Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 470
Filter
1.
Int J Biol Macromol ; 273(Pt 1): 132740, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825267

ABSTRACT

The cornea serves as an essential shield that protects the underlying eye from external conditions, yet it remains highly vulnerable to injuries that could lead to blindness and scarring if not promptly and effectively treated. Excessive inflammatory response constitute the primary cause of pathological corneal injury. This study aimed to develop effective approaches for enabling the functional repair of corneal injuries by combining nanoparticles loaded with anti-inflammatory agents and an injectable oxidized dextran/gelatin/borax hydrogel. The injectability and self-healing properties of developed hydrogels based on borate ester bonds and dynamic Schiff base bonds were excellent, improving the retention of administered drugs on the ocular surface. In vitro cellular assays and in vivo animal studies collectively substantiated the proficiency of probucol nanoparticle-loaded hydrogels to readily suppress proinflammatory marker expression and to induce the upregulation of anti-inflammatory mediators, thereby supporting rapid repair of rat corneal tissue following alkali burn-induced injury. As such, probucol nanoparticle-loaded hydrogels represent a prospective avenue to developing long-acting and efficacious therapies for ophthalmic diseases.


Subject(s)
Burns, Chemical , Corneal Injuries , Dextrans , Gelatin , Hydrogels , Wound Healing , Animals , Dextrans/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Gelatin/chemistry , Rats , Wound Healing/drug effects , Corneal Injuries/drug therapy , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Alkalies/chemistry , Oxidation-Reduction , Nanoparticles/chemistry , Cornea/drug effects , Cornea/metabolism , Cornea/pathology , Male , Eye Burns/drug therapy , Eye Burns/chemically induced , Eye Burns/pathology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Injections
2.
Biomed Khim ; 70(3): 168-175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38940206

ABSTRACT

The free radical and cytokine statuses of the cornea during its thermal burn and the possibility of its correction by lactoferrin have been studied in Soviet Chinchilla rabbits. The development of a corneal thermal burn was accompanied by the development of oxidative stress (increased levels of TBA-reactive substances and carbonyl derivatives of proteins, decreased activity of SOD and GPx enzymes) and a pronounced inflammatory reaction with increased levels of TNF-1α, IL-10, TGF-1ß. The use of lactoferrin had a pronounced therapeutic effect, which was manifested by accelerated healing, prevention of the development of complications (corneal perforations), a decrease in the severity of oxidative stress, an increase in the concentrations of TNF-1α (in the early stages), IL-10 (in the later stages), TGF-1ß (throughout the experiment). At the same time, by the end of regeneration more severe corneal opacification was recognized compared to the control group. This may be associated with an increased level of anti-inflammatory cytokines, especially TGF-1ß.


Subject(s)
Cornea , Lactoferrin , Oxidative Stress , Animals , Lactoferrin/pharmacology , Rabbits , Cornea/metabolism , Cornea/drug effects , Oxidative Stress/drug effects , Cytokines/metabolism , Eye Burns/metabolism , Eye Burns/drug therapy , Eye Burns/chemically induced , Eye Burns/pathology , Male , Free Radicals/metabolism , Corneal Injuries/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/pathology , Disease Models, Animal
3.
Exp Eye Res ; 244: 109942, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795839

ABSTRACT

Limbal stem cell deficiency (LSCD) is a clinically challenging eye disease caused by damage to limbal stem cells (LSCs). Currently, the international consensus classifies LSCD into three clinical stages based on the disease severity. However, no existing animal models attempt to replicate the varying degrees of LSCD observed in clinical cases. The present study demonstrates an easy-to-create, reproducible, and reliable mouse model of graded LSCD. To achieve mild, moderate, or severe LSCD, filter paper rings with a variety of central angles (90°, 180°, or 270°) are utilized to deliver alkali burns to different sizes of the limbal area (1, 2, or 3 quarters). The animal model has successfully resulted in the development of clinical signs and pathological manifestations in escalating severity that are similarly observed in the three clinical stages of LSCD. Our study thus provides new insights into distinct pathological features underlying different grades of LSCD and serves as a new tool for further exploring the disease mechanisms and developing new effective therapeutics for repairing damaged LSCs.


Subject(s)
Burns, Chemical , Corneal Diseases , Disease Models, Animal , Eye Burns , Limbus Corneae , Stem Cells , Animals , Limbus Corneae/pathology , Mice , Stem Cells/pathology , Corneal Diseases/pathology , Burns, Chemical/pathology , Eye Burns/chemically induced , Eye Burns/pathology , Mice, Inbred C57BL , Female , Limbal Stem Cell Deficiency
4.
Sci Rep ; 14(1): 12111, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802470

ABSTRACT

Alkaline burns to the cornea lead to loss of corneal transparency, which is essential for normal vision. We used a rat corneal alkaline burn model to investigate the effect of ophthalmic trimebutine solution on healing wounds caused by alkaline burns. Trimebutine, an inhibitor of the high-mobility group box 1-receptor for advanced glycation end products, when topically applied to the burned cornea, suppressed macrophage infiltration in the early phase and neutrophil infiltration in the late phase at the wound site. It also inhibited neovascularization and myofibroblast development in the late phase. Furthermore, trimebutine effectively inhibited interleukin-1ß expression in the injured cornea. It reduced scar formation by decreasing the expression of type III collagen. These findings suggest that trimebutine may represent a novel therapeutic strategy for corneal wounds, not only through its anti-inflammatory effects but also by preventing neovascularization.


Subject(s)
Alkalies , Burns, Chemical , Cornea , Disease Models, Animal , Eye Burns , Wound Healing , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Burns, Chemical/metabolism , Rats , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Alkalies/adverse effects , Cornea/metabolism , Cornea/pathology , Cornea/drug effects , Wound Healing/drug effects , Interleukin-1beta/metabolism , Male , Macrophages/drug effects , Macrophages/metabolism , Corneal Injuries/drug therapy , Corneal Injuries/metabolism , Corneal Injuries/pathology , Corneal Injuries/chemically induced , Inflammation/drug therapy , Inflammation/pathology , Inflammation/metabolism , Rats, Sprague-Dawley , Collagen Type III/metabolism , Receptor for Advanced Glycation End Products/metabolism , Anti-Inflammatory Agents/pharmacology , Ophthalmic Solutions , Myofibroblasts/metabolism , Myofibroblasts/drug effects
5.
Burns ; 50(6): 1614-1620, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38604821

ABSTRACT

PURPOSE: To evaluate the efficacy of topical erythropoietin for chemical burn induced scleral necrosis. METHODS: This study included 18 eyes of 16 patients with chemical burn induced scleral necrosis who presented within 6 weeks of the injury. In the prospective arm, 11 eyes received topical erythropoietin, 3000 IU/mL every 6 h, along with standard medical treatment. Retrospectively, we included 7 consecutive eyes of 7 patients who were managed with conventional treatment as historical control group. The main outcome measure was healing of avascular scleral lesions. The secondary outcome measure was complete re-epithelization of cornea. RESULTS: Mean patient age was 39.8 ± 16.2 years in the erythropoietin group, and they presented 16.6 ± 15.2 days after acute chemical injury. Scleral necrosis improved in all eyes after 30.7 ± 23.2 days of treatment with topical erythropoietin. Corneal epithelial defects were completely healed in 10 eyes 61.9 ± 50.7 days after the start of the medication. In comparison, standard medical treatment alone did not improve scleral necrosis in the historical control group, necessitating ocular surface reconstruction including conjunctival advancement (1 eye) and tenonplasty (6 eyes). CONCLUSION: The results of our study showed that topical erythropoietin was effective in the management of chemical burn induced scleral necrosis. This treatment could avoid ocular surface reconstruction procedures in inflamed eyes.


Subject(s)
Burns, Chemical , Erythropoietin , Eye Burns , Necrosis , Sclera , Humans , Burns, Chemical/drug therapy , Burns, Chemical/therapy , Erythropoietin/therapeutic use , Erythropoietin/administration & dosage , Male , Female , Adult , Middle Aged , Sclera/pathology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/therapy , Eye Burns/pathology , Prospective Studies , Retrospective Studies , Young Adult , Administration, Topical , Re-Epithelialization/drug effects , Aged , Adolescent , Wound Healing/drug effects , Treatment Outcome
6.
Exp Eye Res ; 238: 109739, 2024 01.
Article in English | MEDLINE | ID: mdl-38042515

ABSTRACT

Corneal alkali burns often occur in industrial production and daily life, combined with infection, and may cause severe eye disease. Oxidative stress and neovascularization (NV) are important factors leading to a poor prognosis. URP20 is an antimicrobial peptide that has been proven to treat bacterial keratitis in rats through antibacterial and anti-NV effects. Therefore, in this study, the protective effect and influence mechanism of URP20 were explored in a rat model of alkali burn together with pathogenic bacteria (Staphylococcus aureus and Escherichia coli) infection. In addition, human umbilical vein endothelial cells (HUVECs) and human corneal epithelial cells (HCECs) were selected to verify the effects of URP20 on vascularization and oxidative stress. The results showed that URP20 treatment could protect corneal tissue, reduce corneal turbidity, and reduce the NV pathological score. Furthermore, URP20 significantly inhibited the expression of the vascularization marker proteins VEGFR2 and CD31. URP20 also reduced the migration ability of HUVECs. In terms of oxidative stress, URP20 significantly upregulated SOD and GSH contents in corneal tissue and HCECs (treated with 200 µM H2O2) and promoted the expression of the antioxidant protein Nrf2/HO-1. At the same time, MDA and ROS levels were also inhibited. In conclusion, URP20 could improve corneal injury combined with bacterial infection in rats caused by alkali burns through antibacterial, anti-NV, and antioxidant activities.


Subject(s)
Bacterial Infections , Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Rats , Humans , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hydrogen Peroxide/pharmacology , Neovascularization, Pathologic/metabolism , Corneal Injuries/drug therapy , Human Umbilical Vein Endothelial Cells , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal , Alkalies/toxicity
7.
Ocul Surf ; 32: 26-38, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38151073

ABSTRACT

PURPOSE: Tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6) is upregulated in various pathophysiological contexts, where it has a diverse repertoire of immunoregulatory functions. Herein, we investigated the expression and function of TSG-6 during corneal homeostasis and after injury. METHODS: Human corneas, eyeballs from BALB/c (TSG-6+/+), TSG-6+/- and TSG-6-/- mice, human immortalized corneal epithelial cells and murine corneal epithelial progenitor cells were prepared for immunostaining and real time PCR analysis of endogenous expression of TSG-6. Mice were subjected to unilateral corneal debridement or alkali burn (AB) injuries and wound healing assessed over time using fluorescein stain, in vivo confocal microscopy and histology. RESULTS: TSG-6 is endogenously expressed in the human and mouse cornea and established corneal epithelial cell lines and is upregulated after injury. A loss of TSG-6 has no structural and functional effect in the cornea during homeostasis. No differences were noted in the rate of corneal epithelial wound closure between BALB/c, TSG-6+/- and TSG-6-/- mice. TSG-6-/- mice presented decreased inflammatory response within the first 24 h of injury and accelerated corneal wound healing following AB when compared to control mice. CONCLUSION: TSG-6 is endogenously expressed in the cornea and upregulated after injury where it propagates the inflammatory response following chemical injury.


Subject(s)
Burns, Chemical , Cell Adhesion Molecules , Epithelium, Corneal , Eye Burns , Wound Healing , Animals , Humans , Mice , Burns, Chemical/metabolism , Burns, Chemical/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Cornea/metabolism , Cornea/pathology , Corneal Injuries/chemically induced , Corneal Injuries/genetics , Corneal Injuries/metabolism , Corneal Injuries/pathology , Disease Models, Animal , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Eye Burns/chemically induced , Eye Burns/genetics , Eye Burns/metabolism , Eye Burns/pathology , Keratitis/metabolism , Keratitis/pathology , Mice, Inbred BALB C , Mice, Knockout , Microscopy, Confocal , Real-Time Polymerase Chain Reaction , Wound Healing/physiology
8.
Exp Eye Res ; 233: 109539, 2023 08.
Article in English | MEDLINE | ID: mdl-37315833

ABSTRACT

Alkali burn-induced corneal injury often causes inflammation and neovascularization and leads to compromised vision. We previously reported that rapamycin ameliorated corneal injury after alkali burns by methylation modification. In this study, we aimed to investigate the rapamycin-medicated mechanism against corneal inflammation and neovascularization. Our data showed that alkali burn could induce a range of different inflammatory response, including a stark upregulation of pro-inflammatory factor expression and an increase in the infiltration of myeloperoxidase- and F4/80-positive cells from the corneal limbus to the central stroma. Rapamycin effectively downregulated the mRNA expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1ß), toll-like receptor 4 (TLR4), nucleotide binding oligomerization domain-like receptors (NLR) family pyrin domain-containing 3 (NLRP3), and Caspase-1, and suppressed the infiltration of neutrophils and macrophages. Inflammation-related angiogenesis mediated by matrix metalloproteinase-2 (MMP-2) and rapamycin restrained this process by inhibiting the TNF-α upregulation in burned corneas of mice. Rapamycin also restrained corneal alkali burn-induced inflammation by regulating HIF-1α/VEGF-mediated angiogenesis and the serum cytokines TNF-α, IL-6, Interferon-gamma (IFN-γ) and granulocyte-macrophage colony-stimulating factor (GM-CSF). The findings of this study indicated rapamycin may reduce inflammation-associated infiltration of inflammatory cells, shape the expression of cytokines, and balance the regulation of MMP-2 and HIF-1α-mediated inflammation and angiogenesis by suppressing mTOR activation in corneal wound healing induced by an alkali injury. It offered novel insights relevant for a potent drug for treating corneal alkali burn.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Burns, Chemical/metabolism , Corneal Neovascularization/metabolism , Tumor Necrosis Factor-alpha/metabolism , Sirolimus/pharmacology , Sirolimus/therapeutic use , Alkalies/toxicity , Cornea/metabolism , Neovascularization, Pathologic/metabolism , Corneal Injuries/metabolism , Inflammation/metabolism , Cytokines/metabolism , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal
9.
Exp Eye Res ; 230: 109443, 2023 05.
Article in English | MEDLINE | ID: mdl-36948438

ABSTRACT

Alkali burns are one of the most common injuries used in corneal wound healing studies. Investigators have used different conditions to produce corneal alkali injuries that have varied in sodium hydroxide concentration, application methods, and duration of exposure. A critical factor in the subsequent corneal healing responses, including myofibroblast generation and fibrosis localization, is whether, or not, Descemet's membrane and the endothelium are injured during the initial exposure. After exposures that produce injuries confined to the epithelium and stroma, anterior stromal myofibroblasts and fibrosis are typical, with sparing of the posterior stroma. However, if there is also injury to Descemet's membrane and the endothelium, then myofibroblast generation and fibrosis is noted full corneal thickness, with predilection to the most anterior and most posterior stroma and a tendency for relative sparring of the central stroma that is likely related to the availability of TGF beta from the tears, epithelium, and the aqueous humor. A method is described where a 5 mm diameter circle of Whatman #1 filter paper wetted with only 30 µL of alkali solution is applied for 15 s prior to profuse irrigation in rabbit corneas. When 0.6N, or lower, NaOH is used, then the injury, myofibroblasts, and fibrosis generation are limited to the epithelium and stroma. Use of 0.75N NaOH triggers injury to Descemet's membrane and the corneal endothelium with fibrosis throughout the stroma, but rare corneal neovascularization (CNV) and persistent epithelial defects (PED). Use of 1N NaOH with this method produces greater stromal fibrosis and increased likelihood that CNV and PED will occur in individual corneas.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Animals , Rabbits , Corneal Stroma/pathology , Alkalies/toxicity , Burns, Chemical/pathology , Sodium Hydroxide/toxicity , Cornea/pathology , Corneal Injuries/pathology , Eye Burns/chemically induced , Eye Burns/pathology , Fibrosis , Reference Standards
10.
Int Immunopharmacol ; 116: 109680, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36739832

ABSTRACT

Alkali burn-induced corneal inflammation and subsequent corneal neovascularization (CNV) are major causes of corneal opacity and vision loss. M1 macrophages play a central role in inflammation and CNV. Therefore, modulation of M1 macrophage polarization is a promising strategy for corneal alkali burns. Here, we illustrate the effect and underlying mechanisms of upadacitinib on corneal inflammation and CNV induced by alkali burns in mice. The corneas of BALB/c mice were administered with 1 M NaOH for 30 s and randomly assigned to the vehicle group and the upadacitinib-treated group. Corneal opacity and corneal epithelial defects were assessed clinically. Quantitative real-time PCR (qRT-PCR), immunohistochemistry, and western blot analysis were performed to detect M1 macrophage polarization and CD31+ corneal blood vessels. The results showed that upadacitinib notably decreased corneal opacity, and promoted corneal wound healing. On day 7 and 14 after alkali burns, upadacitinib significantly suppressed CNV. Corneal alkali injury caused M1 macrophage recruitment in the cornea. In contrast to the vehicle, upadacitinib suppressed M1 macrophage infiltration and decreased the mRNA expression levels of inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, IL-1ß, and vascular endothelial growth factor A (VEGF-A) in alkali-injured corneas. Moreover, upadacitinib dose-dependently inhibited M1 macrophage polarization by suppressing interferon (IFN)-γ-/lipopolysaccharide-stimulated STAT1 activation in vitro. Our findings reveal that upadacitinib can efficiently alleviate alkali-induced corneal inflammation and neovascularization by inhibiting M1 macrophage infiltration. These data demonstrate that upadacitinib is an effective drug for the treatment of corneal alkali burns.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Corneal Opacity , Eye Burns , Keratitis , Mice , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Vascular Endothelial Growth Factor A/metabolism , Alkalies/adverse effects , Alkalies/metabolism , Cornea , Corneal Neovascularization/chemically induced , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Corneal Injuries/metabolism , Macrophages/metabolism , Keratitis/chemically induced , Keratitis/drug therapy , Inflammation/metabolism , Corneal Opacity/complications , Corneal Opacity/metabolism , Corneal Opacity/pathology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Disease Models, Animal
11.
Acta Biomater ; 158: 266-280, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36638943

ABSTRACT

Ocular alkali burn is a serious ophthalmic emergency. Highly penetrative alkalis cause strong inflammatory responses leading to persistent epithelial defects, acute corneal perforation and severe scarring, and thereby persistent pain, loss of vision and cicatricial sequelae. Early and effective anti-inflammation management is vital in reducing the severity of injury. In this study, a double network biomaterial was prepared by compounding electrospinning nanofibres of thioketal-containing polyurethane (PUTK) with a reactive oxygen species (ROS)-scavenging hydrogel (RH) fabricated by crosslinking poly(poly(ethylene glycol) methyl ether methacrylate-co-glycidyl methacrylate) with thioketal diamine and 3,3'-dithiobis(propionohydrazide). The developed PUTK/RH patch exhibited good transparency, high tensile strength and increased hydrophilicity. Most importantly, it demonstrated strong antioxidant activity against H2O2 and 2,2-di(4-tert-octylphenyl)-1-picryl-hydrazyl (DPPH). Next, a rat corneal alkali burn model was established, and the PUTK/RH patch was transplanted on the injured cornea. Reduced inflammatory cell infiltration was revealed by confocal microscopy, and lower expression levels of genes relative to inflammation, vascularization and scarring were identified by qRT-PCR and western blot. Fluorescein sodium dyeing, hematoxylin and eosin (H&E) staining and immunohistochemical staining confirmed that the PUTK/RH patch could accelerate corneal wound healing by inhibiting inflammation, promoting epithelial regeneration and decreasing scar formation. STATEMENT OF SIGNIFICANCE: Ocular alkali burn is a serious ophthalmic emergency, characterized with persistent inflammation and irreversible vision loss. Oxidative stress is the main pathological process at the acute inflammatory stage, during which combined use of glucocorticoids and amniotic membrane transplantation is the most widely accepted treatment. In this study, we fabricated a polyurethane electrospun nanofiber membrane functionalized with a ROS-scavenging hydrogel. This composite patch could be a promising amniotic membrane substitute, possessing with a transparent appearance, elasticity and anti-inflammation effect. It could be easily transplanted onto the alkali-burned corneas, resulting in a significant inhibition of stromal inflammation and accelerating the recovery of corneal transparency. The conception of ROS-scavenging wound patch may offer a new way for ocular alkali burn.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Rats , Animals , Cicatrix/pathology , Reactive Oxygen Species/metabolism , Burns, Chemical/therapy , Hydrogels/pharmacology , Hydrogels/metabolism , Hydrogen Peroxide/pharmacology , Polyurethanes/pharmacology , Cornea/pathology , Wound Healing , Corneal Injuries/metabolism , Inflammation/pathology , Eye Burns/metabolism , Eye Burns/pathology
12.
Exp Eye Res ; 223: 109190, 2022 10.
Article in English | MEDLINE | ID: mdl-35963307

ABSTRACT

Endogenously produced peptide growth factors such as keratinocyte growth factor-2 (KGF-2) and nerve growth factor (NGF) play a key role in the natural corneal wound healing process. However, this self-healing ability of the corneal tissue is often impaired in cases of severe corneal damage, as in corneal alkali injuries. In the present study, we investigated the clinical and histopathological effects of topical recombinant human keratinocyte growth factor-2 and nerve growth factor treatments in a rabbit model of corneal alkali burn. After induction of an alkali burn, 24 rabbits were divided equally into three groups: control group, KGF-2 group, and NGF group. Clinical parameters including epithelial healing, opacification, neovascularization and central corneal thickness were evaluated on the first (D1), seventh (D7) and fourteenth (D14) days after injury. Corneal histology was performed using hematoxylin/eosin (H&E) and Masson's Trichrome stains. Immunohistochemical staining for matrix metalloproteinase-2 (MMP-2), MMP-9 and transforming growth factor-ß (TGF-ß) was performed. On D14, the percentage of epithelial defect and opacity were significantly less in the KGF-2 and NGF groups compared to the control group (p < 0.05). There was no significant difference between the groups in central corneal thickness. In the evaluation of neovascularization on D14, the NGF group was significantly less vascularized than the control group (p = 0.011). Histological examination showed a significant increase in stromal edema and inflammation in the control group compared to both treatment groups (p < 0.05). There was also a significant difference between the NGF and control groups in histological evaluation of epithelial repair and vascularization (p < 0.05). When immunoreactivity of MMP-2, MMP-9 and TGF-ß was examined, there was a significant increase in the control group compared to the NGF group (p < 0.05). Taken together, both NGF and KGF-2 treatments were effective for early re-epithelialization and decrease in inflammation, opacity and neovascularization after corneal alkali burn. The inhibitory effect of NGF treatment on chemical-induced neovascularization was found to be superior to KGF-2 treatment.


Subject(s)
Burns, Chemical , Corneal Injuries , Eye Burns , Alkalies/toxicity , Animals , Burns, Chemical/metabolism , Corneal Injuries/pathology , Disease Models, Animal , Eosine Yellowish-(YS)/adverse effects , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Fibroblast Growth Factor 10/pharmacology , Hematoxylin/pharmacology , Hematoxylin/therapeutic use , Humans , Inflammation/drug therapy , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Nerve Growth Factor/pharmacology , Nerve Growth Factor/therapeutic use , Rabbits , Transforming Growth Factor beta/metabolism , Transforming Growth Factors/adverse effects , Wound Healing
13.
Exp Eye Res ; 220: 109093, 2022 07.
Article in English | MEDLINE | ID: mdl-35490838

ABSTRACT

The purpose of this study was to evaluate the effect of bovine colostrum (BC) in the regeneration of corneal epithelial cells on an ocular alkali burn model. Twenty-four C57BL/6 mice were categorized into two gender/age-matched groups for treatment. Two days after inducing a corneal alkali burn in all left eyes with 4 µl of sodium hydroxide 0.15 mol/l, both eyes of group 1 were treated with BC 4 times per day, and both eyes of group 2 were treated with isotonic saline solution (SS). The epithelial defect was photographed and measured by fluorescein staining on days two, four, seven, and ten. Ocular burn damage was assessed with a pre-established classification in clock hours from the limbus. After 10 days both eyes were processed, half of the group's corneas were assessed histopathologically, and the other half was used for pro/anti-inflammatory cytokine quantification using ELISA. BC treated (Group 1) corneas revealed significantly improved fluorescein staining score for limbal involvement when compared to SS treated (Group 2) corneas at days 4 (p = 0.013), 7 (p < 0.001), and 10 (p < 0.001), respectively. No differences were noted in limbal involvement at day 2 between the two groups (p > 0.99). The overall change (difference in slope) in fluorescein staining for limbal involvement between days 2 and 10 was -0.1669 (p = 0.006). Histologic examinations and cytokine measurements of group 2 demonstrated a strong inflammatory component compared to group 1. Our data indicates that topical application of BC facilitates corneal re-epithelialization and wound healing by suppressing the inflammatory process in an ocular alkali burn model.


Subject(s)
Burns, Chemical , Colostrum , Corneal Injuries , Eye Burns , Wound Healing , Animals , Burns, Chemical/pathology , Burns, Chemical/therapy , Cattle , Cornea/pathology , Corneal Injuries/pathology , Corneal Injuries/therapy , Cytokines , Eye Burns/pathology , Eye Burns/therapy , Female , Fluoresceins , Mice , Mice, Inbred C57BL , Pregnancy
14.
Invest Ophthalmol Vis Sci ; 63(4): 14, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35446346

ABSTRACT

Purpose: The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods: A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results: Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1ß and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions: FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.


Subject(s)
Burns, Chemical , Corneal Injuries , Corneal Neovascularization , Eye Burns , Alkalies/toxicity , Animals , Burns, Chemical/complications , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Corneal Injuries/chemically induced , Corneal Injuries/complications , Corneal Injuries/drug therapy , Corneal Neovascularization/chemically induced , Corneal Neovascularization/drug therapy , Corneal Neovascularization/metabolism , Endothelial Cells/metabolism , Eye Burns/pathology , Fibrosis , Inflammation/pathology , Mice , Neovascularization, Pathologic/metabolism , Rats , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism
15.
Am J Physiol Cell Physiol ; 321(3): C415-C428, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34260299

ABSTRACT

Leucine-rich α-2-glycoprotein-1 (LRG1) is a novel profibrotic factor that modulates transforming growth factor-ß (TGF-ß) signaling. However, its role in the corneal fibrotic response remains unknown. In the present study, we found that the LRG1 level increased in alkali-burned mouse corneas. In the LRG1-treated alkali-burned corneas, there were higher fibrogenic protein expression and neutrophil infiltration. LRG1 promoted neutrophil chemotaxis and CXCL-1 secretion. Conversely, LRG1-specific siRNA reduced fibrogenic protein expression and neutrophil infiltration in the alkali-burned corneas. The clearance of neutrophils effectively attenuated the LRG1-enhanced corneal fibrotic response, whereas the presence of neutrophils enhanced the effect of LRG1 on the fibrotic response in cultured TKE2 cells. In addition, the topical application of LRG1 elevated interleukin-6 (IL-6) and p-Stat3 levels in the corneal epithelium and in isolated neutrophils. The clearance of neutrophils inhibited the expression of p-Stat3 and IL-6 promoted by LRG1 in alkali-burned corneas. Moreover, neutrophils significantly increased the production of IL-6 and p-Stat3 promoted by LRG1 in TKE2 cells. Furthermore, the inhibition of Stat3 signaling by S3I-201 decreased neutrophil infiltration and alleviated the LRG1-enhanced corneal fibrotic response in the alkali-burned corneas. S3I-201 also reduced LRG1 or neutrophil-induced fibrotic response in TKE2 cells. In conclusion, LRG1 promotes the corneal fibrotic response by stimulating neutrophil infiltration via the modulation of the IL-6/Stat3 signaling pathway. Therefore, LRG1 could be targeted as a promising therapeutic strategy for patients with corneal fibrosis.


Subject(s)
Burns, Chemical/genetics , Chemotaxis/drug effects , Eye Burns/genetics , Glycoproteins/genetics , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Alkalies , Aminosalicylic Acids/pharmacology , Animals , Benzenesulfonates/pharmacology , Burns, Chemical/drug therapy , Burns, Chemical/metabolism , Burns, Chemical/pathology , Cell Line , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Eye Burns/chemically induced , Eye Burns/drug therapy , Eye Burns/pathology , Fibrosis/prevention & control , Gene Expression Regulation , Glycoproteins/antagonists & inhibitors , Glycoproteins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Neutrophil Infiltration/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Neutrophils/pathology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
16.
Elife ; 102021 06 04.
Article in English | MEDLINE | ID: mdl-34085926

ABSTRACT

Disorders of the transparent cornea affect millions of people worldwide. However, how to maintain and/or regenerate this organ remains unclear. Here, we show that Rela (encoding a canonical NF-κB subunit) ablation in K14+ corneal epithelial stem cells not only disrupts corneal regeneration but also results in age-dependent epithelial deterioration, which triggers aberrant wound-healing processes including stromal remodeling, neovascularization, epithelial metaplasia, and plaque formation at the central cornea. These anomalies are largely recapitulated in normal mice that age naturally. Mechanistically, Rela deletion suppresses expression of Aldh1a1, an enzyme required for retinoic acid synthesis from vitamin A. Retinoic acid administration blocks development of ocular anomalies in Krt14-Cre; Relaf/f mice and naturally aged mice. Moreover, epithelial metaplasia and plaque formation are preventable by inhibition of angiogenesis. This study thus uncovers the major mechanisms governing corneal maintenance, regeneration, and aging and identifies the NF-κB-retinoic acid pathway as a therapeutic target for corneal disorders.


Subject(s)
Burns, Chemical/drug therapy , Cellular Senescence/drug effects , Corneal Neovascularization/prevention & control , Epithelium, Corneal/drug effects , Eye Burns/drug therapy , Regeneration/drug effects , Stem Cells/drug effects , Transcription Factor RelA/metabolism , Tretinoin/pharmacology , Age Factors , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/metabolism , Animals , Burns, Chemical/etiology , Burns, Chemical/metabolism , Burns, Chemical/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Corneal Neovascularization/metabolism , Corneal Neovascularization/pathology , Corneal Stroma/drug effects , Corneal Stroma/metabolism , Corneal Stroma/pathology , Disease Models, Animal , Epithelium, Corneal/metabolism , Epithelium, Corneal/pathology , Eye Burns/chemically induced , Eye Burns/metabolism , Eye Burns/pathology , Mice, Knockout , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/metabolism , Signal Transduction , Stem Cells/metabolism , Stem Cells/pathology , Transcription Factor RelA/genetics
17.
Toxicol Lett ; 349: 124-133, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34153409

ABSTRACT

With a possibility for the use of chemical weapons in battlefield or in terrorist activities, effective therapies against the devastating ocular injuries, from their exposure, are needed. Oxygen plays a vital role in ocular tissue preservation and wound repair. We tested the efficacy of supersaturated oxygen emulsion (SSOE) in reducing ex vivo corneal and keratocyte injury from chloropicrin (CP). CP, currently used as a pesticide, is a chemical threat agent like the vesicating mustard agents and causes severe corneal injury. Since our previous study in human corneal epithelial cells showed the treatment potential of SSOE (55 %), we further tested its efficacy in an ex vivo CP-induced rabbit corneal injury model. Corneas were exposed to CP (700 nmol) for 2 h, washed and cultured with or without SSOE for 24 h or 96 h. At 96 h post CP exposure, SSOE treatment presented a healing tendency of the corneal epithelial layer, and abrogated the CP-induced epithelial apoptotic cell death. SSOE treatment also reduced the CP induced DNA damage (H2A.X phosphorylation) and inflammatory markers (e.g. MMP9, IL-21, MIP-1ß, TNFα). Further examination of the treatment efficacy of SSOE alone or in combination with other therapies in in vivo cornea injury models for CP and vesicants, is warranted.


Subject(s)
Burns, Chemical/drug therapy , Cornea/drug effects , Eye Burns/drug therapy , Hydrocarbons, Chlorinated/toxicity , Oxygen/pharmacology , Animals , Apoptosis/drug effects , Burns, Chemical/etiology , Burns, Chemical/metabolism , Burns, Chemical/pathology , Cornea/metabolism , Cornea/pathology , Cytokines/metabolism , DNA Damage , Emulsions , Eye Burns/chemically induced , Eye Burns/metabolism , Eye Burns/pathology , Inflammation Mediators/metabolism , Male , Organ Culture Techniques , Rabbits , Wound Healing/drug effects
18.
Int J Mol Sci ; 22(11)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070266

ABSTRACT

The purpose of this work is to describe the use of Fibrin-Plasma Rich in Growth Factors (PRGF) membranes for the treatment of a rabbit alkali-burn lesion. For this purpose, an alkali-burn lesion was induced in 15 rabbits. A week later, clinical events were evaluated and rabbits were divided into five treatment groups: rabbits treated with medical treatment, with a fibrin-PRGF membrane cultured with autologous or heterologous rabbit Limbal Epithelial Progenitor Cells (LEPCs), with a fibrin-PRGF membrane in a Simple Limbal Epithelial Transplantation and with a fibrin-PRGF membrane without cultured LEPCs. After 40 days of follow-up, corneas were subjected to histochemical examination and immunostaining against corneal or conjunctival markers. Seven days after alkali-burn lesion, it was observed that rabbits showed opaque cornea, new blood vessels across the limbus penetrating the cornea and epithelial defects. At the end of the follow-up period, an improvement of the clinical parameters analyzed was observed in transplanted rabbits. However, only rabbits transplanted with cultured LEPCs were positive for corneal markers. Otherwise, rabbits in the other three groups showed positive staining against conjunctival markers. In conclusion, fibrin-PRGF membrane improved the chemically induced lesions. Nonetheless, only fibrin-PRGF membranes cultured with rabbit LEPCs were able to restore the corneal surface.


Subject(s)
Burns, Chemical , Epithelial Cells , Eye Burns , Fibrin/pharmacology , Plasma , Stem Cell Transplantation , Stem Cells , Animals , Autografts , Burns, Chemical/metabolism , Burns, Chemical/pathology , Burns, Chemical/therapy , Epithelial Cells/metabolism , Epithelial Cells/pathology , Epithelial Cells/transplantation , Eye Burns/metabolism , Eye Burns/pathology , Eye Burns/therapy , Limbus Corneae/metabolism , Limbus Corneae/pathology , Rabbits , Stem Cells/metabolism , Stem Cells/pathology
19.
Invest Ophthalmol Vis Sci ; 62(4): 28, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33891681

ABSTRACT

Purpose: Corneal alkali burns (CABs) are a common clinical ocular disease, presenting a poor prognosis. Although some long noncoding RNAs (lncRNAs) reportedly play a key role in epigenetic regulation associated with CABs, studies regarding the lncRNA signature in CABs remain rare and elusive. Methods: A CAB model was established in C57BL/6J mice and profiling of lncRNA expressions was performed by RNA-Seq. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to predicate the related pathological pathways and candidate genes. RT-qPCR was used to verify the expression pattern of lncRNAs and related mRNAs, both in vitro and in vivo. Data were statistically analyzed by GraphPad Prism version 6.0. Results: In all, 4436 aberrantly expressed lncRNAs were identified in CAB mice when compared with control mice. In the top 13 aberrantly expressed lncRNAs, Bc037156 and 4930511E03Rik were confirmed as the most significantly altered lncRNAs. Pathway analysis revealed that mitogen-activated protein kinase (MAPK) signaling pathway was most enriched. Following 4930511E03Rik siRNA treated, Srgn, IL-1ß and Cxcr2 were significant upregulated in corneal epithelial cells, corneal keratocytes, and bone marrow dendritic cells, with NaOH treatment. Moreover, after Bc037156 siRNA treated, expression levels of IL-1ß and Srgn were significantly downregulated in the three cell lines. Conclusions: Our study suggests that Bc037156 and 4930511E03Rik may be involved in inflammation, immune response, and neovascularization by regulating Srgn, IL-1ß, and Cxcr2 expression after CAB. These candidate lncRNAs and mRNAs may be the potential targets for the treatment strategy of the alkali injured cornea.


Subject(s)
Burns, Chemical/genetics , Corneal Injuries/genetics , Epigenomics/methods , Eye Burns/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Transcriptome/genetics , Alkalies/toxicity , Animals , Burns, Chemical/metabolism , Burns, Chemical/pathology , Corneal Injuries/chemically induced , Corneal Injuries/metabolism , Disease Models, Animal , Eye Burns/metabolism , Eye Burns/pathology , Female , Mice , Mice, Inbred C57BL , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism
20.
Exp Eye Res ; 207: 108568, 2021 06.
Article in English | MEDLINE | ID: mdl-33839112

ABSTRACT

Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 µL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.


Subject(s)
Burns, Chemical/prevention & control , Corneal Neovascularization/prevention & control , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Eye Burns/chemically induced , Pyrrolidines/therapeutic use , Valine/analogs & derivatives , Angiogenesis Inhibitors , Animals , Biomarkers/metabolism , Blotting, Western , Burns, Chemical/enzymology , Burns, Chemical/pathology , Corneal Neovascularization/enzymology , Corneal Neovascularization/pathology , Epithelium, Corneal/drug effects , Epithelium, Corneal/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Eye Burns/enzymology , Eye Burns/pathology , Eye Proteins/metabolism , Humans , Immunoprecipitation , Lymphangiogenesis/drug effects , Mice , Mice, Inbred C57BL , Phosphorylation , Real-Time Polymerase Chain Reaction , Sodium Hydroxide , Valine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...