Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 336
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 132740, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825267

ABSTRACT

The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.


Subject(s)
Burns, Chemical , Corneal Injuries , Dextrans , Gelatin , Hydrogels , Wound Healing , Animals , Dextrans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Gelatin/chemistry , Rats , Wound Healing/drug effects , Corneal Injuries/drug therapy , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Alkalies/chemistry , Oxidation-Reduction , Nanoparticles/chemistry , Cornea/drug effects , Cornea/metabolism , Cornea/pathology , Male , Eye Burns/drug therapy , Eye Burns/chemically induced , Eye Burns/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Injections
2.
Biomed Khim ; 70(3): 168-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940206

ABSTRACT

The free radical and cytokine statuses of the cornea during its thermal burn and the possibility of its correction by lactoferrin have been studied in Soviet Chinchilla rabbits. The development of a corneal thermal burn was accompanied by the development of oxidative stress (increased levels of TBA-reactive substances and carbonyl derivatives of proteins, decreased activity of SOD and GPx enzymes) and a pronounced inflammatory reaction with increased levels of TNF-1α, IL-10, TGF-1ß. The use of lactoferrin had a pronounced therapeutic effect, which was manifested by accelerated healing, prevention of the development of complications (corneal perforations), a decrease in the severity of oxidative stress, an increase in the concentrations of TNF-1α (in the early stages), IL-10 (in the later stages), TGF-1ß (throughout the experiment). At the same time, by the end of regeneration more severe corneal opacification was recognized compared to the control group. This may be associated with an increased level of anti-inflammatory cytokines, especially TGF-1ß.


Subject(s)
Cornea , Lactoferrin , Oxidative Stress , Animals , Lactoferrin/pharmacology , Rabbits , Cornea/metabolism , Cornea/drug effects , Oxidative Stress/drug effects , Cytokines/metabolism , Eye Burns/metabolism , Eye Burns/drug therapy , Eye Burns/chemically induced , Eye Burns/pathology , Male , Free Radicals/metabolism , Corneal Injuries/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/pathology , Disease Models, Animal
3.
Biomater Sci ; 12(15): 3905-3917, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38916436

ABSTRACT

Symblepharon is an adverse ocular disease resulting in ocular discomfort and impaired vision, severely dragging down a patient's quality of life. Due to the specificity of the ocular surface, the retention time of drugs on it is short, leading to limited therapeutic effects for ocular diseases. Therefore, it is imperative to design a novel drug delivery system, which can not only prolong the retention time of a drug but also play an anti-fibrosis role in symblepharon. Herein, an antifouling supramolecular polymer ophthalmic ointment consisting of poly(N-acryloyl alaninamide) (PNAAA), vitamin C (VitC) and levofloxacin (Levo) was developed (termed PNAVL ophthalmic ointment), which acted as a mucoadhesive and long-acting ocular delivery system. This antifouling PNAVL ophthalmic ointment improved the retention time of VitC and Levo, and simultaneously provided anti-inflammation and anti-fibrosis effects for mitigating symblepharon after ocular alkali burn injury.


Subject(s)
Eye Burns , Ointments , Animals , Rats , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Burns, Chemical/drug therapy , Rats, Sprague-Dawley , Polymers/chemistry , Polymers/pharmacology , Alkalies/chemistry , Levofloxacin/administration & dosage , Levofloxacin/pharmacology , Levofloxacin/chemistry , Male , Ascorbic Acid/chemistry , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage
4.
Int J Pharm ; 659: 124265, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38795935

