Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.511
Filter
1.
Nat Commun ; 15(1): 6685, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39107301

ABSTRACT

Mitochondrial RNA (mtRNA) in the cytosol can trigger the innate immune sensor MDA5, and autoinflammatory disease due to type I IFN. Here, we show that a dominant negative mutation in the gene encoding the mitochondrial exonuclease REXO2 may cause interferonopathy by triggering the MDA5 pathway. A patient characterized by this heterozygous de novo mutation (p.T132A) presented with persistent skin rash featuring hyperkeratosis, parakeratosis and acanthosis, with infiltration of lymphocytes and eosinophils around small blood vessels. In addition, circulating IgE levels and inflammatory cytokines, including IFNα, are found consistently elevated. Transcriptional analysis highlights a type I IFN gene signature in PBMC. Mechanistically, REXO2 (T132A) lacks the ability to cleave RNA and inhibits the activity of wild-type REXO2. This leads to an accumulation of mitochondrial dsRNA in the cytosol, which is recognized by MDA5, leading to the associated type I IFN gene signature. These results demonstrate that in the absence of appropriate regulation by REXO2, aberrant cellular nucleic acids may accumulate and continuously trigger innate sensors, resulting in an inborn error of immunity.


Subject(s)
Heterozygote , Interferon Type I , Interferon-Induced Helicase, IFIH1 , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/metabolism , Interferon Type I/metabolism , Interferon Type I/genetics , Mutation , Male , Mitochondria/metabolism , Mitochondria/genetics , Female , Immunity, Innate/genetics , Exonucleases/metabolism , Exonucleases/genetics , HEK293 Cells , Exoribonucleases/genetics , Exoribonucleases/metabolism , Cytosol/metabolism , RNA, Double-Stranded/metabolism , RNA, Double-Stranded/genetics , Immunoglobulin E/blood , Immunoglobulin E/immunology , Genes, Dominant
2.
Proc Natl Acad Sci U S A ; 121(30): e2403805121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39018195

ABSTRACT

It is commonly held that there is a fundamental relationship between genome size and error rate, manifest as a notional "error threshold" that sets an upper limit on genome sizes. The genome sizes of RNA viruses, which have intrinsically high mutation rates due to a lack of mechanisms for error correction, must therefore be small to avoid accumulating an excessive number of deleterious mutations that will ultimately lead to population extinction. The proposed exceptions to this evolutionary rule are RNA viruses from the order Nidovirales (such as coronaviruses) that encode error-correcting exonucleases, enabling them to reach genome lengths greater than 40 kb. The recent discovery of large-genome flavi-like viruses (Flaviviridae), which comprise genomes up to 27 kb in length yet seemingly do not encode exonuclease domains, has led to the proposal that a proofreading mechanism is required to facilitate the expansion of nonsegmented RNA virus genomes above 30 kb. Herein, we describe a ~40 kb flavi-like virus identified in a Haliclona sponge metatranscriptome that does not encode a known exonuclease. Structural analysis revealed that this virus may have instead captured cellular domains associated with nucleic acid metabolism that have not been previously found in RNA viruses. Phylogenetic inference placed this virus as a divergent pesti-like lineage, such that we have provisionally termed it "Maximus pesti-like virus." This virus represents an instance of a flavi-like virus achieving a genome size comparable to that of the Nidovirales and demonstrates that RNA viruses have evolved multiple solutions to overcome the error threshold.


Subject(s)
Genome, Viral , Animals , Phylogeny , Genome Size , Viral Proteins/genetics , Viral Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , RNA, Viral/genetics
3.
Nucleic Acids Res ; 52(13): 7843-7862, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38888125

