and the known kinetics of autophagy induction. Moreover, eATP removal or P2Y2 receptor inhibition also suppressed the ShlA-induced exocytic expulsion of the bacteria from the host cell. Blocking α5ß1 integrin highly inhibited ShlA-dependent autophagy, a result consistent with α5ß1 transactivation by the P2Y2 receptor. In sum, eATP operates as the key signaling molecule that allows the eukaryotic cell to detect the challenge imposed by the contact with the ShlA toxin. Stimulation of P2Y2-dependent pathways evokes the activation of a defensive response to counteract cell damage and promotes the nonlytic clearance of the pathogen from the infected cell.


Subject(s)
Autophagy , Host-Pathogen Interactions , Integrin alpha5beta1 , Receptors, Purinergic P2Y2 , Serratia , Toxins, Biological , Animals , Cricetinae , Adenosine Triphosphate/metabolism , Autophagy/drug effects , CHO Cells , Cricetulus , Exocytosis/drug effects , Host-Pathogen Interactions/drug effects , Integrin alpha5beta1/antagonists & inhibitors , Integrin alpha5beta1/metabolism , Receptors, Purinergic P2Y2/metabolism , Serratia/chemistry , Serratia/drug effects , Serratia/physiology , Toxins, Biological/pharmacology , Humans
3.
J Nutr Biochem ; 99: 108864, 2022 01.
Article in English | MEDLINE | ID: mdl-34606907

ABSTRACT

Vitamin D3 is associated with improvements in insulin resistance and glycemia. In this study, we investigated the short-term effect of 1α,25(OH)2 Vitamin D3 (1,25-D3) and cholecalciferol (vitamin D3) on the glycemia and insulin sensitivity of control and dexamethasone-induced insulin-resistance rats. 45Ca2+ influx responses to 1,25-D3 and its role in insulin secretion were investigated in isolated pancreatic islets from control rats. In vivo, 5 d treatment with 1,25-D3 (i.p.) prevented insulin resistance in dexamethasone-treated rats. Treatment with 1,25-D3 improved the activities of hepatic enzymes, serum lipids and calcium concentrations in insulin-resistant rats. 25-D3 (o.g.) does not affect insulin resistance. In pancreatic islets, 1,25-D3 increased insulin secretion and stimulated rapid response 45Ca2+ influx. The stimulatory effect of 1,25-D3 on 45Ca2+ influx was decreased by diazoxide, apamine, thapsigargin, dantrolene, 2-APB, nifedipine, TEA, PKA, PKC, and cytoskeleton inhibitor, while it was increased by glibenclamide and N-ethylmaleimide. The stimulatory effect of 1,25-D3 on 45Ca2+ influx involves the activation of L-type VDCC, K+-ATP, K+-Ca2+, and Kv channels, which augment cytosolic calcium. These ionic changes mobilize calcium from stores and downstream activation of PKC, PKA tethering vesicle traffic and fusion at the plasma membrane for insulin secretion. This is the first study highlighting the unprecedented role of 1,25-D3 (short-term effect) in the regulation of glucose homeostasis and on prevention of insulin resistance. Furthermore, this study shows the intracellular ß-cell signal transduction of 1,25-D3 through the modulation of pivotal ionic channels and proteins exhibiting a coordinated exocytosis of vesicles for insulin secretion.


Subject(s)
Cholecalciferol/analogs & derivatives , Exocytosis/drug effects , Insulin Resistance , Insulin Secretion/drug effects , Insulin/metabolism , Animals , Calcium/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/metabolism , Cholecalciferol/metabolism , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Rats , Rats, Wistar
4.
J Neurochem ; 157(6): 1789-1808, 2021 06.
Article in English | MEDLINE | ID: mdl-32931038

ABSTRACT

Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.


Subject(s)
Chromaffin Cells/metabolism , Connexins/metabolism , Exocytosis/physiology , Nerve Tissue Proteins/metabolism , Receptor Cross-Talk/physiology , Receptors, Purinergic P2X7/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Animals , Calcium Chelating Agents/pharmacology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Cattle , Cell Line, Tumor , Chromaffin Cells/drug effects , Exocytosis/drug effects , Humans , Mice , Receptor Cross-Talk/drug effects
5.
J Pharmacol Exp Ther ; 370(3): 823-833, 2019 09.
Article in English | MEDLINE | ID: mdl-31101681

ABSTRACT

Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.


Subject(s)
Endocytosis/drug effects , Enzyme Replacement Therapy/methods , Niemann-Pick Disease, Type A/drug therapy , Sphingomyelin Phosphodiesterase/therapeutic use , Tocopherols/pharmacology , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Combined Modality Therapy , Drug Interactions , Exocytosis/drug effects , Humans , Nanoparticles , Recombinant Proteins/pharmacokinetics , Sphingomyelin Phosphodiesterase/administration & dosage , Sphingomyelin Phosphodiesterase/pharmacokinetics
6.
Sci Rep ; 8(1): 13061, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166558

ABSTRACT

The exposure of pancreatic islets to high glucose is believed to be one of the causal factors of the progressive lowering of insulin secretion in the development of type 2 diabetes. The progression of beta cell failure to type 2 diabetes is preceded by an early positive increase in the insulin secretory response to glucose, which is only later followed by a loss in the secretion capacity of pancreatic islets. Here we have investigated the electrophysiological mechanisms underlying the early glucose-mediated gain of function. Rodent pancreatic islets or dispersed islet cells were cultured in medium containing either 5.6 (control) or 16.7 (high-glucose) mM glucose for 24 h after isolation. Glucose-stimulated insulin secretion was enhanced in a concentration-dependent manner in high glucose-cultured islets. This was associated with a positive effect on beta cell exocytotic capacity, a lower basal KATP conductance and a higher glucose sensitivity to fire action potentials. Despite no changes in voltage-gated Ca2+ currents were observed in voltage-clamp experiments, the [Ca2+]I responses to glucose were drastically increased in high glucose-cultured cells. Of note, voltage-dependent K+ currents were decreased and their activation was shifted to more depolarized potentials by high-glucose culture. This decrease in voltage-dependent K+ channel (Kv) current may be responsible for the elevated [Ca2+]I response to metabolism-dependent and independent stimuli, associated with more depolarized membrane potentials with lower amplitude oscillations in high glucose-cultured beta cells. Overall these results show that beta cells improve their response to acute challenges after short-term culture with high glucose by a mechanism that involves modulation not only of metabolism but also of ion fluxes and exocytosis, in which Kv activity appears as an important regulator.


Subject(s)
Cell Culture Techniques , Glucose/toxicity , Insulin-Secreting Cells/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Electric Capacitance , Exocytosis/drug effects , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Intracellular Space/metabolism , KATP Channels/metabolism , Potassium Channels/metabolism , Rats, Wistar , Time Factors
7.
Biochem J ; 475(9): 1669-1685, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29669912

ABSTRACT

Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1) is expressed in retinal Müller glial cells (MGCs) and regulates intracellular translocation to the plasma membrane (PM) of the membrane proteins involved in cellular motility and activity. Different functions of MGCs may be influenced by insulin, including the removal of extracellular glutamate in the retina. In the present work, we investigated whether insulin promotes LRP1 translocation to the PM in the Müller glial-derived cell line MIO-M1 (human retinal Müller glial cell-derived cell line). We demonstrated that LRP1 is stored in small vesicles containing an approximate size of 100 nm (mean diameter range of 100-120 nm), which were positive for sortilin and VAMP2, and also incorporated GLUT4 when it was transiently transfected. Next, we observed that LRP1 translocation to the PM was promoted by insulin-regulated exocytosis through intracellular activation of the IR/PI3K/Akt axis and Rab-GTPase proteins such as Rab8A and Rab10. In addition, these Rab-GTPases regulated both the constitutive and insulin-induced LRP1 translocation to the PM. Finally, we found that dominant-negative Rab8A and Rab10 mutants impaired insulin-induced intracellular signaling of the IR/PI3K/Akt axis, suggesting that these GTPase proteins as well as the LRP1 level at the cell surface are involved in insulin-induced IR activation.


Subject(s)
Cell Membrane/metabolism , Ependymoglial Cells/metabolism , Exocytosis/drug effects , Gene Expression Regulation , Insulin/pharmacology , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cells, Cultured , Ependymoglial Cells/drug effects , Glucose Transporter Type 4/metabolism , Humans , Hypoglycemic Agents/pharmacology , Protein Transport , Signal Transduction , rab GTP-Binding Proteins/metabolism
8.
Biomed Pharmacother ; 102: 481-493, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29579709

ABSTRACT

Piperazine is a promising scaffold for drug development due to its broad spectrum of biological activities. Based on this, the new piperazine-containing compound LQFM018 (2) [ethyl 4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl)piperazine-1-carboxylate] was synthetized and some biological activities investigated. In this work, we described its ability to bind aminergic receptors, antiproliferative effects as well as the LQFM018 (2)-triggered cell death mechanisms, in K562 leukemic cells, by flow cytometric analyses. Furthermore, acute oral systemic toxicity and potential myelotoxicity assessments of LQFM018 (2) were carried out. LQFM018 (2) was originally obtained by molecular simplification from LASSBio579 (1), an analogue compound of clozapine, with 33% of global yield. Binding profile assay to aminergic receptors showed that LQFM018 (2) has affinity for the dopamine D4 receptor (Ki = 0.26 µM). Moreover, it showed cytotoxicity in K562 cells, in a concentration and time-dependent manner; IC50 values obtained were 399, 242 and 119 µM for trypan blue assay and 427, 259 and 50 µM for MTT method at 24, 48 or 72 h, respectively. This compound (427 µM) also promoted increase in LDH release and cell cycle arrest in G2/M phase. Furthermore, it triggered necrotic morphologies in K562 cells associated with intense cell membrane rupture as confirmed by Annexin V/propidium iodide double-staining. LQFM018 (2) also triggered mitochondrial disturb through loss of ΔΨm associated with increase of ROS production. No significant accumulation of cytosolic cytochrome c was verified in treated cells. Furthermore, it was verified an increase of expression of TNF-R1 and mRNA levels of CYLD with no involviment in caspase-3 and -8 activation and NF-κB in K562 cells. LQFM018 (2) showed in vitro myelotoxicity potential, but it was orally well tolerated and classified as UN GHS category 5 (LD50 > 2000-5000 mg/Kg). Thus, LQFM018 (2) seems to have a non-selective action considering hematopoietic cells. In conclusion, it is suggested LQFM018 (2) promotes cell death in K562 cells via necroptotic signaling, probably with involvement of dopamine D4 receptor. These findings open new perspectives in cancer therapy by use of necroptosis inducing agents as a strategy of reverse cancer cell chemoresistance.


Subject(s)
Apoptosis/drug effects , Piperazines/pharmacology , Receptors, Dopamine D4/metabolism , Toxicity Tests , 3T3 Cells , Administration, Oral , Animals , Binding, Competitive/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cell Cycle/drug effects , Cell Shape/drug effects , Cytochromes c/metabolism , Deubiquitinating Enzyme CYLD/metabolism , Exocytosis/drug effects , Female , Humans , K562 Cells , Kinetics , Membrane Potential, Mitochondrial/drug effects , Mice , NF-kappa B/metabolism , Necrosis , Phosphatidylserines/metabolism , Piperazine , Piperazines/chemical synthesis , Piperazines/chemistry , Protein Binding/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reactive Oxygen Species/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism
9.
Synapse ; 71(12)2017 12.
Article in English | MEDLINE | ID: mdl-28873252

ABSTRACT

Acetazolamide (AZ), a molecule frequently used to treat different neurological syndromes, is an inhibitor of the carbonic anhydrase (CA), an enzyme that regulates pH inside and outside cells. We combined fluorescent FM styryl dyes and electrophysiological techniques at ex vivo levator auris longus neuromuscular junctions (NMJs) from mice to investigate the modulation of synaptic transmission and vesicle recycling by AZ. Transmitter release was minimally affected by AZ, as evidenced by evoked and spontaneous end-plate potential measurements. However, optical evaluation with FM-styryl dyes of vesicle exocytosis elicited by 50 Hz stimuli showed a strong reduction in fluorescence loss in AZ treated NMJ, an effect that was abolished by bathing the NMJ in Hepes. The remaining dye was quenched by bromophenol, a small molecule capable of diffusing inside vesicles. Furthermore, in transgenic mice expressing Synaptophysin-pHluorin (SypHy), the fluorescence responses of motor nerve terminals to a 50 Hz train of stimuli was decrease to a 50% of controls in the presence of AZ. Immunohistochemistry experiments to evaluate the state of the Myosin light chain kinase (MLCK), an enzyme involved in vesicle recycling, demonstrated that MLCK phosphorylation was much stronger in the presence than AZ than in its absence in 50 Hz stimulated NMJs. We postulate that AZ, via cytosol acidification and activation of MLCK, shifts synaptic vesicle recycling to a fast (kiss-and-run) mode, which changes synaptic performance. These changes may contribute to the therapeutic action reported in many neurological syndromes like ataxia, epilepsy, and migraine.


Subject(s)
Acetazolamide/pharmacology , Carbonic Anhydrase Inhibitors/pharmacology , Neuromuscular Agents/pharmacology , Neuromuscular Junction/drug effects , Synaptic Vesicles/drug effects , Animals , Cardiac Myosins/metabolism , Cytosol/drug effects , Cytosol/metabolism , Exocytosis/drug effects , Exocytosis/physiology , Hydrogen-Ion Concentration , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , Mice, Transgenic , Myosin Light Chains/metabolism , Myosin-Light-Chain Kinase/metabolism , Neuromuscular Junction/cytology , Neuromuscular Junction/metabolism , Phosphorylation/drug effects , Synaptic Vesicles/metabolism
10.
Toxicology ; 344-346: 42-52, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26875785

ABSTRACT

We have previously demonstrated that hypercholesterolemic LDL receptor knockout (LDLr(-/-)) mice secrete less insulin than wild-type mice. Removing cholesterol from isolated islets using methyl-beta-cyclodextrin reversed this defect. In this study, we hypothesized that in vivo treatment of LDLr(-/-) mice with the HMGCoA reductase inhibitor pravastatin would improve glucose-stimulated insulin secretion. Female LDLr(-/-) mice were treated with pravastatin (400mg/L) for 1-3 months. Isolated pancreatic islets were assayed for insulin secretion rates, intracellular calcium oscillations, cholesterol levels, NAD(P)H and SNARE protein levels, apoptosis indicators and lipidomic profile. Two months pravastatin treatment reduced cholesterol levels in plasma, liver and islets by 35%, 25% and 50%, respectively. Contrary to our hypothesis, pravastatin treatment increased fasting and fed plasma levels of glucose and decreased markedly (40%) fed plasma levels of insulin. In addition, ex vivo glucose stimulated insulin secretion was significantly reduced after two and three months (36-48%, p<0.05) of pravastatin treatment. Although reducing insulin secretion and insulinemia, two months pravastatin treatment did not affect glucose tolerance because it improved global insulin sensitivity. Pravastatin induced islet dysfunction was associated with marked reductions of exocytosis-related SNARE proteins (SNAP25, Syntaxin 1A, VAMP2) and increased apoptosis markers (Bax/Bcl2 protein ratio, cleaved caspase-3 and lower NAD(P)H production rates) observed in pancreatic islets from treated mice. In addition, several oxidized phospholipids, tri- and diacylglycerols and the proapoptotic lipid molecule ceramide were identified as markers of pravastatin-treated islets. Cell death and oxidative stress (H2O2 production) were confirmed in insulin secreting INS-1E cells treated with pravastatin. These results indicate that chronic treatment with pravastatin impairs the insulin exocytosis machinery and increases ß-cell death. These findings suggest that prolonged use of statins may have a diabetogenic effect.


Subject(s)
Exocytosis/drug effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/toxicity , Hypercholesterolemia/metabolism , Insulin-Secreting Cells/drug effects , Insulin/metabolism , Pravastatin/toxicity , Animals , Drug Administration Schedule , Exocytosis/physiology , Female , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, LDL/deficiency , Receptors, LDL/genetics
11.
Arq Bras Oftalmol ; 78(3): 158-63, 2015.
Article in English | MEDLINE | ID: mdl-26222104

ABSTRACT

PURPOSE: In the lacrimal gland (LG) acinar cells, signaling regulates the release of secretory vesicles through specific Rab and SNARE exocytotic proteins. In diabetes mellitus (DM), the LGs are dysfunctional. The aim of this work was to determine if secretory apparatus changes were associated with any effects on the secretory vesicles (SV) in diabetic rats as well as the expression levels of constituent Rab and members of the SNARE family, and if insulin supplementation reversed those changes. METHODS: DM was induced in male Wistar rats with an intravenous dose of streptozotocin (60 mg/kg). One of the two diabetic groups was then treated every other day with insulin (1 IU). A third control group was injected with vehicle. After 10 weeks, Western blotting and RT-PCR were used to compared the Rab and SNARE secretory factor levels in the LGs. Transmission electron microscopy evaluated acinar cell SV density and integrity. RESULTS: In the diabetes mellitus group, there were fewer and enlarged SV. The Rab 27b, Rab 3d, and syntaxin-1 protein expression declined in the rats with diabetes mellitus. Insulin treatment restored the SV density and the Rab 27b and syntaxin expression to their control protein levels, whereas the Vamp 2 mRNA expression increased above the control levels. CONCLUSIONS: Diabetes mellitus LG changes were associated with the declines in protein expression levels that were involved in supporting exocytosis and vesicular formation. They were partially reversed by insulin replacement therapy. These findings may help to improve therapeutic management of dry eye in diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Lacrimal Apparatus/drug effects , Secretory Vesicles/metabolism , Acetylcholine/analysis , Acinar Cells/ultrastructure , Animals , Blotting, Western/methods , Diabetes Mellitus, Experimental/chemically induced , Exocytosis/drug effects , Lacrimal Apparatus/metabolism , Male , Models, Animal , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , RNA, Messenger/metabolism , Rats, Wistar , Secretory Vesicles/drug effects , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
12.
Arq. bras. oftalmol ; Arq. bras. oftalmol;78(3): 158-163, May-Jun/2015. tab, graf
Article in English | LILACS | ID: lil-753015

ABSTRACT

ABSTRACT Purpose: In the lacrimal gland (LG) acinar cells, signaling regulates the release of secretory vesicles through specific Rab and SNARE exocytotic proteins. In diabetes mellitus (DM), the LGs are dysfunctional. The aim of this work was to determine if secretory apparatus changes were associated with any effects on the secretory vesicles (SV) in diabetic rats as well as the expression levels of constituent Rab and members of the SNARE family, and if insulin supplementation reversed those changes. Methods: DM was induced in male Wistar rats with an intravenous dose of streptozotocin (60 mg/kg). One of the two diabetic groups was then treated every other day with insulin (1 IU). A third control group was injected with vehicle. After 10 weeks, Western blotting and RT-PCR were used to compared the Rab and SNARE secretory factor levels in the LGs. Transmission electron microscopy evaluated acinar cell SV density and integrity. Results: In the diabetes mellitus group, there were fewer and enlarged SV. The Rab 27b, Rab 3d, and syntaxin-1 protein expression declined in the rats with diabetes mellitus. Insulin treatment restored the SV density and the Rab 27b and syntaxin expression to their control protein levels, whereas the Vamp 2 mRNA expression increased above the control levels. Conclusions: Diabetes mellitus LG changes were associated with the declines in protein expression levels that were involved in supporting exocytosis and vesicular formation. They were partially reversed by insulin replacement therapy. These findings may help to improve therapeutic management of dry eye in diabetes mellitus. .


RESUMO Objetivo: Células acinares da glândula lacrimal (GL) sinalizam a regulação da liberação através de vesículas secretórias específicas Rab proteínas exocitóticas SNARE. No diabetes mellitus (DM), as glândulas lacrimais são disfuncionais. O objetivo deste trabalho foi determinar se em ratos diabéticos, alterações dos aparatos secretórios estão associados a efeitos sobre vesículas secretoras (VS) e sobre os níveis de expressão do constituinte Rab, bem como membros da família SNARE, e se a suplementação de insulina reverte as alterações. Métodos: DM foi induzido em ratos Wistar machos com uma dose intravenosa de estreptozotocina (60 mg/kg). Um dos dois grupos diabéticos foi então tratado a cada dois dias com insulina (1 UI). Um terceiro grupo controle foi injetado com o veículo. Após 10 semanas, western blot e RT-PCR comparou níveis de fatores secretórios de Rab e SNARE na glândula lacrimal. Microscopia eletrônica de transmissão (MET) avaliaram a densidade e integridade de VS de célula acinar. Resultados: No grupo diabetes mellitus , houve poucas e alargadas VS. Rab27b, Rab 3d e Sintaxina-1 diminuiu a expressão da proteína em ratos com Diabetes Mellitus. O tratamento com insulina restaurou a densidade das VS e expressão de Rab 27b e Sintaxina para seus níveis de proteína controle, enquanto a expressão de Vamp 2 RNAm aumentou em relação aos controles. Conclusões: Alterações na glândula lacrimal de diabetes mellitus estão associadas a reduções nos níveis de expressão de proteínas envolvidas no apoio a exocitose e formação vesicular. Eles são, em parte, revertida por terapia de reposição de insulina. Estes resultados podem ajudar a melhorar a conduta terapêutica do olho seco no diabetes mellitus. .


Subject(s)
Animals , Male , Diabetes Mellitus, Experimental/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Lacrimal Apparatus/drug effects , Secretory Vesicles/metabolism , Acetylcholine/analysis , Acinar Cells/ultrastructure , Blotting, Western/methods , Diabetes Mellitus, Experimental/chemically induced , Exocytosis/drug effects , Lacrimal Apparatus , Models, Animal , Qa-SNARE Proteins/metabolism , R-SNARE Proteins/metabolism , Rats, Wistar , RNA, Messenger/metabolism , Secretory Vesicles/drug effects , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
13.
Methods Mol Biol ; 1298: 141-60, 2015.
Article in English | MEDLINE | ID: mdl-25800839

ABSTRACT

Regulated exocytosis employs a conserved molecular machinery in all secretory cells. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and Rab superfamilies are members of this machinery. Rab proteins are small GTPases that organize membrane microdomains on organelles by recruiting specific effectors that strongly influence the movement, fusion and fission dynamics of intracellular compartments. Rab3 and Rab27 are the prevalent exocytotic isoforms. Many events occur in mammalian spermatozoa before they can fertilize the egg, one of them is the acrosome reaction (AR), a type of regulated exocytosis. The AR relies on the same fusion machinery as all other cell types, which includes members of the exocytotic SNARE and Rab superfamilies. Here, we describe in depth two protocols designed to determine the activation status of small G proteins. One of them also serves to determine the subcellular localization of active Rabs, something not achievable with other methods. By means of these techniques, we have reported that Rab27 and Rab3 act sequentially and are organized in a RabGEF cascade during the AR. Although we developed them to scrutinize the exocytosis of the acrosome in human sperm, the protocols can potentially be extended to study other Ras-related proteins in virtually any cellular model.


Subject(s)
Acrosome/metabolism , Exocytosis , Monomeric GTP-Binding Proteins/metabolism , Acrosome/drug effects , Acrosome Reaction/drug effects , Calcimycin/pharmacology , Chemical Precipitation , Enzymes, Immobilized/isolation & purification , Enzymes, Immobilized/metabolism , Exocytosis/drug effects , Fluorescent Antibody Technique , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotides/metabolism , Guanosine Triphosphate/metabolism , Humans , Male , Monomeric GTP-Binding Proteins/isolation & purification , Permeability/drug effects , Protein Prenylation/drug effects
14.
Mol Hum Reprod ; 21(3): 244-54, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25452326

ABSTRACT

The acrosome reaction is a unique event in the lifespan of sperm characterized by the exocytosis of the acrosomal content and the release of hybrid vesicles formed by patches of the outer acrosomal membrane and the plasma membrane. This unique regulated exocytosis is mediated by essentially the same membrane fusion machinery present in neuroendocrine cells. However, whereas secretion in neuroendocrine cells occurs in less than a second, the acrosome reaction is normally assessed after several minutes of incubation with inducers. In this report, we measured the kinetics of human sperm exocytosis triggered by two stimuli (calcium ionophore and progesterone) by using electron microscopy and three different approaches based on the incorporation of fluorescent Pisum sativum agglutinin into the acrosome upon opening of fusion pores connecting the extracellular medium with the acrosomal lumen. The results with the different methods are consistent with a slow kinetics (t½ = 14 min). We also manipulated the system to measure different steps of the process. We observed that cytosolic calcium increased with a relatively fast kinetics (t½ = 0.1 min). In contrast, the swelling of the acrosomal granule that precedes exocytosis was a slow process (t½ = 13 min). When swelling was completed, the fusion pore opening was fast (t½ = 0.2 min). The results indicate that acrosomal swelling is the slowest step and it determines the kinetics of the acrosome reaction. After the swelling is completed, the efflux of calcium from intracellular stores triggers fusion pores opening and the release of hybrid vesicles in seconds.


Subject(s)
Acrosome Reaction/physiology , Acrosome/metabolism , Cell Membrane/metabolism , Exocytosis/physiology , Acrosome/drug effects , Acrosome/ultrastructure , Acrosome Reaction/drug effects , Adult , Calcimycin/pharmacology , Calcium/metabolism , Calcium Ionophores/pharmacology , Cell Membrane/drug effects , Cell Membrane/ultrastructure , Cytoplasmic Granules/drug effects , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Exocytosis/drug effects , Humans , Ion Transport/drug effects , Kinetics , Male , Membrane Fusion/drug effects , Microscopy, Electron , Plant Lectins/pharmacology , Progesterone/pharmacology , Time Factors
15.
PLoS One ; 9(6): e99001, 2014.
Article in English | MEDLINE | ID: mdl-24901433

ABSTRACT

The cortical actin network is dynamically rearranged during secretory processes. Nevertheless, it is unclear how de novo actin polymerization and the disruption of the preexisting actin network control transmitter release. Here we show that in bovine adrenal chromaffin cells, both formation of new actin filaments and disruption of the preexisting cortical actin network are induced by Ca2+ concentrations that trigger exocytosis. These two processes appear to regulate different stages of exocytosis; whereas the inhibition of actin polymerization with the N-WASP inhibitor wiskostatin restricts fusion pore expansion, thus limiting the release of transmitters, the disruption of the cortical actin network with cytochalasin D increases the amount of transmitter released per event. Further, the Src kinase inhibitor PP2, and cSrc SH2 and SH3 domains also suppress Ca2+-dependent actin polymerization, and slow down fusion pore expansion without disturbing the cortical F-actin organization. Finally, the isolated SH3 domain of c-Src prevents both the disruption of the actin network and the increase in the quantal release induced by cytochalasin D. These findings support a model where a rise in the cytosolic Ca2+ triggers actin polymerization through a mechanism that involves Src kinases. The newly formed actin filaments would speed up the expansion of the initial fusion pore, whereas the preexisting actin network might control a different step of the exocytosis process.


Subject(s)
Actins/metabolism , Chromaffin Cells/metabolism , src-Family Kinases/metabolism , Actin Cytoskeleton/drug effects , Animals , Calcium/pharmacology , Cattle , Cells, Cultured , Chromaffin Cells/cytology , Chromaffin Cells/drug effects , Cytochalasin D/pharmacology , Exocytosis/drug effects , Kinetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , src-Family Kinases/chemistry , src-Family Kinases/genetics
16.
PLoS One ; 8(12): e82988, 2013.
Article in English | MEDLINE | ID: mdl-24376622

ABSTRACT

In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MßCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MßCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MßCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.


Subject(s)
Cell Membrane/drug effects , Cholesterol/chemistry , Fibroblasts/drug effects , Lysosomes/metabolism , beta-Cyclodextrins/pharmacology , Actins/genetics , Actins/metabolism , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line , Cell Membrane/ultrastructure , Cholesterol/deficiency , Cytoskeleton/drug effects , Cytoskeleton/ultrastructure , Exocytosis/drug effects , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , Lysosomes/classification , Membrane Fluidity/drug effects , Mice , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Synaptotagmins/antagonists & inhibitors , Synaptotagmins/genetics , Synaptotagmins/metabolism , Thiazolidines/pharmacology , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism
17.
PLoS One ; 8(10): e77176, 2013.
Article in English | MEDLINE | ID: mdl-24130850

ABSTRACT

There is increasing experimental evidence of the nongenomic action of thyroid hormones mediated by receptors located in the plasma membrane or inside cells. The aim of this work was to characterize the reverse T3 (rT3) action on calcium uptake and its involvement in immature rat Sertoli cell secretion. The results presented herein show that very low concentrations of rT3 are able to increase calcium uptake after 1 min of exposure. The implication of T-type voltage-dependent calcium channels and chloride channels in the effect of rT3 was evidenced using flunarizine and 9-anthracene, respectively. Also, the rT3-induced calcium uptake was blocked in the presence of the RGD peptide (an inhibitor of integrin-ligand interactions). Therefore, our findings suggest that calcium uptake stimulated by rT3 may be mediated by integrin αvß3. In addition, it was demonstrated that calcium uptake stimulated by rT3 is PKC and ERK-dependent. Furthermore, the outcomes indicate that rT3 also stimulates cellular secretion since the cells manifested a loss of fluorescence after 4 min incubation, indicating an exocytic quinacrine release that seems to be mediated by the integrin receptor. These findings indicate that rT3 modulates the calcium entry and cellular secretion, which might play a role in the regulation of a plethora of intracellular processes involved in male reproductive physiology.


Subject(s)
Calcium/metabolism , Exocytosis/drug effects , Integrins/metabolism , Sertoli Cells/cytology , Sertoli Cells/metabolism , Triiodothyronine, Reverse/pharmacology , Animals , Biological Transport/drug effects , Calcium Channels/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Chloride Channels/metabolism , Male , Mitogen-Activated Protein Kinase Kinases/metabolism , Protein Kinase C/metabolism , Rats , Rats, Wistar , Sertoli Cells/drug effects , Time Factors , Tumor Protein, Translationally-Controlled 1
18.
Neurochem Int ; 63(6): 576-82, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24044896

ABSTRACT

Etomidate is an intravenous anesthetic used during anesthesia induction. This agent induces spontaneous movements, especially myoclonus after its administration suggesting a putative primary effect at the central nervous system or the periphery. Therefore, the aim of this study was to investigate the presynaptic and postsynaptic effects of etomidate at the mouse neuromuscular junction (NMJ). Diaphragm nerve muscle preparations were isolated and stained with the styryl dye FM1-43, a fluorescent tool that tracks synaptic vesicles exo-endocytosis that are key steps for neurotransmission. We observed that etomidate induced synaptic vesicle exocytosis in a dose-dependent fashion, an effect that was independent of voltage-gated Na(+) channels. By contrast, etomidate-evoked exocytosis was dependent on extracellular Ca(2+) because its effect was abolished in Ca(2+)-free medium and also inhibited by omega-Agatoxin IVA (30 and 200nM) suggesting the participation of P/Q-subtype Ca(2+) channels. Interestingly, even though etomidate induced synaptic vesicle exocytosis, we did not observe any significant difference in the frequency and amplitude of miniature end-plate potentials (MEPPs) in the presence of the anesthetic. We therefore investigated whether etomidate could act on nicotinic acetylcholine receptors labeled with α-bungarotoxin-Alexa 594 and we observed less fluorescence in preparations exposed to the anesthetic. In conclusion, our results suggest that etomidate exerts a presynaptic effect at the NMJ inducing synaptic vesicle exocytosis, likely through the activation of P-subtype voltage gated Ca(2+) channels without interfering with MEPPs frequency. The present data contribute to a better understanding about the effect of etomidate at the neuromuscular synapse and may help to explain some clinical effects of this agent.


Subject(s)
Etomidate/pharmacology , Evoked Potentials/drug effects , Exocytosis/drug effects , Hypnotics and Sedatives/pharmacology , Motor Endplate/drug effects , Neuromuscular Junction/drug effects , Synaptic Vesicles/drug effects , Animals , Calcium Channels, P-Type/drug effects , Calcium Channels, P-Type/metabolism , Calcium Channels, Q-Type/drug effects , Calcium Channels, Q-Type/metabolism , Diaphragm/drug effects , Diaphragm/innervation , Dose-Response Relationship, Drug , Female , Mice , Receptors, Nicotinic/drug effects
19.
Eur J Neurosci ; 38(7): 2978-87, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23841903

ABSTRACT

We investigated the effects of cholesterol removal on spontaneous and KCl-evoked synaptic vesicle recycling at the frog neuromuscular junction. Cholesterol removal by methyl-ß-cyclodextrin (MßCD) induced an increase in the frequency of miniature end-plate potentials (MEPPs) and spontaneous destaining of synaptic vesicles labeled with the styryl dye FM1-43. Treatment with MßCD also increased the size of MEPPs without causing significant changes in nicotinic receptor clustering. At the ultrastructural level, synaptic vesicles from nerve terminals treated with MßCD were larger than those from control. In addition, treatment with MßCD reduced the fusion of synaptic vesicles that are mobilized during KCl-evoked stimulation, but induced recycling of those vesicles that fuse spontaneously. We therefore suggest that MßCD might favor the release of vesicles that belong to a pool that is different from that involved in the KCl-evoked release. These results reveal fundamental differences in the synaptic vesicle cycle for spontaneous and evoked release, and suggest that deregulation of cholesterol affects synaptic vesicle biogenesis and increases transmitter packing.


Subject(s)
Cell Membrane/physiology , Cholesterol/metabolism , Neuromuscular Junction/physiology , Synaptic Vesicles/physiology , Animals , Cell Membrane/drug effects , Exocytosis/drug effects , Exocytosis/physiology , Microelectrodes , Microscopy, Electron, Transmission , Microscopy, Fluorescence , Miniature Postsynaptic Potentials/drug effects , Miniature Postsynaptic Potentials/physiology , Neuromuscular Agents/pharmacology , Neuromuscular Junction/drug effects , Neuromuscular Junction/ultrastructure , Potassium Chloride/pharmacology , Pyridinium Compounds , Quaternary Ammonium Compounds , Rana catesbeiana , Receptors, Nicotinic/metabolism , Synaptic Vesicles/drug effects , Synaptic Vesicles/ultrastructure , Tissue Culture Techniques , beta-Cyclodextrins/pharmacology
20.
PLoS One ; 8(5): e64551, 2013.
Article in English | MEDLINE | ID: mdl-23704996

ABSTRACT

Acrosomal exocytosis is a calcium-regulated exocytosis that can be triggered by PKC activators. The involvement of PKC in acrosomal exocytosis has not been fully elucidated, and it is unknown if MARCKS, the major substrate for PKC, participates in this exocytosis. Here, we report that MARCKS is expressed in human spermatozoa and localizes to the sperm head and the tail. Calcium- and phorbol ester-triggered acrosomal exocytosis in permeabilized sperm was abrogated by different anti-MARCKS antibodies raised against two different domains, indicating that the protein participates in acrosomal exocytosis. Interestingly, an anti-phosphorylated MARCKS antibody was not able to inhibit secretion. Similar results were obtained using recombinant proteins and phospho-mutants of MARCKS effector domain (ED), indicating that phosphorylation regulates MARCKS function in acrosomal exocytosis. It is known that unphosphorylated MARCKS sequesters PIP2. This phospholipid is the precursor for IP3, which in turn triggers release of calcium from the acrosome during acrosomal exocytosis. We found that PIP2 and adenophostin, a potent IP3-receptor agonist, rescued MARCKS inhibition in permeabilized sperm, suggesting that MARCKS inhibits acrosomal exocytosis by sequestering PIP2 and, indirectly, MARCKS regulates the intracellular calcium mobilization. In non-permeabilized sperm, a permeable peptide of MARCKS ED also inhibited acrosomal exocytosis when stimulated by a natural agonist such as progesterone, and pharmacological inducers such as calcium ionophore and phorbol ester. The preincubation of human sperm with the permeable MARCKS ED abolished the increase in calcium levels caused by progesterone, demonstrating that MARCKS regulates calcium mobilization. In addition, the phosphorylation of MARCKS increased during acrosomal exocytosis stimulated by the same activators. Altogether, these results show that MARCKS is a negative modulator of the acrosomal exocytosis, probably by sequestering PIP2, and that it is phosphorylated during acrosomal exocytosis.


Subject(s)
Acrosome/metabolism , Calcium Signaling , Exocytosis , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Adenosine/pharmacology , Amino Acid Sequence , Animals , Calcium Signaling/drug effects , Cell Membrane Permeability/drug effects , Exocytosis/drug effects , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Male , Membrane Proteins/chemistry , Mice , Models, Biological , Molecular Sequence Data , Myristoylated Alanine-Rich C Kinase Substrate , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Phosphorylation/drug effects , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL