Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.013
Filter
1.
BMC Plant Biol ; 24(1): 615, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937722

ABSTRACT

Amorphophallus is a perennial monocotyledonous herbaceous plant native to the southwestern region of China, widely used in various fields such as food processing, biomedicine and chemical agriculture. However, Amorphophallus is a typical thermolabile plant, and the continuous high temperature in summer have seriously affected the growth, development and economic yield of Amorphophallus in recent years. Calmodulin (CaM), a Ca2+ sensor ubiquitous in eukaryotes, is the most important multifunctional receptor protein in plant cells, which affects plant stress resistance by participating in the activities of a variety of signaling molecules. In this study, the key gene AaCaM3 for the Ca2+-CaM regulatory pathway was obtained from A. albus, the sequence analysis confirmed that it is a typical calmodulin. The qRT-PCR results demonstrated that with the passage of heat treatment time, the expression of AaCaM3 was significantly upregulated in A. albus leaves. Subcellular localization analysis revealed that AaCaM3 localized on the cytoplasm and nucleus. Meanwhile, heterologous transformation experiments have shown that AaCaM3 can significantly improve the heat tolerance of Arabidopsis under heat stress. The promoter region of AaCaM3 was sequenced 1,338 bp by FPNI-PCR and GUS staining assay showed that the promoter of AaCaM3 was a high-temperature inducible promoter. Yeast one-hybrid analysis and Luciferase activity reporting system analysis showed that the AaCaM3 promoter may interact with AaHSFA1, AaHSFA2c, AaHSP70, AaDREB2a and AaDREB2b. In conclusion, this study provides new ideas for further improving the signal transduction network of high-temperature stress in Amorphophallus.


Subject(s)
Arabidopsis , Calmodulin , Plant Proteins , Calmodulin/metabolism , Calmodulin/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Hot Temperature , Fabaceae/genetics , Fabaceae/physiology , Fabaceae/metabolism , Plants, Genetically Modified , Stress, Physiological/genetics , Promoter Regions, Genetic
2.
Int J Biol Macromol ; 273(Pt 2): 133127, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876245

ABSTRACT

In this work, the metabolomics, physicochemical and in vitro digestion properties of black beans influenced by different calcium ion solutions (0, 0.5 %, 1 %, and 2 %) were explored. The addition of calcium ions had a significant effect on the metabolic processing of black beans, including 16 differential metabolites and 4 metabolic pathways related to the cell wall. From the results of FT-IR and ICP-OES, it was confirmed that calcium ions can interact with COO- in non-methylated galacturonic acid in pectin to form calcium carboxylate strengthening the middle lamellae of the cell wall. Based on this mechanism, the soaked beans with an intact and dense cell structure were verified by the analyses of SEM and CLSM. Compared with other soaked beans, BB-2 exhibited lower cell permeability with electrical conductivity value decreased to 0.60 µs·cm-1. Additionally, BB-2 demonstrated slower digestion properties with digestion rate coefficient at 0.0020 min-1 and digestion extent only at 30.83 %, which is attributed to its increasingly compact cell wall and densely cellular matrix. This study illustrates the effect of calcium ions on the cellular structure of black beans, providing an effective process method for low glycemic index diets.


Subject(s)
Calcium , Cell Wall , Metabolomics , Pectins , Pectins/pharmacology , Pectins/chemistry , Pectins/metabolism , Cell Wall/metabolism , Cell Wall/chemistry , Calcium/metabolism , Digestion/drug effects , Ions , Phaseolus/chemistry , Fabaceae/chemistry , Chemical Phenomena , Spectroscopy, Fourier Transform Infrared
3.
Sci Total Environ ; 945: 173923, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38880144

ABSTRACT

Rhizobium inoculation has been widely applied to alleviate heavy metal (HM) stress in legumes grown in contaminated soils, but it has generated inconsistent results with regard to HM accumulation in plant tissues. Here, we conducted a meta-analysis to assess the performance of Rhizobium inoculation for regulating HM in legumes and reveal the general influencing factors and processes. The meta-analysis showed that Rhizobium inoculation in legumes primarily increased the total HM uptake by stimulating plant biomass growth rather than HM phytoavailability. Inoculation had no significant effect on the average shoot HM concentration (p > 0.05); however, it significantly increased root HM uptake by 61 % and root HM concentration by 7 % (p < 0.05), indicating safe agricultural production while facilitating HM phytostabilisation. Inoculation decreased shoot HM concentrations and increased root HM uptake in Vicia, Medicago and Glycine, whereas it increased shoot HM concentrations in Sulla, Cicer and Vigna. The effects of inoculation on shoot biomass were suppressed by nitrogen fertiliser and native microorganisms, and the effect on shoot HM concentration was enhanced by high soil pH, organic matter content, and phosphorous content. Inoculation-boosted shoot nutrient concentration was positively correlated with increased shoot biomass, whereas the changes in pH and organic matter content were insufficient to significantly affect accumulation outcomes. Nitrogen content changes in the soil were positively correlated with changes in root HM concentration and uptake, whereas nitrogen translocation changes in the tissues were positively correlated with changes in HM translocation. Phosphorus solubilisation could improve HM phytoavailability at the expense of slight biomass promotion. These results suggest that the diverse growth-promoting characteristics of Rhizobia influence the trade-off between biomass-HM phytoavailability and HM translocation, impacting HM accumulation outcomes. Our findings can assist in optimising the utilisation of legume-Rhizobium systems in HM-contaminated soils.


Subject(s)
Fabaceae , Metals, Heavy , Rhizobium , Soil Pollutants , Fabaceae/metabolism , Soil Pollutants/metabolism , Metals, Heavy/metabolism , Rhizobium/physiology , Biodegradation, Environmental , Soil/chemistry , Plant Roots/microbiology , Plant Roots/metabolism
5.
J Texture Stud ; 55(3): e12846, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899530

ABSTRACT

Around the world, the market for plant-derived beverages is one of the fastest-expanding segments in the functional and specialty beverage areas of newer food product development. Consumers are increasingly likely to choose alternatives to bovine beverages due to factors including lactose intolerance, hypercholesterolemia prevalence, allergies to bovine beverages, and preference for vegan diets that contain functionally active ingredients with health-promoting characteristics. Due to health, ecological, and ethical concerns, many customers are interested in reducing their usage of animal products like bovine milk. A variety of plant-based beverage substitutes are being created by the food sector as a result. To create viable alternatives, it is first necessary to provide an overview of the chemical composition, structure, features, and nutritional attributes of ordinary bovine milk. Sensory acceptability in the case of substitutes for beverages made from legumes is a significant barrier to their widespread acceptance, and thus saliva acts as a sophisticated fluid that serves a variety of purposes in the cavity of the mouth. Designing and producing next-generation plant-based beverages that mimic the physicochemical and functional qualities of conventional bovine-based beverages is gaining popularity, and many of these products can be thought of as colloidal materials that contain the particles or polymers that give them their unique qualities NG-PB foods can have a wide range of rheological qualities, such as fluids with low viscosity (such as plant-based beverages), high-viscosity liquids (like creams), soft liquids (like yogurt), as well as hard solids (such as some cheeses).


Subject(s)
Beverages , Milk , Humans , Animals , Beverages/analysis , Milk/chemistry , Cattle , Taste , Rheology , Mouth , Food Handling/methods , Saliva/chemistry , Viscosity , Fabaceae
7.
Curr Microbiol ; 81(8): 238, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38907867

ABSTRACT

In the current study, thirty bacterial strains isolated from the rhizosphere of Clerodendrum infortunatum L. were evaluated for the properties related to the plant growth promotion and disease resistance. Here, all the selected strains were screened for its antagonistic effect towards the phytopathogen Sclerotium rolfsii and also for the production of bioactive compounds known to promote the plant growth. Among these isolates, CiRb1 and CiRb16 were observed to have a broad range of plant beneficial features and were identified as Bacillus licheniformis and Bacillus velezensis respectively. Both the isolates were also demonstrated to produce the volatile organic compounds (VOCs) responsible for the growth enhancement in Brassica nigra (L.) and growth inhibition of S. rolfsii. Talc based formulations made out of both B. licheniformis and B. velezensis were further demonstrated to augment the plant growth and protection against S. rolfsii in Vigna unguiculata (L.) Walp. By the GC-MS based analysis, undecane could also be detected in the methanolic extracts prepared from both B. licheniformis and B. velezensis. Here, the selected rhizobacterial isolates were found to promote the plant growth and disease resistance through both direct and VOC mediated mechanisms. The results of the study hence reveal both B. licheniformis and B. velezensis have the potential in field application to promote the growth and control of plant diseases.


Subject(s)
Bacillus , Clerodendrum , Plant Diseases , Rhizosphere , Volatile Organic Compounds , Bacillus/isolation & purification , Bacillus/metabolism , Bacillus/growth & development , Plant Diseases/microbiology , Plant Diseases/prevention & control , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/pharmacology , Clerodendrum/microbiology , Clerodendrum/growth & development , Basidiomycota/growth & development , Basidiomycota/metabolism , Fabaceae/microbiology , Fabaceae/growth & development , Soil Microbiology , Disease Resistance , Ascomycota/growth & development
8.
Toxicon ; 246: 107794, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38851021

ABSTRACT

Teratogenic plants can be found in pastures in different parts of the world and represent a threat to the reproduction of ruminants. In the northeast region of Brazil, several studies have indicated that Cenostigma pyramidale (Tul.) Gagnon & G.P.Lewis is one of the main poisonous plants that causes reproductive problems in sheep and goats. In this context, the present study reviewed spontaneous and experimental poisonings reports by C. pyramidale in sheep and goats, as well as analyzing the phytochemical evidence related to this species. The scientific documents were retrieved from different databases and, after applying the selection criteria, a total of 16 articles published between 2000 and 2024 were included in this review. Cenostigma pyramidale causes embryonic loss, abortion, and congenital malformations in pregnant sheep and goats in the Brazilian semi-arid region. The main malformations observed in newborn animals are arthrogryposis, scoliosis, micrognathia, multiple skull deformities, cleft palate, and brachygnathism. Many secondary metabolites have already been isolated from C. pyramidale, however, to date, no evidence has been found regarding the possible teratogenic compounds that occur in this plant. From this perspective, new phytochemical studies are necessary to help unravel the mechanisms of action of embryotoxic agents from C. pyramidale.


Subject(s)
Fabaceae , Phytochemicals , Plant Poisoning , Teratogens , Animals , Plant Poisoning/veterinary , Brazil/epidemiology , Teratogens/toxicity , Pregnancy , Sheep , Female , Goats , Plants, Toxic/toxicity , Teratogenesis/drug effects , Sheep Diseases/chemically induced , Sheep Diseases/epidemiology
9.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928379

ABSTRACT

Stylo (Stylosanthes spp.) is an important pasture legume with strong aluminum (Al) resistance. However, the molecular mechanisms underlying its Al tolerance remain fragmentary. Due to the incomplete genome sequence information of stylo, we first conducted full-length transcriptome sequencing for stylo root tips treated with and without Al and identified three Snakin/GASA genes, namely, SgSnakin1, SgSnakin2, and SgSnakin3. Through quantitative RT-PCR, we found that only SgSnakin1 was significantly upregulated by Al treatments in stylo root tips. Histochemical localization assays further verified the Al-enhanced expression of SgSnakin1 in stylo root tips. Subcellular localization in both tobacco and onion epidermis cells showed that SgSnakin1 localized to the cell wall. Overexpression of SgSnakin1 conferred Al tolerance in transgenic Arabidopsis, as reflected by higher relative root growth and cell vitality, as well as lower Al concentration in the roots of transgenic plants. Additionally, overexpression of SgSnakin1 increased the activities of SOD and POD and decreased the levels of O2·- and H2O2 in transgenic Arabidopsis in response to Al stress. These findings indicate that SgSnakin1 may function in Al resistance by enhancing the scavenging of reactive oxygen species through the regulation of antioxidant enzyme activities.


Subject(s)
Aluminum , Arabidopsis , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Reactive Oxygen Species , Aluminum/toxicity , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/drug effects , Fabaceae/metabolism , Fabaceae/genetics , Fabaceae/drug effects , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/genetics , Hydrogen Peroxide/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Nicotiana/drug effects
10.
Nutrients ; 16(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931205

ABSTRACT

Flemingia philippinensis, a polyphenol-rich plant, holds potential for improving inflammation, but its mechanisms are not well understood. Therefore, this study employed network pharmacology and molecular docking to explore the mechanism by which Flemingia philippinensis ameliorates inflammation. In this study, 29 kinds of active ingredients were obtained via data mining. Five main active components were screened out for improving inflammation, which were flemichin D, naringenin, chrysophanol, genistein and orobol. In total, 52 core targets were identified, including AKT serine/threonine kinase 1 (AKT1), tumor necrosis factor (TNF), B-cell lymphoma-2 (BCL2), serum albumin (ALB), and estrogen receptor 1 (ESR1). Gene ontology (GO) enrichment analysis identified 2331 entries related to biological processes, 98 entries associated with cellular components, and 203 entries linked to molecular functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis yielded 149 pathways, including those involved in EGFR tyrosine kinase inhibitor resistance, endocrine resistance, and the PI3K-Akt signaling pathway. Molecular docking results showed strong binding effects between the main active components and the core targets, with binding energies less than -5 kcal/mol. In summary, this study preliminarily elucidated the underlying mechanisms by which Flemingia philippinensis, through a multi-component, multi-target, and multi-pathway approach, ameliorates inflammation. This provides a theoretical foundation for the subsequent application of Flemingia philippinensis in inflammation amelioration.


Subject(s)
Inflammation , Molecular Docking Simulation , Network Pharmacology , Inflammation/drug therapy , Humans , Signal Transduction/drug effects , Fabaceae/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry
11.
Biochem Soc Trans ; 52(3): 1419-1430, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38779952

ABSTRACT

Legumes house nitrogen-fixing endosymbiotic rhizobia in specialised polyploid cells within root nodules. This results in a mutualistic relationship whereby the plant host receives fixed nitrogen from the bacteria in exchange for dicarboxylic acids. This plant-microbe interaction requires the regulation of multiple metabolic and physiological processes in both the host and symbiont in order to achieve highly efficient symbiosis. Recent studies have showed that the success of symbiosis is influenced by the circadian clock of the plant host. Medicago and soybean plants with altered clock mechanisms showed compromised nodulation and reduced plant growth. Furthermore, transcriptomic analyses revealed that multiple genes with key roles in recruitment of rhizobia to plant roots, infection and nodule development were under circadian control, suggesting that appropriate timing of expression of these genes may be important for nodulation. There is also evidence for rhythmic gene expression of key nitrogen fixation genes in the rhizobium symbiont, and temporal coordination between nitrogen fixation in the bacterial symbiont and nitrogen assimilation in the plant host may be important for successful symbiosis. Understanding of how circadian regulation impacts on nodule establishment and function will identify key plant-rhizobial connections and regulators that could be targeted to increase the efficiency of this relationship.


Subject(s)
Fabaceae , Gene Expression Regulation, Plant , Nitrogen Fixation , Rhizobium , Symbiosis , Rhizobium/physiology , Rhizobium/metabolism , Fabaceae/microbiology , Fabaceae/metabolism , Circadian Rhythm/physiology , Root Nodules, Plant/microbiology , Root Nodules, Plant/metabolism , Circadian Clocks/physiology , Circadian Clocks/genetics
12.
Plant Signal Behav ; 19(1): 2349868, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38743594

ABSTRACT

The purpose of this study was to analyze the role of transcription factor in Desmodium styracifolium, proving that the DsWRKY6 transcription factor was related to the plant phenotypes of Desmodium styracifolium - cv. 'GuangYaoDa1' and it could be used in molecular-assisted breeding. 'GuangYaoDa1' was used as the material and its DNA was the template to clone DsWRKY6, the transgenic Arabidopsis thaliana line was constructed by agrobacterium tumefaciens­mediated transformation. Transgenic Arabidopsis thaliana was cultivated to study phenotype and physiological and biochemical indexes. Phenotypic observation showed that DsWRKY6 transgenic Arabidopsis thaliana had a faster growth rate while compared with the control group, they had longer lengths of main stem, lateral branches of cauline leaves, and root, but a lower number of cauline leaves and lateral branches of cauline leaves. And it also showed that their flowering and fruiting periods were advanced. The results of physiological and biochemical indexes showed that the relative expressions of DsWRKY6 increased and the abscisic acid content significantly increased in DsWRKY6 transgenic Arabidopsis thaliana compared with the control group. According to the above results, DsWRKY6 could regulate the advancing of flowering and fruiting periods caused by the improvement of abscisic acid content, and expression of the DsWRKY6 transcription factor might be the cause of the upright growth of 'GuangYaoDa1'.


Subject(s)
Cloning, Molecular , Genes, Plant , Transcription Factors , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Fabaceae/genetics , Fabaceae/metabolism , Gene Expression Regulation, Plant , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Transcription Factors/metabolism , Transcription Factors/genetics
13.
Exp Parasitol ; 262: 108771, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723847

ABSTRACT

Toxoplasmosis affects about one-third of the world's population. The disease treatment methods pose several side effects and do not efficiently eliminate the parasite, making the search for new therapeutic approaches necessary. We aimed to assess the anti-Toxoplasma gondii activity of four Copaifera oleoresins (ORs) and two isolated diterpene acids, named ent-kaurenoic and ent-polyalthic acid. We used HeLa cells as an experimental model of toxoplasmosis. Uninfected and infected HeLa cells were submitted to the treatments, and the parasite intracellular proliferation, cytokine levels and ROS production were measured. Also, tachyzoites were pre-treated and the parasite invasion was determined. Finally, an in silico analysis was performed to identify potential parasite targets. Our data show that the non-cytotoxic concentrations of ORs and diterpene acids controlled the invasion and proliferation of T. gondii in HeLa cells, thus highlighting the possible direct action on parasites. In addition, some compounds tested controlled parasite proliferation in an irreversible manner. An additional and non-exclusive mechanism of action involves the modulation of host cell components, by affecting the upregulation of the IL-6. Additionally, molecular docking suggested that ent-polyalthic acid has a high affinity for the active site of the TgCDPK1 protein. Copaifera ORs have great antiparasitic activity against T. gondii, and this effect can be partially explained by the presence of the isolated compounds ent-kaurenoic and ent-polyalthic acid.


Subject(s)
Diterpenes , Fabaceae , Plant Extracts , Toxoplasma , HeLa Cells , Humans , Diterpenes/pharmacology , Diterpenes/isolation & purification , Diterpenes/chemistry , Toxoplasma/drug effects , Toxoplasma/growth & development , Fabaceae/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism , Cytokines/metabolism , Interleukin-6/metabolism , Molecular Docking Simulation
14.
Article in English | MEDLINE | ID: mdl-38743471

ABSTRACT

Rhizobia are bacteria that form nitrogen-fixing nodules in legume plants. The sets of genes responsible for both nodulation and nitrogen fixation are carried in plasmids or genomic islands that are often mobile. Different strains within a species sometimes have different host specificities, while very similar symbiosis genes may be found in strains of different species. These specificity variants are known as symbiovars, and many of them have been given names, but there are no established guidelines for defining or naming them. Here, we discuss the requirements for guidelines to describe symbiovars, propose a set of guidelines, provide a list of all symbiovars for which descriptions have been published so far, and offer a mechanism to maintain a list in the future.


Subject(s)
Rhizobium , Symbiosis , Rhizobium/genetics , Rhizobium/classification , Fabaceae/microbiology , Nitrogen Fixation , Root Nodules, Plant/microbiology , Guidelines as Topic
15.
Maturitas ; 186: 108012, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38705818

ABSTRACT

INTRODUCTION: Data on nutrient and diet quality outcomes when additional beans are consumed as part of the typical American dietary pattern are scarce. The purpose of this study was to assess the effect of increased bean consumption, in the typical American dietary pattern, on the intake of shortfall nutrients and overall diet quality. METHODS: Using data from the US National Health and Nutrition Examination Survey, 2001-2018, the current analyses modeled the addition of one and two servings of canned and dried beans in all adults (N = 44,574; ≥19 y), younger adults (N = 23,554; 19-50 y) and older adults (N = 21,020; ≥51 y). The beans considered were kidney beans, black beans, chickpeas, and pinto beans. RESULTS: The modeling of beans to the typical American dietary pattern resulted in significant increases in the intake of several shortfall nutrients, including dietary fiber, potassium, magnesium, iron, folate, and choline (p's < 0.0001). Modeling 1 and 2 servings of beans daily to the US typical dietary pattern significantly increased overall diet quality in all adult age groups considered. Total diet quality, as measured by Healthy Eating Index-2015 scores, was 15-16 % greater with an additional serving of beans and 19-20 % higher with 2 servings of beans relative to the US typical dietary pattern (p values<0.0001). CONCLUSIONS: Dietary patterns that are rich in beans are associated with significantly higher diet quality scores and greater intake of shortfall nutrients, including nutrients of public health concern. Dietary guidance should consider the health benefits associated with the promotion of increased consumption of canned and dry beans in dietary patterns as benefits seen in younger adults continue to older adulthood.


Subject(s)
Diet , Fabaceae , Nutrition Surveys , Humans , Adult , Middle Aged , Diet/statistics & numerical data , Young Adult , United States , Female , Male , Aged , Nutrients , Dietary Fiber/administration & dosage , Dietary Patterns
16.
Plant Foods Hum Nutr ; 79(2): 374-380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750193

ABSTRACT

Desmodium caudatum extracts (DCE) were investigated for their potential therapeutic effects on diabetic nephropathy (DN). In our study, the high-fat diet (HFD) / streptozotocin (STZ)-induced DN model in C57BL/6 mice was treated with 100 mg/kg, 200 mg/kg DCE. The results showed that DCE decreased biochemical parameters and proteinuria levels. The kidney sections staining indicated that DCE treatment recovered glomerular atrophy and alleviated lipid droplets in the glomerular. Additionally, DCE inhibited lipid and glycogen accumulation down-regulated the expression of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FAS) proteins. DCE also reduced collagenous fibrous tissue and the expression of transforming growth factor-ß1 (TGF-ß1) and alpha-smooth muscle actin (α-SMA) through Masson's trichrome staining and immunohistochemical analysis. We found that DCE alleviated hydroxyproline content, and epithelial-mesenchymal transition (EMT). Besides, the results shown that DCE enhanced the antioxidant enzymes to mitigate fibrosis by reducing oxidative stress. In conclusion, our study provided evidence of the protective effect of DCE which down-regulated hyperglycemia, hyperlipidemia and inhibition of TGF-ß1 and EMT pathway but elevated antioxidant, suggesting its therapeutic implication for DN.


Subject(s)
Diabetic Nephropathies , Diet, High-Fat , Mice, Inbred C57BL , Oxidative Stress , Plant Extracts , Sterol Regulatory Element Binding Protein 1 , Transforming Growth Factor beta1 , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Plant Extracts/pharmacology , Transforming Growth Factor beta1/metabolism , Male , Sterol Regulatory Element Binding Protein 1/metabolism , Mice , Oxidative Stress/drug effects , Diet, High-Fat/adverse effects , Diabetes Mellitus, Experimental/drug therapy , Antioxidants/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Fabaceae/chemistry , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Actins/metabolism , Fatty Acid Synthases/metabolism , Fibrosis
17.
Ultrason Sonochem ; 107: 106918, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772313

ABSTRACT

In this research, the extraction process of polysaccharides from Pithecellobium clypearia Benth (PCBPs) was optimized using dual-frequency ultrasound-assisted extraction (DUAE). The biological activities of PCBPs were investigated by in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic assay. High-performance anion-exchange chromatography, high-performance gel permeation chromatography, SEM, UV-Vis spectroscopy, and FT-IR spectra were used to analyze the monosaccharide composition, molecular weight, microscopic morphology, and characteristic structure of PCBPs. The results showed that the maximum extraction rate of PCBPs was 9.90 ± 0.16% when the ultrasonic time was 8 min, the liquid-to-material ratio was 32 mL/g, and the ultrasonic power was 510 W. The PCBPs also possessed excellent in vitro antioxidant, hypoglycemic, and anti-hyperlipidemic activities. In addition, the average molecular weight of PCBPs was 15.07 kDa. PCBPs consisted of rhamnose, arabinose, galactose, glucose, xylose, mannose, and glucuronic acid, with the molar ratios of 11.07%, 18.54%, 48.17%, 10.44%, 4.62%, 4.96%, and 2.20%, respectively. Moreover, the results of SEM showed that PCBPs mainly showed a fine spherical mesh structure. The above studies provided a valuable theoretical basis for the subsequent in-depth study of PCBPs.


Subject(s)
Antioxidants , Hypoglycemic Agents , Hypolipidemic Agents , Polysaccharides , Ultrasonic Waves , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Polysaccharides/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypolipidemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/isolation & purification , Chemical Fractionation/methods , Fabaceae/chemistry , Molecular Weight , Animals
18.
Plant Physiol Biochem ; 212: 108725, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772164

ABSTRACT

Elevated CO2 concentrations may inhibit photosynthesis due to nitrogen deficiency, but legumes may be able to overcome this limitation and continue to grow. Our study confirms this conjecture well. First, we placed the two-year-old potted saplings of Ormosia hosiei (O. hosiei) (a leguminous tree species) in the open-top chamber (OTC) with three CO2 concentrations of 400 (CK), 600 (E1), and 800 µmol·mol-1 (E2) to simulate the elevated CO2 concentration environment. After 146 days, the light saturation point (LSP), light compensation point (LCP), apparent quantum efficiency (AQE), and dark respiration rate (Rd) of O. hosiei were increased under increasing CO2 concentration and obtain the maximum ribulose diphosphate (RuBP) carboxylation rate (Vc max) and RuBP regenerated photosynthetic electron transfer rate (Jmax) were also significantly increased under E2 treatment (P < 0.05). This results in a significant increase of the maximum assimilation rate (Amax) under elevated CO2 concentrations. Sucrose phosphate synthase (SPS) activity in sucrose metabolism increased in the leaves, more soluble sugars, starches, and sucrose was produced, but sucrose content only in leaves increased at E2, and more carbon flows to the roots. The activity of the NH4+ assimilating enzymes glutamine synthetase (GS), glutamate synthetase (GOGAT), and glutamate dehydrogenase (GDH) in the leaves of O. hosiei increases under elevated CO2 concentrations to promote nitrogen synthesis that reduces the content of ammonium nitrogen and increases the content of nitrate nitrogen. In addition, under E1 conditions, sucrose synthase (SS), direction of synthesis activity was highest and sucrose invertase (INV) activity was lowest, this means that the balance of C and N metabolism is maintained. While under E2 conditions SS activity decreased and INV activity increased, this increased C/N and nitrogen use efficiency. So, the elevated CO2 concentration promotes the accumulation of O. hosiei biomass, especially in the aboveground part, but did not have a significant effect on the accumulation of root biomass. This means that O. hosiei is able to cope under the elevated CO2 concentration without showing photosynthetic adaptation during the experimental period.


Subject(s)
Biomass , Carbon Dioxide , Carbon , Nitrogen , Photosynthesis , Nitrogen/metabolism , Carbon Dioxide/metabolism , Carbon/metabolism , Glucosyltransferases/metabolism , Fabaceae/metabolism , Fabaceae/growth & development , Plant Leaves/metabolism , Plant Proteins/metabolism
20.
Food Res Int ; 183: 114202, 2024 May.
Article in English | MEDLINE | ID: mdl-38760133

ABSTRACT

Pixian broad bean paste is a renowned fermented seasoning. The fermentation of broad bean is the most important process of Pixian broad bean paste. To enhance the flavor of tank-fermented broad bean paste, salt-tolerant Bacillus amyloliquefaciens strain was inoculated, resulting in an increase in total amount of volatile compounds, potentially leading to different flavor characteristics. To investigate the fermentation mechanism, monoculture simulated fermentation systems were designed. Metabolomics and transcriptomics were used to explore Bacillus amyloliquefaciens' transcriptional response to salt stress and potential aroma production mechanisms. The results highlighted different metabolite profiles under salt stress, and the crucial roles of energy metabolism, amino acid metabolism, reaction system, transportation system in Bacillus amyloliquefaciens' hypersaline stress response. This study provides a scientific basis for the industrial application of Bacillus amyloliquefaciens and new insights into addressing the challenges of poor flavor quality in tank fermentation products.


Subject(s)
Bacillus amyloliquefaciens , Fermentation , Metabolomics , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/genetics , Transcriptome , Food Microbiology , Fermented Foods/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Gene Expression Profiling , Taste , Fabaceae/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...