ABSTRACT

The human malaria parasite Plasmodium falciparum genome is among the most A + T rich, with low complexity regions (LCRs) inserted in coding sequences including those for proteins targeted to its essential relict plastid (apicoplast). Replication of the apicoplast genome (plDNA), mediated by the atypical multifunctional DNA polymerase PfPrex, would require additional enzymatic functions for lagging strand processing. We identified an apicoplast-targeted, [4Fe-4S]-containing, FEN/Exo (PfExo) with a long LCR insertion and detected its interaction with PfPrex. Distinct from other known exonucleases across organisms, PfExo recognized a wide substrate range; it hydrolyzed 5'-flaps, processed dsDNA as a 5'-3' exonuclease, and was a bipolar nuclease on ssDNA and RNA-DNA hybrids. Comparison with the rodent P. berghei ortholog PbExo, which lacked the insertion and [4Fe-4S], revealed interspecies functional differences. The insertion-deleted PfExoΔins behaved like PbExo with a limited substrate repertoire because of compromised DNA binding. Introduction of the PfExo insertion into PbExo led to gain of activities that the latter initially lacked. Knockout of PbExo indicated essentiality of the enzyme for survival. Our results demonstrate the presence of a novel apicoplast exonuclease with a functional LCR that diversifies substrate recognition, and identify it as the candidate flap-endonuclease and RNaseH required for plDNA replication and maintenance.


Subject(s)
Apicoplasts , Plasmodium falciparum , Apicoplasts/metabolism , Apicoplasts/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Exonucleases/metabolism , Exonucleases/genetics , DNA Replication , Animals , Mutagenesis, Insertional , Species Specificity , Humans , DNA/metabolism , DNA/chemistry
4.
Plant Mol Biol ; 114(3): 71, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856917

ABSTRACT

Mitochondria and plastids, originated as ancestral endosymbiotic bacteria, contain their own DNA sequences. These organelle DNAs (orgDNAs) are, despite the limited genetic information they contain, an indispensable part of the genetic systems but exist as multiple copies, making up a substantial amount of total cellular DNA. Given this abundance, orgDNA is known to undergo tissue-specific degradation in plants. Previous studies have shown that the exonuclease DPD1, conserved among seed plants, degrades orgDNAs during pollen maturation and leaf senescence in Arabidopsis. However, tissue-specific orgDNA degradation was shown to differ among species. To extend our knowledge, we characterized DPD1 in rice in this study. We created a genome-edited (GE) mutant in which OsDPD1 and OsDPD1-like were inactivated. Characterization of this GE plant demonstrated that DPD1 was involved in pollen orgDNA degradation, whereas it had no significant effect on orgDNA degradation during leaf senescence. Comparison of transcriptomes from wild-type and GE plants with different phosphate supply levels indicated that orgDNA had little impact on the phosphate starvation response, but instead had a global impact in plant growth. In fact, the GE plant showed lower fitness with reduced grain filling rate and grain weight in natural light conditions. Taken together, the presented data reinforce the important physiological roles of orgDNA degradation mediated by DPD1.


Subject(s)
Oryza , Oryza/genetics , Oryza/metabolism , Oryza/enzymology , Oryza/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Exonucleases/metabolism , Exonucleases/genetics , Gene Editing , Gene Expression Regulation, Plant , DNA, Plant/genetics , DNA, Plant/metabolism , Pollen/genetics , Pollen/metabolism , Pollen/growth & development , Plant Leaves/genetics , Plant Leaves/metabolism , Genome, Plant , Mutation
5.
Immunity ; 57(7): 1482-1496.e8, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38697119

ABSTRACT

Toll-like receptor 7 (TLR7) is essential for recognition of RNA viruses and initiation of antiviral immunity. TLR7 contains two ligand-binding pockets that recognize different RNA degradation products: pocket 1 recognizes guanosine, while pocket 2 coordinates pyrimidine-rich RNA fragments. We found that the endonuclease RNase T2, along with 5' exonucleases PLD3 and PLD4, collaboratively generate the ligands for TLR7. Specifically, RNase T2 generated guanosine 2',3'-cyclic monophosphate-terminated RNA fragments. PLD exonuclease activity further released the terminal 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) to engage pocket 1 and was also needed to generate RNA fragments for pocket 2. Loss-of-function studies in cell lines and primary cells confirmed the critical requirement for PLD activity. Biochemical and structural studies showed that PLD enzymes form homodimers with two ligand-binding sites important for activity. Previously identified disease-associated PLD mutants failed to form stable dimers. Together, our data provide a mechanistic basis for the detection of RNA fragments by TLR7.


Subject(s)
Endoribonucleases , Toll-Like Receptor 7 , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 7/genetics , Humans , Endoribonucleases/metabolism , Ligands , Phospholipase D/metabolism , Phospholipase D/genetics , RNA/metabolism , HEK293 Cells , Lysosomes/metabolism , Animals , Exonucleases/metabolism , Mice , Binding Sites
6.
Food Chem ; 454: 139735, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795621

ABSTRACT

Arsenite (As3+), a highly carcinogenic heavy metal ion and widely distributed in nature, can have serious health implications even with minimal exposure. Herein, a portable smartphone device-based ratiometric fluorescence platform was established for sensitive detection of As3+. The work relied on the use of metal-organic framework-tagged cDNA (PCN-224-cDNA), with high adsorption capability and fluorescence properties, as an internal reference to quench the fluorescence of FAM-anchored aptamer (FAM-Apt) via hybridization. In the presence of As3+, FAM-Apt specifically bound to As3+ leading to conformational changes, which detached from the PCN-224-cDNA surface. Interestingly, a smartphone-based readout equipment engineered using a 3D-printed hardware device administered the portable detection of As3+. The limit of detection (LOD) for the proposed ratiometric biosensor was calculated to be 0.021 ng/mL, significantly below WHO's safety threshold. Hence, it demonstrates significant potential for large-scale screening of As3+ residues in food and the environment.


Subject(s)
Biosensing Techniques , Limit of Detection , Smartphone , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Arsenites/analysis , Fluorescence , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Exonucleases/metabolism , Exonucleases/chemistry
7.
Nucleic Acids Res ; 52(11): 6347-6359, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38661211

ABSTRACT

Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Magnesium , Mitomycin , Mitomycin/pharmacology , Mitomycin/chemistry , Magnesium/chemistry , Magnesium/metabolism , Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Models, Molecular , Catalytic Domain , DNA Repair , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Crystallography, X-Ray , DNA/metabolism , DNA/chemistry , Exonucleases/metabolism , Exonucleases/chemistry
8.
Biochem Biophys Res Commun ; 712-713: 149893, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38657529

ABSTRACT

RecJ exonucleases are members of the DHH phosphodiesterase family ancestors of eukaryotic Cdc45, the key component of the CMG (Cdc45-MCM-GINS) complex at the replication fork. They are involved in DNA replication and repair, RNA maturation and Okazaki fragment degradation. Bacterial RecJs resect 5'-end ssDNA. Conversely, archaeal RecJs are more versatile being able to hydrolyse in both directions and acting on ssDNA as well as on RNA. In Methanocaldococcus jannaschii two RecJs were previously characterized: RecJ1 is a 5'→3' DNA exonuclease, MjaRecJ2 works only on 3'-end DNA/RNA with a preference for RNA. Here, I present the crystal structure of MjaRecJ2, solved at a resolution of 2.8 Å, compare it with the other RecJ structures, in particular the 5'→3' TkoGAN and the bidirectional PfuRecJ, and discuss its characteristics in light of the more recent knowledge on RecJs. This work adds new structural data that might improve the knowledge of these class of proteins.


Subject(s)
Methanocaldococcus , Models, Molecular , Methanocaldococcus/enzymology , Crystallography, X-Ray , Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Exonucleases/metabolism , Exonucleases/chemistry , Protein Conformation , Amino Acid Sequence , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics
9.
ACS Appl Mater Interfaces ; 16(19): 24372-24383, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688864

ABSTRACT

DNA circuits, as a type of biochemical system, have the capability to synchronize the perception of molecular information with a chemical reaction response and directly process the molecular characteristic information in biological activities, making them a crucial area in molecular digital computing and smart bioanalytical applications. Instead of cascading logic gates, the traditional research approach achieves multiple logic operations which limits the scalability of DNA circuits and increases the development costs. Based on the interface reaction mechanism of Lambda exonuclease, the molecular perceptron proposed in this study, with the need for only adjusting weight and bias parameters to alter the corresponding logic expressions, enhances the versatility of the molecular circuits. We also establish a mathematical model and an improved heuristic algorithm for solving weights and bias parameters for arbitrary logic operations. The simulation and FRET experiment results of a series of logic operations demonstrate the universality of molecular perceptron. We hope the proposed molecular perceptron can introduce a new design paradigm for molecular circuits, fostering innovation and development in biomedical research related to biosensing, targeted therapy, and nanomachines.


Subject(s)
Computers, Molecular , DNA , DNA/chemistry , DNA/metabolism , Algorithms , Fluorescence Resonance Energy Transfer , Bacteriophage lambda/genetics , Exonucleases/metabolism , Exodeoxyribonucleases/metabolism , Exodeoxyribonucleases/chemistry , Biosensing Techniques/methods
10.
Genes Dev ; 38(5-6): 213-232, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38503516

ABSTRACT

Purified translesion synthesis (TLS) DNA polymerases (Pols) replicate through DNA lesions with a low fidelity; however, TLS operates in a predominantly error-free manner in normal human cells. To explain this incongruity, here we determine whether Y family Pols, which play an eminent role in replication through a diversity of DNA lesions, are incorporated into a multiprotein ensemble and whether the intrinsically high error rate of the TLS Pol is ameliorated by the components in the ensemble. To this end, we provide evidence for an indispensable role of Werner syndrome protein (WRN) and WRN-interacting protein 1 (WRNIP1) in Rev1-dependent TLS by Y family Polη, Polι, or Polκ and show that WRN, WRNIP1, and Rev1 assemble together with Y family Pols in response to DNA damage. Importantly, we identify a crucial role of WRN's 3' → 5' exonuclease activity in imparting high fidelity on TLS by Y family Pols in human cells, as the Y family Pols that accomplish TLS in an error-free manner manifest high mutagenicity in the absence of WRN's exonuclease function. Thus, by enforcing high fidelity on TLS Pols, TLS mechanisms have been adapted to safeguard against genome instability and tumorigenesis.


Subject(s)
DNA-Directed DNA Polymerase , Translesion DNA Synthesis , Werner Syndrome Helicase , Humans , DNA Damage , DNA Repair , DNA Replication , DNA-Directed DNA Polymerase/metabolism , Exonucleases/metabolism , Translesion DNA Synthesis/genetics , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism
11.
Res Microbiol ; 175(5-6): 104189, 2024.
Article in English | MEDLINE | ID: mdl-38403006

ABSTRACT

Archaeal NurA protein plays a key role in producing 3'-single stranded DNA used for homologous recombination repair, together with HerA, Mre11, and Rad50. Herein, we describe biochemical characteristics and roles of key amino acid residues of the NurA protein from the hyperthermophilic euryarchaeon Thermococcus barophilus Ch5 (Tba-NurA). Tba-NurA possesses 5'-3' exonuclease activity for degrading DNA, displaying maximum efficiency at 45 °C-65 °C and at pH 8.0 in the presence of Mn2+. The thermostable Tba-NurA also possesses endonuclease activity capable of nicking plasmid DNA and circular ssDNA. Mutational data demonstrate that residue D49 of Tba-NurA is essential for exonuclease activity and is involved in binding ssDNA since the D49A mutant lacked exonuclease activity and reduced ssDNA binding. The R96A and R129A mutants had no detectable dsDNA binding, suggesting that residues R96 and R129 are important for binding dsDNA. The abolished degradation activity and reduced dsDNA binding of the D120A mutant suggest that residue D120 is essential for degradation activity and dsDNA binding. Additionally, residues Y392 and H400 are important for exonuclease activity since these mutations resulted in exonuclease activity loss. To our knowledge, it is the first report on biochemical characterization and mutational analysis of the NurA protein from Thermococcus.


Subject(s)
Archaeal Proteins , DNA, Single-Stranded , Thermococcus , Thermococcus/genetics , Thermococcus/metabolism , Thermococcus/enzymology , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Archaeal Proteins/chemistry , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , DNA Mutational Analysis , Hydrogen-Ion Concentration , Exonucleases/metabolism , Exonucleases/genetics , Exonucleases/chemistry , Temperature , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , Protein Binding , DNA, Archaeal/genetics , DNA, Archaeal/chemistry , Endonucleases/genetics , Endonucleases/metabolism , Endonucleases/chemistry
12.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418089

ABSTRACT

ISG20 is an IFN-induced 3'-5' RNA exonuclease that acts as a broad antiviral factor. At present, the features that expose RNA to ISG20 remain unclear, although recent studies have pointed to the modulatory role of epitranscriptomic modifications in the susceptibility of target RNAs to ISG20. These findings raise the question as to how cellular RNAs, on which these modifications are abundant, cope with ISG20. To obtain an unbiased perspective on this topic, we used RNA-seq and biochemical assays to identify elements that regulate the behavior of RNAs against ISG20. RNA-seq analyses not only indicate a general preservation of the cell transcriptome, but they also highlight a small, but detectable, decrease in the levels of histone mRNAs. Contrarily to all other cellular ones, histone mRNAs are non-polyadenylated and possess a short stem-loop at their 3' end, prompting us to examine the relationship between these features and ISG20 degradation. The results we have obtained indicate that poly(A)-binding protein loading on the RNA 3' tail provides a primal protection against ISG20, easily explaining the overall protection of cellular mRNAs observed by RNA-seq. Terminal stem-loop RNA structures have been associated with ISG20 protection before. Here, we re-examined this question and found that the balance between resistance and susceptibility to ISG20 depends on their thermodynamic stability. These results shed new light on the complex interplay that regulates the susceptibility of different classes of viruses against ISG20.


Subject(s)
Exonucleases , Exoribonucleases , Exonucleases/genetics , Exonucleases/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Histones , Virus Replication/physiology
13.
Bioorg Med Chem ; 100: 117616, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38295488

ABSTRACT

Herein, we report the synthesis of 2'-O-alkyl/2'-fluoro-N3-methyluridine (2'-O-alkyl/2'-F-m3U) phosphoramidites and their incorporation in DNA and RNA oligonucleotides. The duplex binding affinity and base discrimination studies showed that all 2'-O-alkyl/2'-F-m3U modifications significantly decreased the thermal stability and base-pairing discrimination ability. Serum stability study of dT20 with 2'-O-alkyl-m3U modification exhibited excellent nuclease resistance when incubated with 3'-exonucleases (SVPD) or 5'-exonucleases (PDE-II) as compared to m3U, 2'-F, 2'-OMe modified oligonucleotides. MD simulation studies with RNA tetradecamer duplexes illustrated that the m3U and 2'-O-methyl-m3U modifications reduce the duplex stabilities by disrupting the Watson-Crick hydrogen bonding and base-stacking interactions. Further molecular modelling investigations demonstrated that the 2'-O-propyl-m3U modification exhibits steric interactions with amino acid residues in the active site of 3'- and 5'-exonuclease, leading to enhanced stability. These combined data indicate that the 2'-modified-m3U nucleotides can be used as a promising tool to enhance the stability, silencing efficiency, and drug-like properties of antisense/siRNA-based therapeutics.


Subject(s)
Nucleic Acids , Uridine , Exonucleases/metabolism , Nucleic Acid Conformation , Oligonucleotides/chemistry , RNA/chemistry , RNA, Small Interfering/chemistry , Uridine/analogs & derivatives , Uridine/chemistry , Uridine/pharmacology
14.
RNA ; 30(2): 171-187, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38071471

ABSTRACT

In Saccharomyces cerevisiae, a single homolog of the tRNA methyltransferase Trm10 performs m1G9 modification on 13 different tRNAs. Here we provide evidence that the m1G9 modification catalyzed by S. cerevisiae Trm10 plays a biologically important role for one of these tRNA substrates, tRNATrp Overexpression of tRNATrp (and not any of 38 other elongator tRNAs) rescues growth hypersensitivity of the trm10Δ strain in the presence of the antitumor drug 5-fluorouracil (5FU). Mature tRNATrp is depleted in trm10Δ cells, and its levels are further decreased upon growth in 5FU, while another Trm10 substrate (tRNAGly) is not affected under these conditions. Thus, m1G9 in S. cerevisiae is another example of a tRNA modification that is present on multiple tRNAs but is only essential for the biological function of one of those species. In addition to the effects of m1G9 on mature tRNATrp, precursor tRNATrp species accumulate in the same strains, an effect that is due to at least two distinct mechanisms. The levels of mature tRNATrp are rescued in the trm10Δmet22Δ strain, consistent with the known role of Met22 in tRNA quality control, where deletion of met22 causes inhibition of 5'-3' exonucleases that catalyze tRNA decay. However, none of the known Met22-associated exonucleases appear to be responsible for the decay of hypomodified tRNATrp, based on the inability of mutants of each enzyme to rescue the growth of the trm10Δ strain in the presence of 5FU. Thus, the surveillance of tRNATrp appears to constitute a distinct tRNA quality control pathway in S. cerevisiae.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Exonucleases/metabolism , Fluorouracil/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Trp/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism
15.
Am J Surg Pathol ; 48(4): 417-425, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37997470

ABSTRACT

OBJECTIVE: Immunohistochemistry is routinely performed to detect mismatch repair deficiency in solid tumors. Heterogeneous MMR expression (MMR-het) has been reported occasionally but not systemically studied. METHODS: In this study, we depicted MMR-het patterns of 40 tumors of different anatomical sites and analyzed MMR genetic alterations and tumor mutational burdens (TMB) through comprehensive genomic profiling. RESULTS: The MMR-het patterns were classified into 4 subgroups: "single-loss" (3 cases), "MLH1/PMS2 double-loss" (16 cases), "MSH2/MSH6 double-loss" (8 cases), and "triple/tetra-loss" (13 cases). Seventeen MMR-het cases exhibited histological heterogeneity, in which MMR protein loss was generally confined to either poorly differentiated or well-differentiated tumor areas. All "single-loss" tumors had MMR somatic mutations and coexisting POLE exonuclease domain mutations. "MLH1/PMS2 double-loss" tumors unexceptionally harbored MLH1 hypermethylation without MMR germline mutations. In the "MSH2/MSH6 double-loss" subgroup, 4 cases had MSH2/MSH6 germline mutations, while another 4 cases had multiple MSH2/MSH6 somatic mutations. Additional POLE exonuclease domain mutations were identified in 2 cases. Tumors in the "triple/tetra-loss" subgroup generally had MLH1 abnormalities (8 MLH1 hypermethylation, 4 MLH1 germline mutation, 1 MLH1 double somatic mutations), and coexistent somatic mutations on MSH2/MSH6 . Thirty-one cases (83.8%) were TMB-H, and all POLE -mutated cases exhibited ultra-high TMB (111.4 to 524.2 mut/Mb). CONCLUSION: Our findings highlighted the importance of accurately interpreting heterogeneous MMR protein staining patterns for developing a more efficient personalized genetic investigation strategy.


Subject(s)
Colorectal Neoplasms , DNA Mismatch Repair , Humans , Mismatch Repair Endonuclease PMS2/genetics , Mismatch Repair Endonuclease PMS2/metabolism , MutS Homolog 2 Protein/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Colorectal Neoplasms/pathology , Exonucleases/genetics , Exonucleases/metabolism , MutL Protein Homolog 1/genetics , MutL Protein Homolog 1/metabolism
16.
Nucleic Acids Res ; 52(4): 1878-1895, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38153123

ABSTRACT

The exonuclease ISG20L2 has been initially characterized for its role in the mammalian 5.8S rRNA 3' end maturation, specifically in the cleavage of ITS2 of 12S precursor ribosomal RNA (pre-rRNA). Here, we show that human ISG20L2 is also involved in 18S pre-rRNA maturation through removing the ITS1 region, and contributes to ribosomal biogenesis and cell proliferation. Furthermore, we determined the crystal structure of the ISG20L2 nuclease domain at 2.9 Å resolution. It exhibits the typical αßα fold of the DEDD 3'-5' exonuclease with a catalytic pocket located in the hollow near the center. The catalytic residues Asp183, Glu185, Asp267, His322 and Asp327 constitute the DEDDh motif in ISG20L2. The active pocket represents conformational flexibility in the absence of an RNA substrate. Using structural superposition and mutagenesis assay, we mapped RNA substrate binding residues in ISG20L2. Finally, cellular assays revealed that ISG20L2 is aberrantly up-regulated in colon adenocarcinoma and promotes colon cancer cell proliferation through regulating ribosome biogenesis. Together, these results reveal that ISG20L2 is a new enzymatic member for 18S pre-rRNA maturation, provide insights into the mechanism of ISG20L2 underlying pre-rRNA processing, and suggest that ISG20L2 is a potential therapeutic target for colon adenocarcinoma.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Animals , Humans , RNA, Ribosomal, 18S/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Adenocarcinoma/genetics , Colonic Neoplasms/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Ribosomes/genetics , Ribosomes/metabolism , RNA Processing, Post-Transcriptional , Exonucleases/genetics , Exonucleases/metabolism , RNA, Ribosomal, 5.8S/genetics , Mammals/genetics
17.
Anal Methods ; 16(3): 396-402, 2024 01 18.
Article in English | MEDLINE | ID: mdl-38131415

ABSTRACT

An electrochemical aptasensor for detecting lipopolysaccharides (LPS) was fabricated based on DNA-templated copper nanoparticles (DNA-CuNPs) and RecJf exonuclease-assisted target recycling. The DNA-CuNPs were synthesized on a double-stranded DNA template generated through the hybridization of the LPS aptamer and its complementary chain (cDNA). In the absence of LPS, the CuNPs were synthesized on DNA double-strands, and a strong readout corresponding to the CuNPs was achieved at 0.10 V (vs. SCE). In the presence of LPS, the fabricated aptamer could detach from the DNA double-strand to form a complex with LPS, disrupting the template for the synthesis of CuNPs on the electrode. Meanwhile, RecJf exonuclease could hydrolyze the cDNA together with this single-stranded aptamer, releasing the LPS for the next round of aptamer binding, thereby enabling target recycling amplification. As a result, the electrochemical signal decreased and could be used to indicate the LPS content. The fabricated electrochemical aptasensor exhibited an extensive dynamic working range of 0.01 pg mL-1 to 100 ng mL-1, and its detection limit was 6.8 fg mL-1. The aptasensor also exhibited high selectivity and excellent reproducibility. Moreover, the proposed aptasensor could be used in practical applications for the detection of LPS in human serum samples.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Humans , Exonucleases/chemistry , Exonucleases/metabolism , Lipopolysaccharides , Copper/chemistry , DNA, Complementary , Reproducibility of Results , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Electrochemical Techniques , DNA/chemistry , Metal Nanoparticles/chemistry
18.
Nat Commun ; 14(1): 8306, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097591

ABSTRACT

Replicative DNA polymerases duplicate entire genomes at high fidelity. This feature is shared among the three domains of life and is facilitated by their dual polymerase and exonuclease activities. Family D replicative DNA polymerases (PolD), found exclusively in Archaea, contain an unusual RNA polymerase-like catalytic core, and a unique Mre11-like proofreading active site. Here, we present cryo-EM structures of PolD trapped in a proofreading mode, revealing an unanticipated correction mechanism that extends the repertoire of protein domains known to be involved in DNA proofreading. Based on our experimental structures, mutants of PolD were designed and their contribution to mismatch bypass and exonuclease kinetics was determined. This study sheds light on the convergent evolution of structurally distinct families of DNA polymerases, and the domain acquisition and exchange mechanism that occurred during the evolution of the replisome in the three domains of life.


Subject(s)
DNA-Directed DNA Polymerase , Exonucleases , Exonucleases/genetics , Exonucleases/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA Replication/genetics , Catalytic Domain , Protein Domains
19.
Nat Commun ; 14(1): 8501, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38151585

ABSTRACT

DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase , Humans , DNA Replication/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , DNA/chemistry , Exonucleases/metabolism
20.
Methods Enzymol ; 691: 127-152, 2023.
Article in English | MEDLINE | ID: mdl-37914443

ABSTRACT

RNA decay serves as a crucial mechanism for maintaining cellular homeostasis and regulating gene expression. Large-scale analyses indicate that altered rates of decay contribute significantly to changes in mRNA levels, with up to half of these changes attributed to decay. The regulation of RNA decay is, at least in part, through structured RNA elements, especially in the non-coding regions of the mRNAs. The development of next-generation sequencing, and in vivo chemical probing techniques has allowed for unprecedented understanding of RNA folding in vivo and genome-wide. To explore the RNA structure elements that are responsible for RNA cleavage, we need to capture the RNA structure before cleavage. In this method, we introduce a new experimental procedure called CAP-STRUCTURE-seq, a modified STRUCTURE-Seq approach combining with the enrichment of in intact mRNAs by the use of terminator exonuclease treatment (5'-Phosphate-Dependent Exonuclease) that digests RNA containing 5-monophosphate ends. This approach is designed to investigate the RNA structure for these intact RNAs, providing a means to study the impact of RNA structure on RNA decay in greater detail. This method can provide insights into the function of RNA structure in RNA decay and help advance our understanding of biological processes.


Subject(s)
Exonucleases , RNA , RNA/genetics , RNA/chemistry , RNA, Messenger/genetics , RNA, Messenger/metabolism , Exonucleases/metabolism , RNA Stability , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL