Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 48.740
1.
J Cell Mol Med ; 28(11): e18476, 2024 Jun.
Article En | MEDLINE | ID: mdl-38842136

Osteoarthritis (OA) is a complicated disease that involves apoptosis and mitophagy. MST1 is a pro-apoptotic factor. Hence, decreasing its expression plays an anti-apoptotic effect. This study aims to investigate the protective effect of MST1 inhibition on OA and the underlying processes. Immunofluorescence (IF) was used to detect MST1 expression in cartilage tissue. Western Blot, ELISA and IF were used to analyse the expression of inflammation, extracellular matrix (ECM) degradation, apoptosis and mitophagy-associated proteins. MST1 expression in chondrocytes was inhibited using siRNA and shRNA in vitro and in vivo. Haematoxylin-Eosin, Safranin O-Fast Green and alcian blue staining were used to evaluate the therapeutic effect of inhibiting MST1. This study discovered that the expression of MST1 was higher in OA patients. Inhibition of MST1 reduced inflammation, ECM degradation and apoptosis and enhanced mitophagy in vitro. MST1 inhibition slows OA progression in vivo. Inhibiting MST1 suppressed apoptosis, inflammation and ECM degradation via promoting Parkin-mediated mitophagy and the Nrf2-NF-κB axis. The results suggest that MST1 is a possible therapeutic target for the treatment of osteoarthritis as its inhibition delays the progression of OA through the Nrf2-NF-κB axis and mitophagy.


Apoptosis , Chondrocytes , Disease Progression , Mitophagy , NF-E2-Related Factor 2 , NF-kappa B , Osteoarthritis , Signal Transduction , Ubiquitin-Protein Ligases , Osteoarthritis/metabolism , Osteoarthritis/pathology , Osteoarthritis/genetics , Mitophagy/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NF-kappa B/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Animals , Chondrocytes/metabolism , Chondrocytes/pathology , Apoptosis/genetics , Male , Mice , Extracellular Matrix/metabolism , Gene Knockdown Techniques , Inflammation/pathology , Inflammation/metabolism , Inflammation/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins
2.
BMC Musculoskelet Disord ; 25(1): 447, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844896

BACKGROUND: Although various anti-inflammatory medicines are widely recommended for osteoarthritis (OA) treatment, no significantly clinical effect has been observed. This study aims to examine the effects of vitamin B6, a component that has been reported to be capable of alleviating inflammation and cell death in various diseases, on cartilage degeneration in OA. METHODS: Collagen-induced arthritis (CIA) mice model were established and the severity of OA in cartilage was determined using the Osteoarthritis Research Society International (OARSI) scoring system. The mRNA and protein levels of indicators associated with extracellular matrix (ECM) metabolism, apoptosis and inflammation were detected. The effect of vitamin B6 (VB6) on the mice were assessed using HE staining and masson staining. The apoptosis rate of cells was assessed using TdT-mediated dUTP nick end labeling. RESULTS: Our results showed a trend of improved OARSI score in mice treated with VB6, which remarkably inhibited the hyaline cartilage thickness, chondrocyte disordering, and knees hypertrophy. Moreover, the VB6 supplementation reduced the protein expression of pro-apoptosis indicators, including Bax and cleaved caspase-3 and raised the expression level of anti-apoptosis marker Bcl-2. Importantly, VB6 improved ECM metabolism in both in vivo and in vitro experiments. CONCLUSIONS: This study demonstrated that VB6 alleviates OA through regulating ECM metabolism, inflammation and apoptosis in chondrocytes and CIA mice. The findings in this study provide a theoretical basis for targeted therapy of OA, and further lay the theoretical foundation for studies of mechanisms of VB6 in treating OA.


Apoptosis , Arthritis, Experimental , Chondrocytes , Inflammation , Osteoarthritis , Vitamin B 6 , Animals , Apoptosis/drug effects , Mice , Vitamin B 6/pharmacology , Vitamin B 6/therapeutic use , Osteoarthritis/drug therapy , Osteoarthritis/pathology , Osteoarthritis/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/pathology , Arthritis, Experimental/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Male , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Mice, Inbred DBA , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Extracellular Matrix/pathology , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Cartilage, Articular/metabolism
3.
Adipocyte ; 13(1): 2360037, 2024 Dec.
Article En | MEDLINE | ID: mdl-38829527

As a mechanically condensed product of Coleman fat, extracellular matrix/stromal vascular fraction gel (ECM/SVF-gel) eliminates adipocytes, concentrates SVF cells, and improves fat graft retention. This study aims to compare SVF cell composition between Coleman fat and ECM/SVF-gel. Matched Coleman fat and ECM/SVF-gel of 28 healthy women were subjected to RNA-seq, followed by functional enrichment and cell-type-specific enrichment analyses, and deconvolution of SVF cell subsets, reconstructing SVF cell composition in the transcriptome level. ECM/SVF-gels had 9 upregulated and 73 downregulated differentially expressed genes (DEGs). Downregulated DEGs were mainly associated with inflammatory and immune responses, and enriched in fat macrophages. M2 macrophages, resting CD4+ memory T cells, M1 macrophages, resting mast cells, and M0 macrophages ranked in the top five most prevalent immune cells in the two groups. The proportions of the principal non-immune cells (e.g., adipose-derived stem cells, pericytes, preadipocytes, microvascular endothelial cells) had no statistical differences between the two groups. Our findings reveal ECM/SVF-gels share the same dominant immune cells beneficial to fat graft survival with Coleman fat, but exhibiting obvious losses of immune cells (especially macrophages), while non-immune cells necessary for adipose regeneration might have no significant loss in ECM/SVF-gels and their biological effects could be markedly enhanced by the ECM/SVF-gel's condensed nature.


Adipose Tissue , Extracellular Matrix , Stromal Vascular Fraction , Humans , Female , Extracellular Matrix/metabolism , Adipose Tissue/metabolism , Adipose Tissue/cytology , Stromal Vascular Fraction/metabolism , Adult , Macrophages/metabolism , Macrophages/immunology , Adipocytes/metabolism , Adipocytes/cytology , Gels , Transcriptome
4.
Sci Rep ; 14(1): 10524, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719976

Extracellular matrix diseases like fibrosis are elusive to diagnose early on, to avoid complete loss of organ function or even cancer progression, making early diagnosis crucial. Imaging the matrix densities of proteins like collagen in fixed tissue sections with suitable stains and labels is a standard for diagnosis and staging. However, fine changes in matrix density are difficult to realize by conventional histological staining and microscopy as the matrix fibrils are finer than the resolving capacity of these microscopes. The dyes further blur the outline of the matrix and add a background that bottlenecks high-precision early diagnosis of matrix diseases. Here we demonstrate the multiple signal classification method-MUSICAL-otherwise a computational super-resolution microscopy technique to precisely estimate matrix density in fixed tissue sections using fibril autofluorescence with image stacks acquired on a conventional epifluorescence microscope. We validated the diagnostic and staging performance of the method in extracted collagen fibrils, mouse skin during repair, and pre-cancers in human oral mucosa. The method enables early high-precision label-free diagnosis of matrix-associated fibrotic diseases without needing additional infrastructure or rigorous clinical training.


Microscopy, Fluorescence , Animals , Mice , Humans , Microscopy, Fluorescence/methods , Extracellular Matrix Proteins/metabolism , Optical Imaging/methods , Extracellular Matrix/metabolism , Collagen/metabolism , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Skin/metabolism , Skin/pathology
5.
Sci Rep ; 14(1): 10626, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724670

Hyaluronan (HA) accumulation in clear cell renal cell carcinoma (ccRCC) is associated with poor prognosis; however, its biology and role in tumorigenesis are unknown. RNA sequencing of 48 HA-positive and 48 HA-negative formalin-fixed paraffin-embedded (FFPE) samples was performed to identify differentially expressed genes (DEG). The DEGs were subjected to pathway and gene enrichment analyses. The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data and DEGs were used for the cluster analysis. In total, 129 DEGs were identified. HA-positive tumors exhibited enhanced expression of genes related to extracellular matrix (ECM) organization and ECM receptor interaction pathways. Gene set enrichment analysis showed that epithelial-mesenchymal transition-associated genes were highly enriched in the HA-positive phenotype. A protein-protein interaction network was constructed, and 17 hub genes were discovered. Heatmap analysis of TCGA-KIRC data identified two prognostic clusters corresponding to HA-positive and HA-negative phenotypes. These clusters were used to verify the expression levels and conduct survival analysis of the hub genes, 11 of which were linked to poor prognosis. These findings enhance our understanding of hyaluronan in ccRCC.


Carcinoma, Renal Cell , Extracellular Matrix , Gene Expression Regulation, Neoplastic , Hyaluronic Acid , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Hyaluronic Acid/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Prognosis , Extracellular Matrix/metabolism , Extracellular Matrix/genetics , Gene Expression Profiling , Protein Interaction Maps/genetics , Transcriptome , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Regulatory Networks
6.
BMC Biotechnol ; 24(1): 26, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724967

BACKGROUND: Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease, and it leads to irreversible inflammation in intra-articular joints. Current treatment approaches for RA include non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), corticosteroids, and biological agents. To overcome the drug-associated toxicity of conventional therapy and transdermal tissue barrier, an injectable NSAID-loaded hydrogel system was developed and explored its efficacy. RESULTS: The surface morphology and porosity of the hydrogels indicate that they mimic the natural ECM, which is greatly beneficial for tissue healing. Further, NSAIDs, i.e., diclofenac sodium, were loaded into the hydrogel, and the in vitro drug release pattern was found to be burst release for 24 h and subsequently sustainable release of 50% drug up to 10 days. The DPPH assay revealed that the hydrogels have good radical scavenging activity. The biocompatibility study carried out by MTT assay proved good biocompatibility and anti-inflammatory activity of the hydrogels was carried out by gene expression study in RAW 264.7 cells, which indicate the downregulation of several key inflammatory genes such as COX-2, TNF-α & 18s. CONCLUSION: In summary, the proposed ECM-mimetic, thermo-sensitive in situ hydrogels may be utilized for intra-articular inflammation modulation and can be beneficial by reducing the frequency of medication and providing optimum lubrication at intra-articular joints.


Anti-Inflammatory Agents, Non-Steroidal , Arthritis, Rheumatoid , Hydrogels , Hydrogels/chemistry , Animals , Mice , Arthritis, Rheumatoid/drug therapy , RAW 264.7 Cells , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Diclofenac/pharmacology , Diclofenac/therapeutic use , Drug Liberation
7.
Front Immunol ; 15: 1371584, 2024.
Article En | MEDLINE | ID: mdl-38694509

Backgrounds: Extracellular matrix (ECM) is an important component of tumor microenvironment, and its abnormal expression promotes tumor formation, progression and metastasis. Methods: Weighted gene co-expression network analysis (WGCNA) was used to identify ECM-related hub genes based on The Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) data. COAD clinical samples were used to verify the expression of potential biomarkers in tumor tissues, and siRNA was used to explore the role of potential biomarkers in cell proliferation and epithelial-mesenchymal transition (EMT). Results: Three potential biomarkers (LEP, NGF and PCOLCE2) related to prognosis of COAD patients were identified and used to construct ERGPI. Immunohistochemical analysis of clinical samples showed that the three potential biomarkers were highly expressed in tumor tissues of COAD patients. Knockdown of LEP, NGF or PCOLCE2 inhibited COAD cell proliferation and EMT. Dictamnine inhibited tumor cell growth by binding to these three potential biomarkers based on molecular docking and transplanted tumor model. Conclusion: The three biomarkers can provide new ideas for the diagnosis and targeted therapy of COAD patients.


Adenocarcinoma , Biomarkers, Tumor , Colonic Neoplasms , Computational Biology , Epithelial-Mesenchymal Transition , Extracellular Matrix , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Colonic Neoplasms/diagnosis , Colonic Neoplasms/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/diagnosis , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Computational Biology/methods , Extracellular Matrix/metabolism , Animals , Epithelial-Mesenchymal Transition/genetics , Mice , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Prognosis , Tumor Microenvironment , Molecular Docking Simulation , Gene Expression Profiling , Male , Gene Regulatory Networks
8.
Cell Death Dis ; 15(5): 307, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693104

The interplay between extracellular matrix (ECM) stiffness and the tumor microenvironment is increasingly recognized as a critical factor in cancer progression and the efficacy of immunotherapy. This review comprehensively discusses the key factors regulating ECM remodeling, including the activation of cancer-associated fibroblasts and the accumulation and crosslinking of ECM proteins. Furthermore, it provides a detailed exploration of how ECM stiffness influences the behaviors of both tumor and immune cells. Significantly, the impact of ECM stiffness on the response to various immunotherapy strategies, such as immune checkpoint blockade, adoptive cell therapy, oncolytic virus therapy, and therapeutic cancer vaccines, is thoroughly examined. The review also addresses the challenges in translating research findings into clinical practice, highlighting the need for more precise biomaterials that accurately mimic the ECM and the development of novel therapeutic strategies. The insights offered aim to guide future research, with the potential to enhance the effectiveness of cancer immunotherapy modalities.


Extracellular Matrix , Immunotherapy , Neoplasms , Tumor Microenvironment , Humans , Extracellular Matrix/metabolism , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/pathology , Tumor Microenvironment/immunology , Animals
9.
J Drugs Dermatol ; 23(5): 347-352, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709700

This paper outlines a process undertaken by a physician to design a peptide aimed at impacting the extracellular matrix. From a position of very little expertise, a new peptide was designed with amino acid constituents based on the structural proteins collagen and elastin. Sequencing was also considered, given the periodic repetition observed in these proteins, and a peptide with reasonable molecular weight and physical characteristics was designed using available software. The sequence of events concerning intellectual property, functionality investigation, and eventual use of the peptide in new formulations is detailed. This may be of interest to physicians who consider this exercise out of the scope of the usual practice. J Drugs Dermatol. 2024;23(5):347-352.    doi:10.36849/JDD.7921.


Peptides , Humans , Peptides/chemistry , Drug Design , Elastin/chemistry , Collagen/chemistry , Extracellular Matrix , Intellectual Property , Physicians
10.
Sci Rep ; 14(1): 10182, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702382

Progressive cartilage deterioration leads to chronic inflammation and loss of joint function, causing osteoarthritis (OA) and joint disease. Although symptoms vary among individuals, the disease can cause severe pain and permanent disability, and effective therapies are urgently needed. Human Adipose-Derived Stem Cells (ADSCs) may differentiate into chondrocytes and are promising for treating OA. Moreover, recent studies indicate that electromagnetic fields (EMFs) could positively affect the chondrogenic differentiation potential of ADSCs. In this work, we investigated the impact of EMFs with frequencies of 35 Hertz and 58 Hertz, referred to as extremely low frequency-EMFs (ELF-EMFs), on the chondrogenesis of ADSCs, cultured in both monolayer and 3D cell micromasses. ADSC cultures were daily stimulated for 36 min with ELF-EMFs or left unstimulated, and the progression of the differentiation process was evaluated by morphological analysis, extracellular matrix deposition, and gene expression profiling of chondrogenic markers. In both culturing conditions, stimulation with ELF-EMFs did not compromise cell viability but accelerated chondrogenesis by enhancing the secretion and deposition of extracellular matrix components at earlier time points in comparison to unstimulated cells. This study showed that, in an appropriate chondrogenic microenvironment, ELF-EMFs enhance chondrogenic differentiation and may be an important tool for supporting and accelerating the treatment of OA through autologous adipose stem cell therapy.


Adipose Tissue , Cell Differentiation , Chondrogenesis , Electromagnetic Fields , Mesenchymal Stem Cells , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Cell Survival/radiation effects
11.
Nat Commun ; 15(1): 3784, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710716

Probiotic and engineered microbe-based therapeutics are an emerging class of pharmaceutical agents. They represent a promising strategy for treating various chronic and inflammatory conditions by interacting with the host immune system and/or delivering therapeutic molecules. Here, we engineered a targeted probiotic yeast platform wherein Saccharomyces boulardii is designed to bind to abundant extracellular matrix proteins found within inflammatory lesions of the gastrointestinal tract through tunable antibody surface display. This approach enabled an additional 24-48 h of probiotic gut residence time compared to controls and 100-fold increased probiotic concentrations within the colon in preclinical models of ulcerative colitis in female mice. As a result, pharmacodynamic parameters including colon length, colonic cytokine expression profiles, and histological inflammation scores were robustly improved and restored back to healthy levels. Overall, these studies highlight the potential for targeted microbial therapeutics as a potential oral dosage form for the treatment of inflammatory bowel diseases.


Colitis, Ulcerative , Colon , Disease Models, Animal , Extracellular Matrix , Probiotics , Saccharomyces boulardii , Animals , Probiotics/administration & dosage , Female , Mice , Extracellular Matrix/metabolism , Colitis, Ulcerative/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/pathology , Colon/microbiology , Colon/metabolism , Colon/pathology , Mice, Inbred C57BL , Colitis/therapy , Colitis/microbiology , Colitis/pathology , Cytokines/metabolism , Humans
12.
J Immunol Res ; 2024: 6343757, 2024.
Article En | MEDLINE | ID: mdl-38715844

This study aims to explore the influence of coinfection with HCV and HIV on hepatic fibrosis. A coculture system was set up to actively replicate both viruses, incorporating CD4 T lymphocytes (Jurkat), hepatic stellate cells (LX-2), and hepatocytes (Huh7.5). LX-2 cells' susceptibility to HIV infection was assessed through measurements of HIV receptor expression, exposure to cell-free virus, and cell-to-cell contact with HIV-infected Jurkat cells. The study evaluated profibrotic parameters, including programed cell death, ROS imbalance, cytokines (IL-6, TGF-ß, and TNF-α), and extracellular matrix components (collagen, α-SMA, and MMP-9). The impact of HCV infection on LX-2/HIV-Jurkat was examined using soluble factors released from HCV-infected hepatocytes. Despite LX-2 cells being nonsusceptible to direct HIV infection, bystander effects were observed, leading to increased oxidative stress and dysregulated profibrotic cytokine release. Coculture with HIV-infected Jurkat cells intensified hepatic fibrosis, redox imbalance, expression of profibrotic cytokines, and extracellular matrix production. Conversely, HCV-infected Huh7.5 cells exhibited elevated profibrotic gene transcriptions but without measurable effects on the LX-2/HIV-Jurkat coculture. This study highlights how HIV-infected lymphocytes worsen hepatic fibrosis during HCV/HIV coinfection. They increase oxidative stress, profibrotic cytokine levels, and extracellular matrix production in hepatic stellate cells through direct contact and soluble factors. These insights offer valuable potential therapies for coinfected individuals.


Bystander Effect , Coculture Techniques , Coinfection , Cytokines , HIV Infections , Hepacivirus , Hepatic Stellate Cells , Hepatitis C , Liver Cirrhosis , Humans , Hepatic Stellate Cells/metabolism , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/virology , HIV Infections/immunology , Hepacivirus/physiology , Hepatitis C/metabolism , Hepatitis C/virology , Hepatitis C/complications , Hepatitis C/immunology , Jurkat Cells , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/virology , Liver Cirrhosis/etiology , Cytokines/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , HIV/physiology , Oxidative Stress , Cell Communication , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Extracellular Matrix/metabolism
13.
FASEB J ; 38(10): e23629, 2024 May 31.
Article En | MEDLINE | ID: mdl-38742770

The molecular and cellular basis of health in human tendons remains poorly understood. Among human tendons, hamstring tendon has markedly low pathology and can provide a prototypic healthy tendon reference. The aim of this study was to determine the transcriptomes and location of all cell types in healthy hamstring tendon. Using single nucleus RNA sequencing, we profiled the transcriptomes of 10 533 nuclei from four healthy donors and identified 12 distinct cell types. We confirmed the presence of two fibroblast cell types, endothelial cells, mural cells, and immune cells, and identified cell types previously unreported in tendons, including different skeletal muscle cell types, satellite cells, adipocytes, and undefined nervous system cells. The location of these cell types within tendon was defined using spatial transcriptomics and imaging, and potential transcriptional networks and cell-cell interactions were analyzed. We demonstrate that fibroblasts have the highest number of potential cell-cell interactions in our dataset, are present throughout the tendon, and play an important role in the production and organization of extracellular matrix, thus confirming their role as key regulators of hamstring tendon homeostasis. Overall, our findings underscore the complexity of the cellular networks that underpin healthy human tendon function and the central role of fibroblasts as key regulators of hamstring tendon tissue homeostasis.


Gene Expression Profiling , Hamstring Tendons , Transcriptome , Humans , Male , Adult , Hamstring Tendons/metabolism , Fibroblasts/metabolism , Female , Cell Nucleus/metabolism , Cell Nucleus/genetics , Extracellular Matrix/metabolism , Tendons/metabolism
14.
Int J Oral Sci ; 16(1): 37, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734663

Emerging regenerative cell therapies for alveolar bone loss have begun to explore the use of cell laden hydrogels for minimally invasive surgery to treat small and spatially complex maxilla-oral defects. However, the oral cavity presents a unique and challenging environment for in vivo bone tissue engineering, exhibiting both hard and soft periodontal tissue as well as acting as key biocenosis for many distinct microbial communities that interact with both the external environment and internal body systems, which will impact on cell fate and subsequent treatment efficacy. Herein, we design and bioprint a facile 3D in vitro model of a human dentine interface to probe the effect of the dentine surface on human mesenchymal stem cells (hMSCs) encapsulated in a microporous hydrogel bioink. We demonstrate that the dentine substrate induces osteogenic differentiation of encapsulated hMSCs, and that both dentine and ß-tricalcium phosphate substrates stimulate extracellular matrix production and maturation at the gel-media interface, which is distal to the gel-substrate interface. Our findings demonstrate the potential for long-range effects on stem cells by mineralized surfaces during bone tissue engineering and provide a framework for the rapid development of 3D dentine-bone interface models.


Cell Differentiation , Dentin , Mesenchymal Stem Cells , Osteogenesis , Tissue Engineering , Humans , Osteogenesis/physiology , Tissue Engineering/methods , Calcium Phosphates , Hydrogels , In Vitro Techniques , Bioprinting , Tissue Scaffolds , Surface Properties , Extracellular Matrix , Cells, Cultured
15.
Neuropathol Appl Neurobiol ; 50(3): e12982, 2024 Jun.
Article En | MEDLINE | ID: mdl-38742276

AIMS: Perineuronal nets (PNNs) are an extracellular matrix structure that encases excitable neurons. PNNs play a role in neuroprotection against oxidative stress. Oxidative stress within motor neurons can trigger neuronal death, which has been implicated in amyotrophic lateral sclerosis (ALS). We investigated the spatio-temporal timeline of PNN breakdown and the contributing cellular factors in the SOD1G93A strain, a fast-onset ALS mouse model. METHODS: This was conducted at the presymptomatic (P30), onset (P70), mid-stage (P130), and end-stage disease (P150) using immunofluorescent microscopy, as this characterisation has not been conducted in the SOD1G93A strain. RESULTS: We observed a significant breakdown of PNNs around α-motor neurons in the ventral horn of onset and mid-stage disease SOD1G93A mice compared with wild-type controls. This was observed with increased numbers of microglia expressing matrix metallopeptidase-9 (MMP-9), an endopeptidase that degrades PNNs. Microglia also engulfed PNN components in the SOD1G93A mouse. Further increases in microglia and astrocyte number, MMP-9 expression, and engulfment of PNN components by glia were observed in mid-stage SOD1G93A mice. This was observed with increased expression of fractalkine, a signal for microglia engulfment, within α-motor neurons of SOD1G93A mice. Following PNN breakdown, α-motor neurons of onset and mid-stage SOD1G93A mice showed increased expression of 3-nitrotyrosine, a marker for protein oxidation, which could render them vulnerable to death. CONCLUSIONS: Our observations suggest that increased numbers of MMP-9 expressing glia and their subsequent engulfment of PNNs around α-motor neurons render these neurons sensitive to oxidative damage and eventual death in the SOD1G93A ALS model mouse.


Amyotrophic Lateral Sclerosis , Astrocytes , Disease Models, Animal , Matrix Metalloproteinase 9 , Mice, Transgenic , Microglia , Animals , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Microglia/metabolism , Microglia/pathology , Mice , Matrix Metalloproteinase 9/metabolism , Astrocytes/metabolism , Astrocytes/pathology , Motor Neurons/pathology , Motor Neurons/metabolism , Phagocytosis/physiology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
16.
Biomed Mater ; 19(4)2024 May 17.
Article En | MEDLINE | ID: mdl-38756029

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Cerium , Extracellular Matrix , Nanoparticles , Osteogenesis , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Swine , Extracellular Matrix/metabolism , Cerium/chemistry , Nanoparticles/chemistry , Rats , Polyesters/chemistry , Dentin/chemistry , Humans , Bone Regeneration/drug effects , Odontogenesis , Cell Differentiation , Regeneration , Macrophages/metabolism , Skull , Rats, Sprague-Dawley
17.
PLoS One ; 19(5): e0285655, 2024.
Article En | MEDLINE | ID: mdl-38753593

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Cell Differentiation , Deoxycholic Acid , Doxycycline , Fibroblasts , Polyethyleneimine , Humans , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Deoxycholic Acid/chemistry , Deoxycholic Acid/pharmacology , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Differentiation/drug effects , Doxycycline/pharmacology , Doxycycline/chemistry , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Transforming Growth Factor beta1/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/metabolism , Nasal Mucosa/cytology , Actins/metabolism
18.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767378

Ultrashort self-assembling peptides (SAPs) can spontaneously form nanofibers that resemble the extracellular matrix. These fibers allow the formation of hydrogels that are biocompatible, biodegradable, and non-immunogenic. We have previously proven that SAPs, when biofunctionalized with protein-derived motifs, can mimic the extracellular matrix characteristics that support colorectal organoid formation. These biofunctional peptide hydrogels retain the original parent peptide's mechanical properties, tunability, and printability while incorporating cues that allow cell-matrix interactions to increase cell adhesion. This paper presents the protocols needed to evaluate and characterize the effects of various biofunctional peptide hydrogels on cell adhesion and lumen formation using an adenocarcinoma cancer cell line able to form colorectal cancer organoids cost-effectively. These protocols will help evaluate biofunctional peptide hydrogel effects on cell adhesion and luminal formation using immunostaining and fluorescence image analysis. The cell line used in this study has been previously utilized for generating organoids in animal-derived matrices.


Colorectal Neoplasms , Hydrogels , Organoids , Peptides , Organoids/cytology , Humans , Colorectal Neoplasms/pathology , Cell Line, Tumor , Hydrogels/chemistry , Peptides/chemistry , Nanofibers/chemistry , Adenocarcinoma/pathology , Extracellular Matrix/chemistry , Cell Adhesion/physiology
19.
Nat Commun ; 15(1): 4200, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760342

The developmental fate of cells is regulated by intrinsic factors and the extracellular environment. The extracellular matrix (matrisome) delivers chemical and mechanical cues that can modify cellular development. However, comprehensive understanding of how matrisome factors control cells in vivo is lacking. Here we show that specific matrisome factors act individually and collectively to control germ cell development. Surveying development of undifferentiated germline stem cells through to mature oocytes in the Caenorhabditis elegans germ line enabled holistic functional analysis of 443 conserved matrisome-coding genes. Using high-content imaging, 3D reconstruction, and cell behavior analysis, we identify 321 matrisome genes that impact germ cell development, the majority of which (>80%) are undescribed. Our analysis identifies key matrisome networks acting autonomously and non-autonomously to coordinate germ cell behavior. Further, our results demonstrate that germ cell development requires continual remodeling of the matrisome landscape. Together, this study provides a comprehensive platform for deciphering how extracellular signaling controls cellular development and anticipate this will establish new opportunities for manipulating cell fates.


Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cell Differentiation , Extracellular Matrix , Germ Cells , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Extracellular Matrix/metabolism , Germ Cells/metabolism , Germ Cells/cytology , Cell Differentiation/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Signal Transduction , Cell Lineage/genetics , Oocytes/metabolism , Oocytes/cytology
20.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748808

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Carcinoma, Squamous Cell , Extracellular Matrix , Hydrogels , Organoids , Uterine Cervical Neoplasms , Humans , Female , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Extracellular Matrix/metabolism , Hydrogels/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Tumor Microenvironment , Signal Transduction , Animals , Proteomics/methods , Mice
...