ABSTRACT

Metformin (MET) can be an alternative therapeutic strategy for managing ocular burn primarily because of its pleiotropic mechanism. Longer retention on the ocular surface and sustained release are necessary to ensure the efficacy of MET for ocular application. Although the high aqueous solubility of MET is good for formulation and biocompatibility, it makes MET prone to high nasolacrimal drainage. This limits ocular residence and may be a challenge in its application. To address this, polymers approved for ophthalmic application with natural origin were analyzed through in silico methods to determine their ability to bind to mucin and interact with MET. An ocular insert of MET (3 mg/6 mm) was developed using a scalable solvent casting method without using preservatives. The relative composition of the insert was 58 ± 2.06 %w/w MET with approximately 14 %w/w tamarind seed polysaccharide (TSP), and 28 %w/w propylene glycol (PG). Its stability was demonstrated as per the ICH Q1A (R2) guidelines. Compatibility, ocular retention, drug release, and other functional parameters were evaluated. In rabbits, efficacy was demonstrated in the 'corneal alkali burn preclinical model'. TSP showed potential for mucoadhesion and interaction with MET. With adequate stability and sterility, the insert contributed to adequate retention of MET (10-12 h) in vivo and slow release (30 h) in vitro. This resulted in significant efficacy in vivo.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Eye Burns , Metformin , Polysaccharides , Seeds , Tamarindus , Animals , Metformin/chemistry , Metformin/administration & dosage , Rabbits , Tamarindus/chemistry , Polysaccharides/chemistry , Seeds/chemistry , Eye Burns/drug therapy , Eye Burns/chemically induced , Administration, Ophthalmic , Drug Implants , Male , Burns, Chemical/drug therapy , Drug Stability , Corneal Injuries/drug therapy , Cornea/metabolism , Cornea/drug effects , Propylene Glycol/chemistry , Solubility
5.
Sci Rep ; 14(1): 12111, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802470

ABSTRACT

Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1ß expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.


Subject(s)
Alkalies , Burns, Chemical , Cornea , Disease Models, Animal , Eye Burns , Wound Healing , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Burns, Chemical/metabolism , Rats , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Alkalies/adverse effects , Cornea/metabolism , Cornea/pathology , Cornea/drug effects , Wound Healing/drug effects , Interleukin-1beta/metabolism , Male , Macrophages/drug effects , Macrophages/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Injuries/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Rats, Sprague-Dawley , Collagen Type III/metabolism , Receptor for Advanced Glycation End Products/metabolism , Anti-Inflammatory Agents/pharmacology , Ophthalmic Solutions , Myofibroblasts/metabolism , Myofibroblasts/drug effects
6.
Burns ; 50(6): 1614-1620, 2024 08.
Article in English | MEDLINE | ID: mdl-38604821

ABSTRACT

PURPOSE: To evaluate the efficacy of topical erythropoietin for chemical burn induced scleral necrosis. METHODS: This study included 18 eyes of 16 patients with chemical burn induced scleral necrosis who presented within 6 weeks of the injury. In the prospective arm, 11 eyes received topical erythropoietin, 3000 IU/mL every 6 h, along with standard medical treatment. Retrospectively, we included 7 consecutive eyes of 7 patients who were managed with conventional treatment as historical control group. The main outcome measure was healing of avascular scleral lesions. The secondary outcome measure was complete re-epithelization of cornea. RESULTS: Mean patient age was 39.8 ± 16.2 years in the erythropoietin group, and they presented 16.6 ± 15.2 days after acute chemical injury. Scleral necrosis improved in all eyes after 30.7 ± 23.2 days of treatment with topical erythropoietin. Corneal epithelial defects were completely healed in 10 eyes 61.9 ± 50.7 days after the start of the medication. In comparison, standard medical treatment alone did not improve scleral necrosis in the historical control group, necessitating ocular surface reconstruction including conjunctival advancement (1 eye) and tenonplasty (6 eyes). CONCLUSION: The results of our study showed that topical erythropoietin was effective in the management of chemical burn induced scleral necrosis. This treatment could avoid ocular surface reconstruction procedures in inflamed eyes.


Subject(s)
Burns, Chemical , Erythropoietin , Eye Burns , Necrosis , Sclera , Humans , Burns, Chemical/drug therapy , Burns, Chemical/therapy , Erythropoietin/therapeutic use , Erythropoietin/administration & dosage , Male , Female , Adult , Middle Aged , Sclera/pathology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/therapy , Eye Burns/pathology , Prospective Studies , Retrospective Studies , Young Adult , Administration, Topical , Re-Epithelialization/drug effects , Aged , Adolescent , Wound Healing/drug effects , Treatment Outcome
7.
J Ocul Pharmacol Ther ; 40(4): 222-231, 2024 05.
Article in English | MEDLINE | ID: mdl-38546750

ABSTRACT

Purpose: This study aimed to evaluate the effects of a new treatment-conditioned medium from human orbital adipose-derived stem cells (OASC-CM)-on corneal recovery after alkali burns in a rabbit model. Methods: The corneal alkali burn rabbit model was established and treated with OASC-CM, conditioned medium from human abdominal subcutaneous adipose-derived stem cells (ABASC-CM), and fresh control culture medium (con-CM) three times a day for 7 days, respectively. Subsequently, the treatment effects were evaluated and compared through clinical, histological, immunohistochemical, and cytokine evaluations. Results: Clinically, OASC-CM alleviated corneal opacity and edema and promoted recovery of corneal epithelium defect. Histologically and immunohistochemically, OASC-CM inhibited neovascularization, conjunctivalization, and immuno-inflammatory reaction, while promoting corneal regeneration and rearrangement. Increased secretion of interleukin-10 and inhibited protein levels of cluster of differentiation 45, interferon-γ, and tumor necrosis factor-α were observed in the alkali-burned cornea after OASC-CM treatment, which might be the relevant molecular mechanism. Conclusions: OASC-CM showed significant effects on the recovery of rabbit corneal alkali burns and eliminated immunological and ethical limitations, representing a new option for corneal wound treatment.


Subject(s)
Adipose Tissue , Burns, Chemical , Disease Models, Animal , Eye Burns , Stem Cells , Animals , Rabbits , Culture Media, Conditioned/pharmacology , Burns, Chemical/therapy , Burns, Chemical/drug therapy , Eye Burns/chemically induced , Eye Burns/therapy , Eye Burns/drug therapy , Humans , Adipose Tissue/cytology , Alkalies , Male , Orbit
8.
J Control Release ; 369: 114-127, 2024 May.
Article in English | MEDLINE | ID: mdl-38521167

ABSTRACT

This research introduces an innovative solution to address the challenges of bacterial keratitis and alkali burns. Current treatments for bacterial keratitis and alkali burns rely on the frequent use of antibiotics and anti-inflammatory eye drops. However, these approaches suffer from poor bioavailability and fluctuating concentrations, leading to limited efficacy and potential drug resistance. Our approach presents an adaptive drug-releasing contact lens responsive to reactive oxygen species (ROS) at ocular inflammation sites, synchronously releasing Levofloxacin and Diclofenac. During storage, minimal drug release occurred, but over 7 days of wear, the lens maintained a continuous, customizable drug release rate based on disease severity. This contact lens had strong antibacterial activity and biofilm prevention, effectively treating bacterial keratitis. When combined with autologous serum, this hydrophilic, flexible lens aids corneal epithelial regeneration, reducing irritation and promoting healing. In summary, this ROS-responsive drug-releasing contact lens combines antibacterial and anti-inflammatory effects, offering a promising solution for bacterial keratitis and alkali burns.


Subject(s)
Anti-Bacterial Agents , Diclofenac , Keratitis , Levofloxacin , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Keratitis/drug therapy , Keratitis/microbiology , Animals , Levofloxacin/therapeutic use , Levofloxacin/administration & dosage , Diclofenac/administration & dosage , Diclofenac/therapeutic use , Reactive Oxygen Species/metabolism , Drug Liberation , Biofilms/drug effects , Contact Lenses , Rabbits , Eye Burns/chemically induced , Eye Burns/drug therapy , Humans , Drug Delivery Systems , Eye Infections, Bacterial/drug therapy , Burns, Chemical/drug therapy , Burns, Chemical/therapy
9.
Exp Eye Res ; 238: 109739, 2024 01.
Article in English | MEDLINE | ID: mdl-38042515

ABSTRACT

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Subject(s)
Bacterial Infections , Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Humans , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Neovascularization, Pathologic/metabolism , Corneal Injuries/drug therapy , Human Umbilical Vein Endothelial Cells , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal , Alkalies/toxicity
10.
Biomater Adv ; 154: 213648, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37812983

ABSTRACT

In this study, a novel dual-drug carrier for the co-administration of an anti-inflammatory and antibiotic agent consisting of core-shell nanofibers for the treatment of cornea alkali burns was designed. The core-shell nanofibers were prepared via coaxial electrospinning of curcumin-loaded silk fibroin as the core and vancomycin-loaded chitosan/polyvinyl alcohol (PVA) as the shell. Electron microscopy (SEM and TEM) images confirmed the preparation of smooth, bead-free, and continuous fibers that formed clear core-shell structures. For further studies, nanofiber mats were cross-linked by heat treatment to avoid rapid disintegration in water and improve both mechanical properties and drug release. The release profile of curcumin and vancomycin indicated an initial burst release, continued by the extended release of both drugs within 72 hours. Rabbit corneal cells demonstrated high rates of proliferation when evaluated using a cell metabolism assay. Finally, the therapeutic efficiency of core/shell nanofibers in healing cornea alkali burn was studied by microscopic and macroscopic observation, fluorescence staining, and hematoxylin-eosin assay on rabbit eyes. The anti-inflammatory activity of fabricated fibers was evaluated by enzyme-linked immunosorbent assay and Immunofluorescence analysis. In conclusion, using a robust array of in vitro and in vivo experiments this study demonstrated the ability of the dual-drug carriers to promote corneal re-epithelialization, minimize inflammation, and inhibit corneal neovascularization. Since these parameters are critical to the healing of corneal wounds from alkali burns, we suggest that this discovery represents a promising future therapeutic agent that warrants further study in humans.


Subject(s)
Burns, Chemical , Curcumin , Eye Burns , Humans , Animals , Rabbits , Anti-Bacterial Agents/pharmacology , Burns, Chemical/drug therapy , Delayed-Action Preparations , Vancomycin , Alkalies , Curcumin/pharmacology , Curcumin/therapeutic use , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Eye Burns/chemically induced , Eye Burns/drug therapy , Drug Carriers
11.
Exp Eye Res ; 233: 109539, 2023 08.
Article in English | MEDLINE | ID: mdl-37315833

ABSTRACT

Alkali burn-induced corneal injury often causes inflammation and neovascularization and leads to compromised vision. We previously reported that rapamycin ameliorated corneal injury after alkali burns by methylation modification. In this study, we aimed to investigate the rapamycin-medicated mechanism against corneal inflammation and neovascularization. Our data showed that alkali burn could induce a range of different inflammatory response, including a stark upregulation of pro-inflammatory factor expression and an increase in the infiltration of myeloperoxidase- and F4/80-positive cells from the corneal limbus to the central stroma. Rapamycin effectively downregulated the mRNA expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), toll-like receptor 4 (TLR4), nucleotide binding oligomerization domain-like receptors (NLR) family pyrin domain-containing 3 (NLRP3), and Caspase-1, and suppressed the infiltration of neutrophils and macrophages. Inflammation-related angiogenesis mediated by matrix metalloproteinase-2 (MMP-2) and rapamycin restrained this process by inhibiting the TNF-α upregulation in burned corneas of mice. Rapamycin also restrained corneal alkali burn-induced inflammation by regulating HIF-1α/VEGF-mediated angiogenesis and the serum cytokines TNF-α, IL-6, Interferon-gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The findings of this study indicated rapamycin may reduce inflammation-associated infiltration of inflammatory cells, shape the expression of cytokines, and balance the regulation of MMP-2 and HIF-1α-mediated inflammation and angiogenesis by suppressing mTOR activation in corneal wound healing induced by an alkali injury. It offered novel insights relevant for a potent drug for treating corneal alkali burn.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Tumor Necrosis Factor-alpha/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Alkalies/toxicity , Cornea/metabolism , Neovascularization, Pathologic/metabolism , Corneal Injuries/metabolism , Inflammation/metabolism , Cytokines/metabolism , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal
12.
Int J Biol Macromol ; 244: 125188, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37270120

ABSTRACT

Corneal alkali burn is one of the most devastating ophthalmic emergencies correlated with remarkable morbidity resulting in severe visual impairment. Appropriate intervention in the acute phase determines the eventual outcome for later corneal restoration treatment. Since the epithelium plays an essential role in inhibiting inflammation and promoting tissue repair, sustained anti-matrix metalloproteinases (MMPs) and pro-epithelialization are the prior remedies during the first week. In this study, a drug-loaded collagen membrane (Dox-HCM/Col) that could be sutured to overlay the burned cornea was developed to accelerate the early reconstruction. Doxycycline (Dox), a specific inhibitor of MMPs, was encapsulated in collagen membrane (Col) through hydroxypropyl chitosan microspheres (HCM) to develop Dox-HCM/Col, affording a preferable pro-epithelialization microenvironment and an in-situ controlled release. Results showed that loading HCM into Col prolonged the release time to 7 days, and Dox-HCM/Col could significantly suppress the expression of MMP-9 and -13 in vitro and in vivo. Furthermore, the membrane accelerated the corneal complete re-epithelialization and promoted early reconstruction within the first week. Overall, Dox-HCM/Col was a promising biomaterial membrane for treating alkali-burned cornea in the early stage, and our attempt may provide a clinically feasible method for the ocular surface reconstruction.


Subject(s)
Chitosan , Corneal Injuries , Eye Burns , Humans , Doxycycline/pharmacology , Chitosan/metabolism , Alkalies/metabolism , Microspheres , Collagen/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Cornea/metabolism , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/metabolism , Vision Disorders/metabolism
13.
Int Immunopharmacol ; 116: 109680, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36739832

ABSTRACT

Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1ß, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Corneal Opacity , Eye Burns , Keratitis , Mice , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Vascular Endothelial Growth Factor A/metabolism , Alkalies/adverse effects , Alkalies/metabolism , Cornea , Corneal Neovascularization/chemically induced , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Injuries/metabolism , Macrophages/metabolism , Keratitis/chemically induced , Keratitis/drug therapy , Inflammation/metabolism , Corneal Opacity/complications , Corneal Opacity/metabolism , Corneal Opacity/pathology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal
14.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614177

ABSTRACT

FROUNT is an intracellular protein that promotes pseudopodia formation by binding to the chemokine receptors CCR2 and CCR5 on macrophages. Recently, disulfiram (DSF), a drug treatment for alcoholism, was found to have FROUNT inhibitory activity. In this study, we investigated the effect of DSF eye drops in a rat corneal alkali burn model. After alkali burn, 0.5% DSF eye drops (DSF group) and vehicle eye drops (Vehicle group) were administered twice daily. Immunohistochemical observations and real-time reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed at 6 h and 1, 4, and 7 days after alkali burn. Results showed a significant decrease in macrophage accumulation in the cornea in the DSF group, but no difference in neutrophils. RT-PCR showed decreased expression of macrophage-associated cytokines in the DSF group. Corneal scarring and neovascularization were also suppressed in the DSF group. Low-vacuum scanning electron microscopy imaging showed that macrophage length was significantly shorter in the DSF group, reflecting the reduced extension of pseudopodia. These results suggest that DSF inhibited macrophage infiltration by suppressing macrophage pseudopodia formation.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Animals , Disulfiram/pharmacology , Disulfiram/therapeutic use , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Ophthalmic Solutions/pharmacology , Alkalies/pharmacology , Pseudopodia/metabolism , Cornea/metabolism , Macrophages/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Corneal Neovascularization/drug therapy , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/metabolism , Disease Models, Animal
15.
Exp Eye Res ; 225: 109265, 2022 12.
Article in English | MEDLINE | ID: mdl-36206861

ABSTRACT

Corneal neovascularization can cause devastating consequences including vision impairment and even blindness. Corneal inflammation is a crucial factor for the induction of corneal neovascularization. Current anti-inflammatory approaches are of limited value with poor therapeutic effects. Therefore, there is an urgent need to develop new therapies that specifically modulate inflammatory pathways and inhibit neovascularization in the cornea. The interaction of chemokines and their receptors plays a key role in regulating leukocyte migration during inflammatory response. CXCR3 is essential for mediating the recruitment of activated T cells and microglia/macrophages, but the role of CXCR3 in the initiation and promotion of corneal neovascularization remains unclear. Here, we showed that the expression of CXCL10 and CXCR3 was significantly increased in the cornea after alkali burn. Compared with WT mice, CXCR3-/- mice exhibited significantly increased corneal hemangiogenesis and lymphangiogenesis after alkali burn. In addition, exaggerated leukocyte infiltration and leukostasis, and elevated expression of inflammatory cytokines and angiogenic factor were also found in the corneas of CXCR3-/- mice subjected to alkali burn. With bone marrow (BM) transplantation, we further demonstrated that the deletion of CXCR3 in BM-derived leukocytes plays a key role in the acceleration of alkali burn-induced corneal neovascularization. Taken together, our results suggest that upregulation of CXCR3 does not exhibit its conventional action as a proinflammatory cytokine but instead serves as a self-protective mechanism for the modulation of inflammation and maintenance of corneal avascularity after corneal alkali burn.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Mice , Animals , Corneal Neovascularization/drug therapy , Burns, Chemical/drug therapy , Alkalies/toxicity , Eye Burns/drug therapy , Corneal Injuries/metabolism , Cornea/metabolism , Inflammation/metabolism , Cytokines/metabolism , Disease Models, Animal
16.
Curr Eye Res ; 47(12): 1578-1589, 2022 12.
Article in English | MEDLINE | ID: mdl-36259508

ABSTRACT

PURPOSE: To compare the therapeutic effects of different forms of nintedanib ophthalmic preparations on neovascularization corneal alkali burns in rats. METHODS: Forty rat models of left eye corneal alkali burns were constructed, and the five groups (N = 8) were treated with normal saline, dexamethasone ointment (dexamethasone), 0.2% nintedanib aqueous solution and nintedanib nano thermoreversible hydrogel (NNTH). A slit lamp microscope was used to observe the area of neovascularization. The levels of the inflammatory factors were detected by ELISA. HE staining was performed on the rat corneas. Vascular endothelial growth factor (VEGFA) was detected by immunohistochemistry, and the expression of corneal VEGFA and CD31 was detected by western blotting. An MTT assay was performed to detect the cytotoxicity of nintedanib on human corneal epithelial cells (HCECs) and human umbilical vein vascular endothelial cells (HUVECs). Cell migration was detected by a cell scratch assay, and the proportion of apoptotic cells was detected by Annexin/PI double staining. Immunofluorescence and western blotting were performed to detect the protein expression of VEGFA and CD31. RESULTS: NNTH had a stronger inhibitory effect on corneal neovascularization (CNV) in alkali-burned rats while reducing the level of inflammatory factors. NNTH had a longer drug duration of release than nanoformulations in vitro. Nintedanib at low concentrations (<8 µM) had no significant cytotoxicity to HCECs but significantly induced apoptosis and inhibited the expression of VEGFA and CD31 and the migration of HUVECs. CONCLUSIONS: Nanomorphic thermoreversible hydrogel is superior among the nintedanib ophthalmic preparations, showing better inhibition of CNV in alkali-burned eyeballs and it blocked the migration and proangiogenic ability of HUVECs.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Humans , Animals , Burns, Chemical/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Hydrogels/pharmacology , Corneal Neovascularization/chemically induced , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Eye Burns/chemically induced , Eye Burns/drug therapy , Neovascularization, Pathologic/metabolism , Human Umbilical Vein Endothelial Cells , Alkalies/toxicity , Dexamethasone/pharmacology , Disease Models, Animal
17.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077171

ABSTRACT

Many studies have demonstrated the therapeutic effects of hydrogen in pathological conditions such as inflammation; however, little is known about its prophylactic effects. The purpose of this study is to investigate the prophylactic effects of hydrogen-rich water instillation in a rat corneal alkali burn model. Hydrogen-rich water (hydrogen group) or physiological saline (vehicle group) was instilled continuously to the normal rat cornea for 5 min. At 6 h after instillation, the cornea was exposed to alkali. The area of corneal epithelial defect (CED) was measured every 6 h until 24 h after alkali exposure. In addition, at 6 and 24 h after injury, histological and immunohistochemical observations were made and real-time reverse transcription polymerase chain reaction (RT-PCR) was performed to investigate superoxide dismutase enzyme (SOD)1, SOD2, and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA expression. CED at 12 h and the number of inflammatory infiltrating cells at 6 h after injury were significantly smaller in the hydrogen group than the vehicle group. Furthermore, SOD1 expression was significantly higher in the hydrogen group than the vehicle group at both 6 and 24 h, and the number of PGC-1α-positive cells was significantly larger in the hydrogen group than the vehicle group at 6 h after injury. In this model, prophylactic instillation of hydrogen-rich water suppressed alkali burn-induced inflammation, likely by upregulating expression of antioxidants such as SOD1 and PGC-1α. Hydrogen has not only therapeutic potential but also prophylactic effects that may suppress corneal scarring following injury and promote wound healing.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Keratitis , Alkalies/pharmacology , Animals , Antioxidants/therapeutic use , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Injuries/drug therapy , Disease Models, Animal , Eye Burns/drug therapy , Hydrogen/pharmacology , Hydrogen/therapeutic use , Inflammation , Rats , Superoxide Dismutase/genetics , Superoxide Dismutase/pharmacology , Superoxide Dismutase-1/therapeutic use , Water/pharmacology , Wound Healing
18.
Cell Mol Biol (Noisy-le-grand) ; 68(3): 330-338, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35988169

ABSTRACT

This study was to explore the inhibitory effect of bromfenac sodium (BF) / chitosan (CS) nanoparticles (NPs) on corneal neovascularization (CNV). 45 New Zealand white rabbits provided by The First Affiliated Hospital of Jinan University were randomly divided into a control group (group A, n = 15), 0.1% BF aqueous solution treatment group (group B, n = 15), and 0.1% BF/CS-NPs suspension treatment group (group C, n = 15). A rabbit corneal alkali burn model was established. The average particle size of BF/CS-NPs with different BF concentrations was mainly 341.6 ± 12.9 nm - 548.7 ± 15.4 nm; and the Zeta potential distribution was 24.3 ± 2.5 mV - 35.7 ± 4.3 mV. When the initial concentration of BF was 1.5 mg/mL, the maximum drug loading was 57.35 ± 5.26%. The area of CNV in group C was significantly lower than that in groups B and A, and the differences were statistically significant (P < 0.05). At 6, 12, 18, and 24 days after surgery, the mRNA expression levels in cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) gene were compared after standardized by ß-actin; group A had the highest expression level, followed by group B, and group C had the lowest expression level, showing statistically significant differences (P < 0.05). The BF/CS-NPs granules prepared in this study had stable physical and chemical properties and had a good sustained-release effect, and the release duration can be as long as 48 hours. BF/CS-NPs can inhibit the formation of CNV at different time points after alkali burn, and reduce the expression of VEGF and COX-2 in corneal tissue after alkali burn.


Subject(s)
Burns, Chemical , Corneal Neovascularization , Eye Burns , Animals , Benzophenones , Bromobenzenes , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Neovascularization/drug therapy , Corneal Neovascularization/genetics , Corneal Neovascularization/metabolism , Cyclooxygenase 2/genetics , Disease Models, Animal , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/metabolism , Rabbits , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Exp Eye Res ; 223: 109190, 2022 10.
Article in English | MEDLINE | ID: mdl-35963307

ABSTRACT

Endogenously produced peptide growth factors such as keratinocyte growth factor-2 (KGF-2) and nerve growth factor (NGF) play a key role in the natural corneal wound healing process. However, this self-healing ability of the corneal tissue is often impaired in cases of severe corneal damage, as in corneal alkali injuries. In the present study, we investigated the clinical and histopathological effects of topical recombinant human keratinocyte growth factor-2 and nerve growth factor treatments in a rabbit model of corneal alkali burn. After induction of an alkali burn, 24 rabbits were divided equally into three groups: control group, KGF-2 group, and NGF group. Clinical parameters including epithelial healing, opacification, neovascularization and central corneal thickness were evaluated on the first (D1), seventh (D7) and fourteenth (D14) days after injury. Corneal histology was performed using hematoxylin/eosin (H&E) and Masson's Trichrome stains. Immunohistochemical staining for matrix metalloproteinase-2 (MMP-2), MMP-9 and transforming growth factor-ß (TGF-ß) was performed. On D14, the percentage of epithelial defect and opacity were significantly less in the KGF-2 and NGF groups compared to the control group (p < 0.05). There was no significant difference between the groups in central corneal thickness. In the evaluation of neovascularization on D14, the NGF group was significantly less vascularized than the control group (p = 0.011). Histological examination showed a significant increase in stromal edema and inflammation in the control group compared to both treatment groups (p < 0.05). There was also a significant difference between the NGF and control groups in histological evaluation of epithelial repair and vascularization (p < 0.05). When immunoreactivity of MMP-2, MMP-9 and TGF-ß was examined, there was a significant increase in the control group compared to the NGF group (p < 0.05). Taken together, both NGF and KGF-2 treatments were effective for early re-epithelialization and decrease in inflammation, opacity and neovascularization after corneal alkali burn. The inhibitory effect of NGF treatment on chemical-induced neovascularization was found to be superior to KGF-2 treatment.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Alkalies/toxicity , Animals , Burns, Chemical/metabolism , Corneal Injuries/pathology , Disease Models, Animal , Eosine Yellowish-(YS)/adverse effects , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Fibroblast Growth Factor 10/pharmacology , Hematoxylin/pharmacology , Hematoxylin/therapeutic use , Humans , Inflammation/drug therapy , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Rabbits , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/adverse effects , Wound Healing
20.
J Popul Ther Clin Pharmacol ; 29(1): e26-e39, 2022.
Article in English | MEDLINE | ID: mdl-35686894

ABSTRACT

Studies have shown that 0.05 mL/kg of drug No. 1 as 1:15 dilution with sterile saline solution has anti-inflammatory, wound-healing, and angioprotective effects if instilled in both eyes of rabbits twice a day for 30 days after an alkaline burn. A stimulation of reparative processes in the cornea was observed with the test dose of drug No. 1. This was manifested by accelerating the recovery of defects in the anterior epithelium and stroma, reducing the frequency of formation of deep defects and the severity of inflammatory reaction and vascularization, and inhibiting the formation of turbidity of its lower intensity and area. A tendency to restore laminarity of the stroma was determined by the action of drug No. 1 throughout the observation period. This contributed to a decrease in the degree of vascularization and prevented ulceration and perforation of the cornea. By the end of experiment, a restoration of strong epithelial-stromal relationships in the experimental group, compared to the control group, was observed due to formation of normal architectonics of fibrous components of intercellular substance. A more pronounced proliferative activity, with an increase in the layering of limbal epithelial cells, was noted in the limbal zone of the cornea in the experimental group rabbits compared to the control group.


Subject(s)
Burns, Chemical , Eye Burns , Animals , Burns, Chemical/drug therapy , Burns, Chemical/etiology , Cornea , Eye Burns/chemically induced , Eye Burns/drug therapy , Humans , Rabbits , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL