Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.880
Filter
1.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38842023

ABSTRACT

One of the most prevalent axes of behavioral variation in both humans and animals is risk taking, where individuals that are more willing to take risk are characterized as bold while those that are more reserved are regarded as shy. Brain monoamines (i.e. serotonin, dopamine and noradrenaline) have been found to play a role in a variety of behaviors related to risk taking. Using zebrafish, we investigated whether there was a relationship between monoamine function and boldness behavior during exploration of a novel tank. We found a correlation between serotonin metabolism (5-HIAA:5-HT ratio) and boldness during the initial exposure to the tank in female animals. The DOPAC:DA ratio correlated with boldness behavior on the third day in male fish. There was no relationship between boldness and noradrenaline. To probe differences in serotonergic function in bold and shy fish, we administered a selective serotonin reuptake inhibitor, escitalopram, and assessed exploratory behavior. We found that escitalopram had opposing effects on thigmotaxis in bold and shy female animals: the drug caused bold fish to spend more time near the center of the tank and shy fish spent more time near the periphery. Taken together, our findings indicate that variation in serotonergic function has sex-specific contributions to individual differences in risk-taking behavior.


Subject(s)
Individuality , Serotonin , Zebrafish , Animals , Zebrafish/physiology , Zebrafish/metabolism , Female , Serotonin/metabolism , Male , Exploratory Behavior/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Citalopram/pharmacology , Behavior, Animal/drug effects , Risk-Taking , Dopamine/metabolism , Hydroxyindoleacetic Acid/metabolism
2.
Pharmacol Biochem Behav ; 241: 173792, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38806117

ABSTRACT

Formosan wood mice (Apodemus semotus) are endemic rodents in Taiwan. Recently Formosan wood mice exhibit similar locomotor behaviors in the laboratory environment as in the field environment has shown. Contemporaneously, Formosan wood mice have higher moving distances of and central dopaminergic (DAergic) activities than C57BL/6 mice in behavioral test. This study tried to compare the behavioral responses between male Formosan wood mice and male C57BL/6 mice in the light-dark exploration tests. We also measured the levels of DA and 3,4-dihydroxyphenylacetic acid (DOPAC), the primary metabolite of DA, to assess the dopaminergic activity of the medial prefrontal cortex, striatum, and nucleus accumbens. Our data show that Formosan wood mice revealed higher exploration and central DAergic activities than did C57BL/6 mice in the light-dark exploration tests, and diazepam (an anxiolytics) treatment reduced the exploratory activity and central dopaminergic activities in Formosan wood mice, but not in C57BL/6 mice. After repeated exposure to light-dark exploration tests, the latency to dark zone was increased, and the duration in light zone as well as the central DAergic activity were decreased in C57BL/6 mice. This study provides comparative findings; Formosan wood mice showed the higher exploratory activities than C57BL/6 mice did, and their central DAergic activities were related to the behavioral responses in these two mice. This could potentially shed light on the reasons behind the prevalence of higher exploration and central dopaminergic activities. Using Formosan wood mice as a model to study human diseases related to hyperactivity adds significant value to the potential research.


Subject(s)
Behavior, Animal , Dopamine , Exploratory Behavior , Mice, Inbred C57BL , Murinae , Animals , Male , Mice , Dopamine/metabolism , Exploratory Behavior/drug effects , Behavior, Animal/drug effects , 3,4-Dihydroxyphenylacetic Acid/metabolism , Diazepam/pharmacology , Anti-Anxiety Agents/pharmacology , Nucleus Accumbens/metabolism , Nucleus Accumbens/drug effects , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Motor Activity/drug effects
3.
Behav Brain Res ; 469: 115051, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38777263

ABSTRACT

Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Exploratory Behavior , Recognition, Psychology , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Male , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Rats , Receptor, Serotonin, 5-HT1A/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2A/drug effects , Motor Activity/drug effects , Motor Activity/physiology , Brain/metabolism , Brain/drug effects , Emotions/drug effects , Emotions/physiology , Serotonin 5-HT1 Receptor Agonists/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Rats, Wistar
4.
Nutrients ; 16(10)2024 May 18.
Article in English | MEDLINE | ID: mdl-38794765

ABSTRACT

In the process of validating the elevated zero maze, a common test of anxiety-like behavior, in our laboratory, we demonstrated an anxiolytic-like effect of castor oil and its primary component, ricinoleic acid. We tested the effects of vehicle and chlordiazepoxide in male mice in the elevated zero maze following a 30-min pretreatment time. Chlordiazepoxide is a United States Food and Drug Administration-approved drug that was previously shown to exert anxiolytic-like effects in both the elevated zero maze and elevated plus maze. Chlordiazepoxide was administered at doses of 5 or 10 mg/kg. We used 5% polyoxyl 35 castor oil (Kolliphor® EL) and saline as treatment vehicles and found that the effect of chlordiazepoxide on open zone occupancy and open zone entries was blunted when 5% Kolliphor was used as the vehicle. These tests demonstrated that chlordiazepoxide increased open zone occupancy and entries in the elevated zero maze more effectively when saline was used as the treatment vehicle and that Kolliphor dampened the anxiolytic-like effect of chlordiazepoxide when it was used as the treatment vehicle. Notably, 5% Kolliphor alone slightly increased baseline open zone occupancy and entries. Given that Kolliphor is a derivative of castor oil, we next tested the effect of 5% castor oil and 5% ricinoleic acid, which is a major component of castor oil. We found that both castor oil and ricinoleic acid increased open zone occupancy but not entries compared with saline. Altogether, our findings demonstrate that Kolliphor, castor oil, and ricinoleic acid may exert anxiolytic-like effects in male mice in the elevated zero maze. This potential anxiolytic-like effect of castor oil is consistent with its well-established beneficial effects, including anti-inflammatory, antioxidant, antifungal, and pain-relieving properties.


Subject(s)
Anti-Anxiety Agents , Anxiety , Castor Oil , Ricinoleic Acids , Animals , Ricinoleic Acids/pharmacology , Anti-Anxiety Agents/pharmacology , Male , Mice , Anxiety/drug therapy , Behavior, Animal/drug effects , Chlordiazepoxide/pharmacology , Maze Learning/drug effects , Exploratory Behavior/drug effects
5.
Physiol Behav ; 280: 114550, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38614416

ABSTRACT

Neuroinflammation in the early postnatal period can disturb trajectories of the completion of normal brain development and can lead to mental illnesses, such as depression, anxiety disorders, and personality disorders later in life. In our study, we focused on evaluating short- and long-term effects of neonatal inflammation induced by lipopolysaccharide, poly(I:C), or their combination in female and male C57BL/6 and BTBR mice. We chose the BTBR strain as potentially more susceptible to neonatal inflammation because these mice have behavioral, neuroanatomical, and physiological features of autism spectrum disorders, an abnormal immune response, and several structural aberrations in the brain. Our results indicated that BTBR mice are more sensitive to the influence of the neonatal immune activation (NIA) on the formation of neonatal reflexes than C57BL/6 mice are. In these experiments, the injection of lipopolysaccharide had an effect on the formation of the cliff aversion reflex in female BTBR mice. Nonetheless, NIA had no delayed effects on either social behavior or anxiety-like behavior in juvenile and adolescent BTBR and C57BL/6 mice. Altogether, our data show that NIA has mimetic-, age-, and strain-dependent effects on the development of neonatal reflexes and on exploratory activity in BTBR and C57BL/6 mice.


Subject(s)
Animals, Newborn , Inflammation , Lipopolysaccharides , Mice, Inbred C57BL , Poly I-C , Animals , Female , Lipopolysaccharides/pharmacology , Male , Mice , Inflammation/chemically induced , Poly I-C/pharmacology , Anxiety/chemically induced , Social Behavior , Disease Models, Animal , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Behavior, Animal/drug effects , Behavior, Animal/physiology , Reflex/physiology , Reflex/drug effects
6.
Neurotoxicology ; 102: 68-80, 2024 May.
Article in English | MEDLINE | ID: mdl-38599288

ABSTRACT

Melamine-tainted products have been found in the market and raised issues about food safety. Recent studies done in rodents and humans demonstrated the toxicities of melamine, especially in causing kidney damage and bladder stone formation. However, very few studies assessed its behavior toxicity in organisms, including fish. Therefore, in this study, the researchers aim to determine whether sub-chronic exposure to melamine via oral and systematic administration could induce behavioral abnormality in zebrafish. After 14 days of systematic exposure to melamine at doses of 0.1 and 10 ppm levels, zebrafish were subjected to multiple behavioral assays. Results from both exposure routes showed that melamine indeed slightly increased fish locomotion and altered their exploratory behaviors in the novel tank assay. Furthermore, tightened shoaling formation was also displayed by the treated fish in the waterborne exposure group. However, melamine exposure did not cause any obvious alterations in fish behaviors during other behavioral tests. In addition, in comparison with previously published data on the behavior toxicities of several solvents in zebrafish, our phenomic analysis suggests the relatively low behavior toxicities of melamine via either systematic exposure or oral administration to zebrafish compared to those solvents. Nevertheless, our data indicate that the potential neurotoxicity of chronic low-dose melamine should not be ignored.


Subject(s)
Behavior, Animal , Triazines , Zebrafish , Animals , Triazines/toxicity , Triazines/administration & dosage , Behavior, Animal/drug effects , Administration, Oral , Locomotion/drug effects , Exploratory Behavior/drug effects , Dose-Response Relationship, Drug , Male
7.
Physiol Behav ; 281: 114549, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604593

ABSTRACT

Maternal exposure to elevated levels of steroid hormones during pregnancy is associated with the development of chronic conditions in offspring that manifest in adulthood. However, the effects of progesterone (P4) administration during early pregnancy on fetal development and subsequent offspring behavior remain poorly understood. In this study, we aimed to investigate the effects of P4 treatment during early pregnancy on the transcript abundance in the fetal brain and assess the behavioral consequences in the offspring during adolescence and adulthood. Using RNA-seq analysis, we examined the impact of P4 treatment on the fetal brain transcriptome in a dosage-dependent manner. Our results revealed differential regulation of genes involved in neurotransmitter transport, synaptic transmission, and transcriptional regulation. Specifically, we observed bidirectional regulation of transcription factors (TFs) by P4 at different doses, highlighting the critical role of these TFs in neurodevelopment. To assess behavioral outcomes, we conducted open field and elevated plus maze tests. Offspring treated with low-dose P4 (LP4) displayed increased exploratory behavior during both adolescence and adulthood. In contrast, the high-dose P4 (HP4) group exhibited impaired exploration and heightened anxiety-like behaviors compared to the control mice. Moreover, in a novel object recognition test, HP4-treated offspring demonstrated impaired object recognition memory during both developmental stages. Additionally, both LP4 and HP4 groups showed reduced social interaction in the three-chamber test. These results suggest that prenatal exposure to P4 exerts a notable influence on the expression of genes associated with neurodevelopment and may induce alterations in behavioral characteristics in progeny, highlighting the need to monitor progesterone levels during pregnancy for long-term impacts on fetal brain development and behavior.


Subject(s)
Behavior, Animal , Brain , Exploratory Behavior , Prenatal Exposure Delayed Effects , Progesterone , Transcriptome , Animals , Pregnancy , Progesterone/pharmacology , Female , Prenatal Exposure Delayed Effects/metabolism , Brain/drug effects , Brain/metabolism , Brain/growth & development , Mice , Transcriptome/drug effects , Male , Behavior, Animal/drug effects , Exploratory Behavior/drug effects , Anxiety , Mice, Inbred C57BL , Recognition, Psychology/drug effects , Progestins/pharmacology
8.
Physiol Behav ; 280: 114529, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38555006

ABSTRACT

Early-life stress and subsequent high-calorie diets during adolescence are known to be risk factors for developing metabolic and psychological disorders. Although non-nutritive sweeteners such as stevia and sucralose have been a useful alternative to reduce sugar consumption, the effects of prolonged consumption of these sweeteners on metabolism and behavior in adolescents remain unclear. Here, we evaluated the effects of early-stress followed by access to stevia or sucralose during adolescence on weight gain, glycemia, and anxiety-related behaviors in male and female rats. During postnatal days (PNDs) 1-21, pups were separated twice a day, for 180 min each time, from their dam nest while non-separated pups served as controls. The pups were weaned, separated by sex and randomly distributed into the stevia, sucralose and water conditions. During PNDs 26-50, two bottles containing water and stevia or sucralose were placed in the animal home-cages, and body weight and blood glucose measures were scored. On PNDs 50 and 51, behavioral measures were obtained in the open-field test. Results showed that male rats consuming stevia reduced body weight gain, blood glucose and increased locomotion. Early-stress led to low blood glucose and alterations in anxiety and locomotion-related behaviors in a sex-dependent manner. Moreover, sucralose access during adolescence reversed the effects of early-stress on anxiety-related behaviors in female rats. The results suggest that the consumption of stevia and sucralose could be an alternative for the replacement of sugar-sweetened beverages, especially in adolescents who have had adverse early-life experiences.


Subject(s)
Anxiety , Blood Glucose , Stevia , Stress, Psychological , Sucrose , Sucrose/analogs & derivatives , Sweetening Agents , Weight Gain , Animals , Female , Male , Sucrose/pharmacology , Weight Gain/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Sweetening Agents/pharmacology , Rats , Animals, Newborn , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Sex Characteristics , Rats, Wistar
9.
Mol Psychiatry ; 29(2): 342-347, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38102481

ABSTRACT

Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders mainly characterized by deficient sociability and repetitive behaviors. Effective treatment for the core symptoms of ASD is still lacking. Behavioral interventions show limited effectiveness, while pharmacotherapy focuses on the amelioration of secondary symptomatology. Oxytocin (OXT) is a neuropeptide known for its prosocial impact, making it a candidate drug for ASD treatment. Its alleviating effect has been and still is widely researched, but outcomes reported by clinical studies are ambiguous. We examined the effect of daily intranasal OXT (0.8 IU/kg) administration for 4 weeks on the ASD-like phenotype in Shank3-/- adult mice. Animals treated with OXT spent twice as much time interacting with the social partner as early as after 2 weeks of treatment. Furthermore, OXT-treated mice exhibited reduced explorative behavior by 50%, after 4 weeks of treatment, and a 30% reduction in repetitive behavior, 4 weeks after treatment termination. One-fold higher sociability and 30% reduced exploration due to OXT lasted up to 4 weeks following the treatment termination. However, social disinterest was elevated by roughly 10% as well, indicating a form of social ambivalence. Obtained results support the therapeutic potential of intranasally administered OXT in alleviating social shortfalls in a genetic model of ASD. Subsequent research is necessary to elucidate the benefits and risks of the long-term OXT administration, as well as its applicability in other ASD models and the potential treatment effect on social communication, which was not measured in the present study.


Subject(s)
Administration, Intranasal , Autism Spectrum Disorder , Disease Models, Animal , Mice, Knockout , Oxytocin , Social Behavior , Animals , Oxytocin/administration & dosage , Oxytocin/pharmacology , Administration, Intranasal/methods , Mice , Male , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/genetics , Nerve Tissue Proteins/genetics , Autistic Disorder/genetics , Autistic Disorder/drug therapy , Exploratory Behavior/drug effects , Microfilament Proteins/genetics , Behavior, Animal/drug effects , Mice, Inbred C57BL
10.
Neurobiol Learn Mem ; 192: 107637, 2022 07.
Article in English | MEDLINE | ID: mdl-35598825

ABSTRACT

Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder. Since it is not yet known whether MPH can be administered in childhood without consequences in adulthood, in the present study we proposed to investigate the effects of chronic early treatment with MPH after a long period of discontinuation. Wistar male rats were injected with MPH (2 mg/kg, intraperitoneally) or saline solution once daily from 15th to 44th day of life. Two months after the last MPH administration, we evaluated the animal's performances on a battery of behavior tests. We also tested Na+,K+-ATPase and acetylcholinesterase activities in prefrontal cortex and hippocampus, which may be associated with behavior. Rats treated with MPH during peri-adolescence show changes in exploratory behavior in adulthood in the open field but not in the elevated plus maze and light-dark transition tests. MPH-treated rats showed a lower latency to find the platform in the training phase, as well as a better performance in the test phase in the Morris water maze test. No differences were observed in the object recognition index and working memory. Acetylcholinesterase was increased in prefrontal cortex and hippocampus, while Na+,K+-ATPase was increased only in hippocampus. These findings provide additional evidence that early-life exposure to MPH can have complex effects in adulthood and new basis for understanding the behavioral and neurochemical consequences associated with chronic use of MPH during the development of central nervous system.


Subject(s)
Central Nervous System Stimulants , Exploratory Behavior , Methylphenidate , Sodium-Potassium-Exchanging ATPase , Animals , Central Nervous System Stimulants/pharmacology , Exploratory Behavior/drug effects , Hippocampus/drug effects , Hippocampus/enzymology , Male , Methylphenidate/pharmacology , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism
11.
Pharmacol Biochem Behav ; 215: 173363, 2022 04.
Article in English | MEDLINE | ID: mdl-35227734

ABSTRACT

Serotonin(5-HT)ergic projections run from the raphe nuclei to dopamin(DA)ergic cells in substantia nigra/ventral tegmental area (SN/VTA) and to the terminal fields of DA neurons in nucleus accumbens, caudateputamen and neocortex. In the present studies, we assessed the effect of the 5-HT1A receptor (R) antagonist N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarbox-amide maleate (WAY-100635) on motor and exploratory behaviors and on D2/3R binding in the rat brain with in vivo imaging methods. D2/3R binding was determined in the same animals after systemic application of WAY-100635 (0.4 mg/kg) and 0.9% saline (SAL), respectively, with [123I]IBZM as SPECT ligand. Anatomical information for the delineation of the target regions was obtained with dedicated small animal MRI. Immediately after treatment with WAY-100635 or SAL, motor/exploratory behaviors were assessed for 30 min in two different batches of animals in an open field. WAY-100635 reduced D2/3R binding in caudateputamen, thalamus, frontal cortex, parietal cortex and ventral hippocampus relative to SAL. Network analysis of regional binding data after WAY-100635 yielded positive connections between (1) caudateputamen and substantia nigra/ventral tegmental area, (2) caudateputamen and ventral hippocampus, (3) substantia nigra/ventral tegmental area and parietal cortex, (4) thalamus and dorsal hippocampus and (5) frontal cortex and parietal cortex, which were not present after SAL. Moreover, WAY-100635 decreased parameters of motor activity (overall activity, ambulation duration and frequency) but increased the duration of grooming behavior relative to SAL. The effect on exploration was time-dependent with an early increase and a subsequent decrease of behavioral parameters (rearing duration and frequency, frequency of head-shoulder motility). For WAY-100635, findings imply a region-specificity as well as a time-dependency of DAergic action.


Subject(s)
Dopamine , Exploratory Behavior , Piperazines , Serotonin 5-HT1 Receptor Antagonists , Animals , Dopamine/metabolism , Exploratory Behavior/drug effects , Piperazines/pharmacology , Pyridines , Rats , Receptor, Serotonin, 5-HT1A , Serotonin 5-HT1 Receptor Antagonists/pharmacology
12.
Toxicology ; 465: 153033, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34774662

ABSTRACT

Chronic exposure to aluminium (Al) can contribute to the progression of several neurological and neurodegenerative diseases. Al is a metal that promotes oxidative damage leading to neuronal death in different brain regions with behavior, cognition, and memory deficits. Chrysin is a flavonoid found mainly in honey, passion fruit, and propolis with antioxidant, anti-inflammatory, and cytoprotective properties. In this study, we used an integrated approach of in vitro and in vivo studies to evaluate the antioxidant and neuroprotective effects of chrysin against the neurotoxicity elicited by aluminium chloride (AlCl3). In in vitro studies, chrysin (5 µM) showed the ability to counteract the early oxidative stress elicited by tert-butyl hydroperoxide, an oxidant that mimics the lipid peroxidation and Fenton reaction in presence of AlCl3 as well as the late necrotic death triggered by AlCl3 in neuronal SH-SY5Y cells. In vivo studies in a mouse model of neurotoxicity induced by chronic exposure to AlCl3 (100 mg/kg/day) for ninety days then corroborated the antioxidant and neuroprotective effect of chrysin (10, 30, and 100 mg/kg/day) using the oral route. In particular, chrysin reduced the cognitive impairment induced by AlCl3 as well as normalized the acetylcholinesterase and butyrylcholinesterase activities in the hippocampus. In parallel, chrysin counteracted the oxidative damage, in terms of lipid peroxidation, protein carbonylation, catalase, and superoxide dismutase impairment, in the brain cortex and hippocampus. Lastly, necrotic cells frequency in the same brain regions was also decreased by chrysin. These results highlight the ability of chrysin to prevent the neurotoxic effects associated with chronic exposure to Al and suggest its potential use as a food supplement for brain health.


Subject(s)
Brain/drug effects , Flavonoids/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Acetylcholinesterase/metabolism , Aluminum Chloride , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Butyrylcholinesterase/metabolism , Cell Line, Tumor , Disease Models, Animal , Exploratory Behavior/drug effects , GPI-Linked Proteins/metabolism , Humans , Inflammation Mediators/metabolism , Lipid Peroxidation/drug effects , Locomotion/drug effects , Male , Mice , Necrosis , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Oxidative Stress/drug effects , Protein Carbonylation/drug effects , THP-1 Cells
13.
Behav Brain Res ; 418: 113664, 2022 02 10.
Article in English | MEDLINE | ID: mdl-34780858

ABSTRACT

Recreational abuse of solvents continues, despite cyclohexane (CHX) is used as a safe replacement in gasoline or adhesive formulations. Increasing evidence indicates that CHX inhalation affects brain functioning; however, scanty information is available about its effects on behavior and brain activity upon drug removal. In this study, we used CD1 adult mice to mimic an intoxication period of recreational drugs for 30 days. During the CHX exposure (~30,000 ppm), we analyzed exploratory and biphasic behaviors, stereotypic circling, and locomotion. After CHX removal (24 h or a month later), we assessed anxiety-like behaviors and quantified c-Fos cells in motor- and anxiety-related brain regions. Our findings indicate that the repeated inhalation of CHX produced steady hyperactivity and reduced ataxia, sedation, and seizures as the exposure to CHX progressed. Also, CHX decreased grooming and rearing behaviors. In the first week of CHX inhalation, a stereotypic circling behavior emerged, and locomotion increased gradually. One month after CHX withdrawal, mice showed low activity in the center zone of the open field and more buried marbles. Twenty-four hours after CHX removal, c-Fos expression was low in the dorsal striatum, ventral striatum, motor cortex, dorsomedial prefrontal cortex, basolateral amygdala, lateral hypothalamus, and ventral hippocampus. One month later, c-Fos expression remained low in the ventral striatum and lateral hypothalamus but increased in the dorsomedial prefrontal cortex and primary motor cortex. This study provides a comprehensive behavioral characterization and novel histological evidence of the CHX effects on the brain when is administered in a recreational-like mode.


Subject(s)
Anxiety/physiopathology , Cyclohexanes , Exploratory Behavior/drug effects , Hyperkinesis/physiopathology , Inhalation Exposure/adverse effects , Locomotion/drug effects , Animals , Cyclohexanes/metabolism , Cyclohexanes/pharmacology , Genes, fos/genetics , Male , Mice , Motor Cortex/metabolism , Prefrontal Cortex/metabolism , Ventral Striatum/metabolism
14.
Nat Commun ; 12(1): 6945, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34836948

ABSTRACT

Long-term exposure to nicotine alters brain circuits and induces profound changes in decision-making strategies, affecting behaviors both related and unrelated to drug seeking and consumption. Using an intracranial self-stimulation reward-based foraging task, we investigated in mice the impact of chronic nicotine on midbrain dopamine neuron activity and its consequence on the trade-off between exploitation and exploration. Model-based and archetypal analysis revealed substantial inter-individual variability in decision-making strategies, with mice passively exposed to nicotine shifting toward a more exploitative profile compared to non-exposed animals. We then mimicked the effect of chronic nicotine on the tonic activity of dopamine neurons using optogenetics, and found that photo-stimulated mice adopted a behavioral phenotype similar to that of mice exposed to chronic nicotine. Our results reveal a key role of tonic midbrain dopamine in the exploration/exploitation trade-off and highlight a potential mechanism by which nicotine affects the exploration/exploitation balance and decision-making.


Subject(s)
Exploratory Behavior/drug effects , Mesencephalon/drug effects , Nicotine/adverse effects , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Exploratory Behavior/physiology , Male , Mesencephalon/cytology , Mesencephalon/metabolism , Mice , Models, Animal , Nicotine/administration & dosage , Optogenetics , Prejudice , Reward , Self Administration , Stereotaxic Techniques
15.
Cells ; 10(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34831102

ABSTRACT

Loss of myofibers during muscle atrophy affects functional capacity and quality of life. Dexamethasone, an inducer of rapid atrophy of skeletal myofibers, has been studied as a glucocorticoid receptor in muscle atrophy or motor neurodegeneration. In this study, we examined dexamethasone-induced muscle atrophy using zebrafish (Danio rerio), a vertebrate model, and assessed whether administration of Lepidium meyenii (maca) as a dietary supplement can prevent muscle atrophy. Changes in skeletal myofibers in zebrafish were evaluated after exposure to dexamethasone for different periods and at different concentrations. Under optimized conditions, zebrafish pre-fed with maca for 3 days were exposed to 0.01% dexamethasone for 1 h/day for 7 days. Thereafter, myofiber loss, damaged muscle contractile proteins, and abnormal exploratory behavior due to the structural and functional impairment of skeletal muscle associated with muscle atrophy were investigated using hematoxylin-eosin, immunofluorescence staining, and behavioral analyses. Our findings suggest that dexamethasone induces muscle atrophy in zebrafish, inhibiting exploratory behavior by inducing myofiber loss, inhibiting muscle contraction, and causing changes in endurance and velocity. Thus, the zebrafish model can be used to screen pharmaceutical agents and to study muscle atrophy. Furthermore, maca is a potential dietary supplement to prevent muscle atrophy, as it protects muscle fibers.


Subject(s)
Dexamethasone/adverse effects , Lepidium/chemistry , Muscular Atrophy/chemically induced , Muscular Atrophy/prevention & control , Plant Extracts/therapeutic use , Animals , Behavior, Animal/drug effects , Disease Models, Animal , Exploratory Behavior/drug effects , Muscle Contraction/drug effects , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/pathology , Muscle Proteins/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Plant Extracts/pharmacology , Swimming/physiology , Zebrafish
16.
Biochem Biophys Res Commun ; 585: 1-7, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34781055

ABSTRACT

Recent epidemiological and intervention studies have suggested that polyphenol-rich plant food consumption reduced the risk of cognitive decline. However, the findings were tentative and by no means definitive. In the present study, we examined the impact of short-term oral administration of cinnamtannin A2 (A2), an (-)-epicatechin tetramer, on adult hippocampal neurogenesis and cognitive function in mice. Mice received supplementation with vehicle (20% glycerol) or 100 µg/kg A2 for 10 days. Then, we conducted the open field test, the object location test, and the novel object test. In the open field test, the A2-treated group tended to spend more time in the center of the arena, compared to the vehicle-treated group. The A2-treated group spent significantly more time exploring objects placed in different locations, compared to the vehicle-treated group. There were no significant differences between groups in the object preference index or in the novel object test. In addition, A2 administration significantly increased the number of hippocampal bromodeoxyuridine-labeled cells in the dentate gyrus, but not in the CA1 or CA3 regions. These results suggested that short-term administration of A2 may impact spatial memory by enhancing neurogenesis in the dentate gyrus of adult mice.


Subject(s)
Anthocyanins/pharmacology , Catechin/pharmacology , Hippocampus/drug effects , Neurogenesis/drug effects , Spatial Memory/drug effects , Administration, Oral , Animals , Anthocyanins/administration & dosage , Anthocyanins/chemistry , Bromodeoxyuridine/metabolism , Catechin/administration & dosage , Catechin/chemistry , Dentate Gyrus/cytology , Dentate Gyrus/metabolism , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Hippocampus/cytology , Hippocampus/physiology , Mice, Inbred C57BL , Molecular Structure , Motor Activity/drug effects , Motor Activity/physiology , Spatial Memory/physiology , Time Factors
17.
Neurochem Int ; 151: 105213, 2021 12.
Article in English | MEDLINE | ID: mdl-34673172

ABSTRACT

We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.


Subject(s)
Hippocampus/metabolism , Myelin Proteins/metabolism , Receptor, Serotonin, 5-HT1A/drug effects , Stress, Physiological/physiology , Animals , Exploratory Behavior/drug effects , Hippocampus/drug effects , Hippocampus/pathology , Male , Mice , Oligodendroglia/metabolism , Receptor, Serotonin, 5-HT1A/metabolism , Restraint, Physical/physiology , Serotonin Receptor Agonists/pharmacology , Stress, Physiological/drug effects , Stress, Psychological/metabolism
18.
Elife ; 102021 10 26.
Article in English | MEDLINE | ID: mdl-34696824

ABSTRACT

Acetylcholine (ACh), released in the hippocampus from fibers originating in the medial septum/diagonal band of Broca (MSDB) complex, is crucial for learning and memory. The CA2 region of the hippocampus has received increasing attention in the context of social memory. However, the contribution of ACh to this process remains unclear. Here, we show that in mice, ACh controls social memory. Specifically, MSDB cholinergic neurons inhibition impairs social novelty discrimination, meaning the propensity of a mouse to interact with a novel rather than a familiar conspecific. This effect is mimicked by a selective antagonist of nicotinic AChRs delivered in CA2. Ex vivo recordings from hippocampal slices provide insight into the underlying mechanism, as activation of nAChRs by nicotine increases the excitatory drive to CA2 principal cells via disinhibition. In line with this observation, optogenetic activation of cholinergic neurons in MSDB increases the firing of CA2 principal cells in vivo. These results point to nAChRs as essential players in social novelty discrimination by controlling inhibition in the CA2 region.


Subject(s)
Antipsychotic Agents/pharmacology , CA2 Region, Hippocampal/physiology , Cholinergic Neurons/physiology , Clozapine/analogs & derivatives , Exploratory Behavior/drug effects , Receptors, Nicotinic/metabolism , Social Interaction/drug effects , Animals , CA2 Region, Hippocampal/drug effects , Clozapine/pharmacology , Diagonal Band of Broca/drug effects , Diagonal Band of Broca/metabolism , Male , Mice , Social Behavior
19.
Molecules ; 26(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34500787

ABSTRACT

The cannabis-derived molecules, ∆9 tetrahydrocannabinol (THC) and cannabidiol (CBD), are both of considerable therapeutic interest for a variety of purposes, including to reduce pain and anxiety and increase sleep. In addition to their other pharmacological targets, both THC and CBD are competitive inhibitors of the equilibrative nucleoside transporter-1 (ENT-1), a primary inactivation mechanism for adenosine, and thereby increase adenosine signaling. The goal of this study was to examine the role of adenosine A2A receptor activation in the effects of intraperitoneally administered THC alone and in combination with CBD or PECS-101, a 4'-fluorinated derivative of CBD, in the cannabinoid tetrad, elevated plus maze (EPM) and marble bury assays. Comparisons between wild-type (WT) and A2AR knock out (A2AR-KO) mice were made. The cataleptic effects of THC were diminished in A2AR-KO; no other THC behaviors were affected by A2AR deletion. CBD (5 mg/kg) potentiated the cataleptic response to THC (5 mg/kg) in WT but not A2AR-KO. Neither CBD nor THC alone affected EPM behavior; their combination produced a significant increase in open/closed arm time in WT but not A2AR-KO. Both THC and CBD reduced the number of marbles buried in A2AR-KO but not WT mice. Like CBD, PECS-101 potentiated the cataleptic response to THC in WT but not A2AR-KO mice. PECS-101 also reduced exploratory behavior in the EPM in both genotypes. These results support the hypothesis that CBD and PECS-101 can potentiate the cataleptic effects of THC in a manner consistent with increased endogenous adenosine signaling.


Subject(s)
Cannabidiol/pharmacology , Dronabinol/pharmacology , Receptor, Adenosine A2A/metabolism , Animals , Cannabidiol/analogs & derivatives , Dronabinol/administration & dosage , Exploratory Behavior/drug effects , Injections, Intraperitoneal , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptor, Adenosine A2A/deficiency
20.
Int J Mol Sci ; 22(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34502414

ABSTRACT

Depression is the most frequent affective disorder and is the leading cause of disability worldwide. In order to screen antidepressants and explore molecular mechanisms, a variety of animal models were used in experiments, but there is no reliable high-throughput screening method. Zebrafish is a common model organism for mental illness such as depression. In our research, we established chronic unpredictable mild stress (CUMS) models in C57BL/6 mice and zebrafish; the similarities in behavior and pathology suggest that zebrafish can replace rodents as high-throughput screening organisms. Stress mice (ip., 1 mg/kg/d, 3 days) and zebrafish (10 mg/L, 20 min) were treated with reserpine. As a result, reserpine caused depression-like behavior in mice, which was consistent with the results of the CUMS mice model. Additionally, reserpine reduced the locomotor ability and exploratory behavior of zebrafish, which was consistent with the results of the CUMS zebrafish model. Further analysis of the metabolic differences showed that the reserpine-induced zebrafish depression model was similar to the reserpine mice model and the CUMS mice model in the tyrosine metabolism pathway. The above results showed that the reserpine-induced depression zebrafish model was similar to the CUMS model from phenotype to internal metabolic changes and can replace the CUMS model for antidepressants screening. Moreover, the results from this model were obtained in a short time, which can shorten the cycle of drug screening and achieve high-throughput screening. Therefore, we believe it is a reliable high-throughput screening model.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal/drug effects , Depression , Exploratory Behavior/drug effects , Locomotion/drug effects , Stress, Psychological , Animals , Depression/chemically induced , Depression/drug therapy , Depression/physiopathology , Disease Models, Animal , Drug Evaluation, Preclinical , Male , Mice , Reserpine/adverse effects , Reserpine/pharmacology , Stress, Psychological/chemically induced , Stress, Psychological/drug therapy , Stress, Psychological/physiopathology , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...