Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.798
Filter
1.
Respir Res ; 25(1): 292, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080722

ABSTRACT

BACKGROUND: Malnutrition is common in patients with chronic cardiovascular disease and is associated with significantly higher all-cause mortality. Approximately one-third of patients with heart failure are malnourished. However, the relationship between malnutrition and idiopathic pulmonary arterial hypertension (IPAH) remains unclear. This study aimed to clarify the prognostic value of malnutrition in patients with IPAH. METHODS: A total of 432 consecutive participants with IPAH were included in this study between March 2013 and August 2021. Three common malnutrition assessment tools, including the geriatric nutritional risk index (GNRI), prognostic nutritional index (PNI), and controlling nutritional status (CONUT) score, were used to evaluate the nutritional status of patients with IPAH. The relationships between the malnutrition tools and long-term adverse outcomes were determined using restricted cubic splines and multivariate Cox regression models. RESULTS: During a mean follow-up of 3.1 years, 158 participants experienced clinical worsening or all-cause death. Patients were stratified into the low-, intermediate- and high-risk groups based on the European Society of Cardiology (ESC) risk stratification, and the PNI (55.9 ± 5.7 vs. 54.4 ± 7.2 vs. 51.1 ± 7.1, P = 0.005) and CONUT score (2.1 ± 0.9 vs. 2.5 ± 1.2 vs. 3.3 ± 1.1, P < 0.001) identified these patient groups better than the GNRI. All three malnutrition tools were associated with well-validated variables that reflected IPAH severity, such as the World Health Organization functional class, 6-min walk distance, and N-terminal pro-brain natriuretic peptide level. The CONUT score exhibited better predictive ability than both the GNRI (ΔAUC = 0.059, P < 0.001) and PNI (ΔAUC = 0.095, P < 0.001) for adverse outcomes and significantly improved reclassification and discrimination beyond the ESC risk score. Multivariable Cox regression analysis indicated that only the CONUT score (hazard ratio = 1.363, 95% confidence interval 1.147, 1.619 per 1.0-standard deviation increment, P < 0.001) independently predicted adverse outcomes. CONCLUSIONS: The malnutrition status was associated with disease severity in patients with IPAH. The CONUT score provided additional information regarding the risk of clinically worsening events, making it a meaningful risk stratification tool for these patients.


Subject(s)
Malnutrition , Severity of Illness Index , Humans , Female , Male , Malnutrition/diagnosis , Malnutrition/epidemiology , Middle Aged , Retrospective Studies , Nutritional Status , Adult , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/mortality , Aged , Nutrition Assessment , Cohort Studies , Follow-Up Studies , Risk Assessment/methods , Prognosis , Risk Factors
2.
Hypertension ; 81(9): 1895-1909, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989583

ABSTRACT

BACKGROUND: STIM1 (stromal interaction molecule 1) regulates store-operated calcium entry and is involved in pulmonary artery vasoconstriction and pulmonary artery smooth muscle cell proliferation, leading to pulmonary arterial hypertension (PAH). METHODS: Bioinformatics analysis and a 2-stage matched case-control study were conducted to screen for noncoding variants that may potentially affect STIM1 transcriptional regulation in 242 patients with idiopathic PAH and 414 healthy controls. Luciferase reporter assay, real-time quantitative polymerase chain reaction, western blot, 5-ethynyl-2'-deoxyuridine (EdU) assay, and intracellular Ca2+ measurement were performed to study the mechanistic roles of those STIM1 noncoding variants in PAH. RESULTS: Five noncoding variants (rs3794050, rs7934581, rs3750996, rs1561876, and rs3750994) were identified and genotyped using Sanger sequencing. Rs3794050, rs7934581, and rs1561876 were associated with idiopathic PAH (recessive model, all P<0.05). Bioinformatics analysis showed that these 3 noncoding variants possibly affect the enhancer function of STIM1 or the microRNA (miRNA) binding to STIM1. Functional validation performed in HEK293 and pulmonary artery smooth muscle cells demonstrated that the noncoding variant rs1561876-G (STIM1 mutant) had significantly stronger transcriptional activity than the wild-type counterpart, rs1561876-A, by affecting the transcriptional regulatory function of both hsa-miRNA-3140-5p and hsa-miRNA-4766-5p. rs1561876-G enhanced intracellular Ca2+ signaling in human pulmonary artery smooth muscle cells secondary to calcium-sensing receptor activation and promoted proliferation of pulmonary artery smooth muscle cells under both normoxia and hypoxia conditions, suggesting a possible contribution to PAH development. CONCLUSIONS: The potential clinical implications of the 3 noncoding variants of STIM1, rs3794050, rs7934581, and rs1561876, are 2-fold, as they may help predict the risk and prognosis of idiopathic PAH and guide investigations on novel therapeutic pathway(s).


Subject(s)
Pulmonary Artery , Stromal Interaction Molecule 1 , Humans , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Male , Female , Case-Control Studies , Middle Aged , Adult , Neoplasm Proteins/genetics , Myocytes, Smooth Muscle/metabolism , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/physiopathology , Genetic Predisposition to Disease , Muscle, Smooth, Vascular/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Polymorphism, Single Nucleotide
3.
Arterioscler Thromb Vasc Biol ; 44(8): e210-e225, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38841857

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) is a common complication of systemic sclerosis (SSc) and a leading cause of mortality among patients with this disease. PH can also occur as an idiopathic condition (idiopathic pulmonary arterial hypertension). Investigation of transcriptomic alterations in vascular populations is critical to elucidating cellular mechanisms underlying pathobiology of SSc-associated and idiopathic PH. METHODS: We analyzed single-cell RNA sequencing profiles of endothelial and perivascular mesenchymal populations from explanted lung tissue of patients with SSc-associated PH (n=16), idiopathic pulmonary arterial hypertension (n=3), and healthy controls (n=15). Findings were validated by immunofluorescence staining of explanted human lung tissue. RESULTS: Three disease-associated endothelial populations emerged. Two angiogenic endothelial cell (EC) subtypes markedly expanded in SSc-associated PH lungs: tip ECs expressing canonical tip markers PGF and APLN and phalanx ECs expressing genes associated with vascular development, endothelial barrier integrity, and Notch signaling. Gene regulatory network analysis suggested enrichment of Smad1 (SMAD family member 1) and PPAR-γ (peroxisome proliferator-activated receptor-γ) regulon activities in these 2 populations, respectively. Mapping of potential ligand-receptor interactions highlighted Notch, apelin-APJ (apelin receptor), and angiopoietin-Tie (tyrosine kinase with immunoglobulin-like and EGF-like domains 1) signaling pathways between angiogenic ECs and perivascular cells. Transitional cells, expressing both endothelial and pericyte/smooth muscle cell markers, provided evidence for the presence of endothelial-to-mesenchymal transition. Transcriptional programs associated with arterial endothelial dysfunction implicated VEGF-A (vascular endothelial growth factor-A), TGF-ß1 (transforming growth factor beta-1), angiotensin, and TNFSF12 (tumor necrosis factor ligand superfamily member 12)/TWEAK (TNF-related weak inducer of apoptosis) in the injury/remodeling phenotype of PH arterial ECs. CONCLUSIONS: These data provide high-resolution insights into the complexity and plasticity of the pulmonary endothelium in SSc-associated PH and idiopathic pulmonary arterial hypertension and provide direct molecular insights into soluble mediators and transcription factors driving PH vasculopathy.


Subject(s)
Neovascularization, Pathologic , Scleroderma, Systemic , Vascular Remodeling , Humans , Scleroderma, Systemic/genetics , Scleroderma, Systemic/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/complications , Male , Female , Middle Aged , Familial Primary Pulmonary Hypertension/metabolism , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/pathology , Case-Control Studies , Endothelial Cells/metabolism , Endothelial Cells/pathology , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Transcriptome , Signal Transduction , Adult , Single-Cell Analysis , Lung/metabolism , Lung/blood supply , Lung/pathology , Gene Regulatory Networks , Angiogenesis
4.
Curr Probl Cardiol ; 49(8): 102642, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38750992

ABSTRACT

The gold standard for diagnosis of pulmonary hypertension is right heart catheterization. This procedure requires considerable expertise and has its own procedure related complications. If not done properly, it can lead to misinterpretations of its findings. We have highlighted the procedural technique and major pitfalls in the diagnosis of pulmonary hypertension.


Subject(s)
Cardiac Catheterization , Familial Primary Pulmonary Hypertension , Humans , Cardiac Catheterization/methods , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/physiopathology , Pulmonary Artery , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy
5.
Curr Probl Cardiol ; 49(9): 102673, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38782197

ABSTRACT

Right heart catheterization (RHC) stands as a unique tool for both diagnosing and managing a broad spectrum of cardiovascular diseases. Though its origins trace back to the 18th century, the most substantial progress was achieved in the 20th century. The focus of this review is on pulmonary hypertension (PH), where RHC is recognized as the diagnostic gold standard. Parameters derived from this procedure are crucial for classifying PH into various subgroups, assessing the risk of adverse events or mortality, and informing treatment strategies. The European Society of Cardiology guidelines define PH as an increase in mean pulmonary artery pressure (PAPm) greater than 25 mmHg. The differentiation between pre- and post-capillary PH is based on the levels of pulmonary artery wedge pressure (PAWP). Furthermore, right atrial pressure (RAP), cardiac index (CI), and mixed venous oxygen saturation (SvO2) are the sole parameters recommended for prognostic assessment, specifically in patients with pulmonary arterial hypertension (PAH). Patients presenting with RAP exceeding 14 mmHg, CI less than 2.0 L/min/m2, and SvO2 below 60% are considered to be at a high risk (greater than 10%) of death within the subsequent year. A primary goal in the management of PAH is the early diagnosis to facilitate the swift initiation of treatment. This aims to minimize symptom burden, optimize the patient's biochemical, hemodynamic, and functional profile, and curtail adverse events. To achieve these objectives, clinicians must remain informed about emerging risk factors and be familiar with the revised hemodynamic definition for PAH.


Subject(s)
Cardiac Catheterization , Humans , Cardiac Catheterization/methods , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/physiopathology , Pulmonary Wedge Pressure/physiology , Prognosis , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/therapy
6.
Cardiovasc Diabetol ; 23(1): 154, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702735

ABSTRACT

BACKGROUND: Insulin resistance (IR) plays an important role in the pathophysiology of cardiovascular disease. Recent studies have shown that diabetes mellitus and impaired lipid metabolism are associated with the severity and prognosis of idiopathic pulmonary arterial hypertension (IPAH). However, the relationship between IR and pulmonary hypertension is poorly understood. This study explored the association between four IR indices and IPAH using data from a multicenter cohort. METHODS: A total of 602 consecutive participants with IPAH were included in this study between January 2015 and December 2022. The metabolic score for IR (METS-IR), triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio, triglyceride and glucose (TyG) index, and triglyceride-glucose-body mass index (TyG-BMI) were used to quantify IR levels in patients with IPAH. The correlation between non-insulin-based IR indices and long-term adverse outcomes was determined using multivariate Cox regression models and restricted cubic splines. RESULTS: During a mean of 3.6 years' follow-up, 214 participants experienced all-cause death or worsening condition. Compared with in low to intermediate-low risk patients, the TG/HDL-C ratio (2.9 ± 1.7 vs. 3.3 ± 2.1, P = 0.003) and METS-IR (34.5 ± 6.7 vs. 36.4 ± 7.5, P < 0.001) were significantly increased in high to intermediate-high risk patients. IR indices correlated with well-validated variables that reflected the severity of IPAH, such as the cardiac index and stroke volume index. Multivariate Cox regression analyses indicated that the TyG-BMI index (hazard ratio [HR] 1.179, 95% confidence interval [CI] 1.020, 1.363 per 1.0-standard deviation [SD] increment, P = 0.026) and METS-IR (HR 1.169, 95% CI 1.016, 1.345 per 1.0-SD increment, P = 0.030) independently predicted adverse outcomes. Addition of the TG/HDL-C ratio and METS-IR significantly improved the reclassification and discrimination ability beyond the European Society of Cardiology (ESC) risk score. CONCLUSIONS: IR is associated with the severity and long-term prognosis of IPAH. TyG-BMI and METS-IR can independently predict clinical worsening events, while METS-IR also provide incremental predictive performance beyond the ESC risk stratification.


Subject(s)
Biomarkers , Blood Glucose , Insulin Resistance , Severity of Illness Index , Triglycerides , Adult , Female , Humans , Male , Biomarkers/blood , Blood Glucose/metabolism , China/epidemiology , Cholesterol, HDL/blood , Disease Progression , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/mortality , Prognosis , Retrospective Studies , Risk Assessment , Risk Factors , Time Factors , Triglycerides/blood
7.
Vascul Pharmacol ; 155: 107379, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38762131

ABSTRACT

Pulmonary hypertension (PH) is a progressive, severe and to date not curable disease of the pulmonary vasculature. Alterations of the insulin-like growth factor 1 (IGF-1) system are known to play a role in vascular pathologies and IGF-binding proteins (IGFBPs) are important regulators of the bioavailability and function of IGFs. In this study, we show that circulating plasma levels of IGFBP-1, IGFBP-2 and IGFBP-3 are increased in idiopathic pulmonary arterial hypertension (IPAH) patients compared to healthy individuals. These binding proteins inhibit the IGF-1 induced IGF-1 receptor (IGF1R) phosphorylation and exhibit diverging effects on the IGF-1 induced signaling pathways in human pulmonary arterial cells (i.e. healthy as well as IPAH-hPASMCs, and healthy hPAECs). Furthermore, IGFBPs are differentially expressed in an experimental mouse model of PH. In hypoxic mouse lungs, IGFBP-1 mRNA expression is decreased whereas the mRNA for IGFBP-2 is increased. In contrast to IGFBP-1, IGFBP-2 shows vaso-constrictive properties in the murine pulmonary vasculature. Our analyses show that IGFBP-1 and IGFBP-2 exhibit diverging effects on IGF-1 signaling and display a unique IGF1R-independent kinase activation pattern in human pulmonary arterial smooth muscle cells (hPASMCs), which represent a major contributor of PAH pathobiology. Furthermore, we could show that IGFBP-2, in contrast to IGFBP-1, induces epidermal growth factor receptor (EGFR) signaling, Stat-3 activation and expression of Stat-3 target genes. Based on our results, we conclude that the IGFBP family, especially IGFBP-1, IGFBP-2 and IGFBP-3, are deregulated in PAH, that they affect IGF signaling and thereby regulate the cellular phenotype in PH.


Subject(s)
Disease Models, Animal , Insulin-Like Growth Factor Binding Protein 1 , Insulin-Like Growth Factor Binding Protein 2 , Insulin-Like Growth Factor Binding Protein 3 , Insulin-Like Growth Factor I , Myocytes, Smooth Muscle , Pulmonary Artery , Receptor, IGF Type 1 , Signal Transduction , Humans , Animals , Receptor, IGF Type 1/metabolism , Receptor, IGF Type 1/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Insulin-Like Growth Factor Binding Protein 3/metabolism , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Insulin-Like Growth Factor I/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cells, Cultured , Male , Insulin-Like Growth Factor Binding Protein 1/metabolism , Insulin-Like Growth Factor Binding Protein 1/genetics , Phosphorylation , STAT3 Transcription Factor/metabolism , Case-Control Studies , Mice, Inbred C57BL , Familial Primary Pulmonary Hypertension/metabolism , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/genetics , Female , ErbB Receptors/metabolism , Middle Aged , Vascular Remodeling , Adult , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
8.
Inn Med (Heidelb) ; 65(6): 560-565, 2024 Jun.
Article in German | MEDLINE | ID: mdl-38771375

ABSTRACT

Heritable pulmonary arterial hypertension (PAH) can be triggered by at least 18 genes. The most frequently altered gene is the bone morphogenetic protein receptor 2 (BMPR2). Further genes from the same pathway are also well known PAH-causing genes. Genetic testing can aid to confirm differential diagnoses such as a pulmonary veno-occlusive disease. It also enables the testing of healthy family members. In addition to the PAH patient population particularly served by genetic testing, this article touches on the mode of inheritance and provides insights into the first treatments soon on the market that rebalance the BMPR2 signaling pathway.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II , Humans , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Genetic Testing , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/physiopathology , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/therapy , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/physiopathology , Genetic Predisposition to Disease , Signal Transduction
9.
J Transl Med ; 22(1): 502, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797830

ABSTRACT

BACKGROUND: Inflammation and dysregulated immunity play vital roles in idiopathic pulmonary arterial hypertension (IPAH), while the mechanisms that initiate and promote these processes are unclear. METHODS: Transcriptomic data of lung tissues from IPAH patients and controls were obtained from the Gene Expression Omnibus database. Weighted gene co-expression network analysis (WGCNA), differential expression analysis, protein-protein interaction (PPI) and functional enrichment analysis were combined with a hemodynamically-related histopathological score to identify inflammation-associated hub genes in IPAH. The monocrotaline-induced rat model of pulmonary hypertension was utilized to confirm the expression pattern of these hub genes. Single-cell RNA-sequencing (scRNA-seq) data were used to identify the hub gene-expressing cell types and their intercellular interactions. RESULTS: Through an extensive bioinformatics analysis, CXCL9, CCL5, GZMA and GZMK were identified as hub genes that distinguished IPAH patients from controls. Among these genes, pulmonary expression levels of Cxcl9, Ccl5 and Gzma were elevated in monocrotaline-exposed rats. Further investigation revealed that only CCL5 and GZMA were highly expressed in T and NK cells, where CCL5 mediated T and NK cell interaction with endothelial cells, smooth muscle cells, and fibroblasts through multiple receptors. CONCLUSIONS: Our study identified a new inflammatory pathway in IPAH, where T and NK cells drove heightened inflammation predominantly via the upregulation of CCL5, providing groundwork for the development of targeted therapeutics.


Subject(s)
Chemokine CCL5 , Familial Primary Pulmonary Hypertension , Killer Cells, Natural , RNA-Seq , Single-Cell Analysis , T-Lymphocytes , Animals , Humans , Chemokine CCL5/metabolism , Chemokine CCL5/genetics , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/pathology , Familial Primary Pulmonary Hypertension/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Male , Cell Communication/genetics , Rats, Sprague-Dawley , Lung/pathology , Rats , Gene Regulatory Networks , Monocrotaline , Protein Interaction Maps/genetics , Computational Biology
10.
BMC Cardiovasc Disord ; 24(1): 207, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614995

ABSTRACT

OBJECTIVE: This study aimed to investigate the serum levels of Peptidase M20 domain containing 1 (PM20D1) in idiopathic pulmonary arterial hypertension (IPAH) patients and examine its association with lipid metabolism, echocardiography, and hemodynamic parameters. METHODS: This prospective observational research enrolled 103 IPAH patients from January 2018 to January 2022. Enzyme-linked immunosorbent assay (ELISA) was used to measure the serum PM20D1 levels in all patients before treatment within 24 h of admission. Demographic data, echocardiography, hemodynamic parameters and serum biomarkers were also collected. RESULTS: The IPAH patients in the deceased group had significantly elevated age, right atrial (RA), mean pulmonary arterial pressure (mPAP), mean right atrial pressure (mRAP), pulmonary capillary wedge pressure (PCWP), pulmonary vascular resistance (PVR) and significantly decreased 6 min walking distance (6MWD) and tricuspid annulus peak systolic velocity (TASPV). IPAH patients showed significant decreases in serum PM20D1, low-density lipoprotein cholesterol (LDL-C), and albumin (ALB). Additionally, PM20D1 was negatively correlated with RA, NT-proBNP and positively correlated with PVR, ALB, 6MWD, and TAPSV. Moreover, PM20D1 has the potential as a biomarker for predicting IPAH patients' prognosis. Finally, logistic regression analysis indicated that PM20D1, ALB, NT-proBNP, PVR, TASPV, RA and 6MWD were identified as risk factors for mortality in IPAH patients. CONCLUSION: Our findings indicated that the serum levels of PM20D1 were significantly decreased in IPAH patients with poor prognosis. Moreover, PM20D1 was identified as a risk factor associated with mortality in IPAH patients.


Subject(s)
Atrial Appendage , Clinical Relevance , Humans , Familial Primary Pulmonary Hypertension/diagnosis , Heart Atria , Albumins
12.
Am J Respir Crit Care Med ; 210(3): 329-342, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38568479

ABSTRACT

Rationale: Idiopathic pulmonary arterial hypertension (IPAH) is characterized by extensive pulmonary vascular remodeling caused by plexiform and obliterative lesions, media hypertrophy, inflammatory cell infiltration, and alterations of the adventitia. Objective: We sought to test the hypothesis that microscopic IPAH vascular lesions express unique molecular profiles, which collectively are different from control pulmonary arteries. Methods: We used digital spatial transcriptomics to profile the genomewide differential transcriptomic signature of key pathological lesions (plexiform, obliterative, intima+media hypertrophy, and adventitia) in IPAH lungs (n = 11) and compared these data with the intima+media hypertrophy and adventitia of control pulmonary artery (n = 5). Measurements and Main Results: We detected 8,273 transcripts in the IPAH lesions and control lung pulmonary arteries. Plexiform lesions and IPAH adventitia exhibited the greatest number of differentially expressed genes when compared with intima+media hypertrophy and obliterative lesions. Plexiform lesions in IPAH showed enrichment for 1) genes associated with transforming growth factor ß signaling and 2) mutated genes affecting the extracellular matrix and endothelial-mesenchymal transformation. Plexiform lesions and IPAH adventitia showed upregulation of genes involved in immune and IFN signaling, coagulation, and complement pathways. Cellular deconvolution indicated variability in the number of vascular and inflammatory cells between IPAH lesions, which underlies the differential transcript profiling. Conclusions: IPAH lesions express unique molecular transcript profiles enriched for pathways involving pathogenetic pathways, including genetic disease drivers, innate and acquired immunity, hypoxia sensing, and angiogenesis signaling. These data provide a rich molecular-structural framework in IPAH vascular lesions that inform novel biomarkers and therapeutic targets in this highly morbid disease.


Subject(s)
Pulmonary Artery , Humans , Male , Female , Adult , Middle Aged , Pulmonary Artery/pathology , Vascular Remodeling/genetics , Gene Expression Profiling/methods , Pulmonary Arterial Hypertension/genetics , Transcriptome/genetics , Familial Primary Pulmonary Hypertension/genetics , Familial Primary Pulmonary Hypertension/physiopathology
13.
BMC Pulm Med ; 24(1): 199, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654208

ABSTRACT

BACKGROUND: Fractional exhaled nitric oxide (FeNO) has been extensively studied in various causes of pulmonary hypertension (PH), but its utility as a noninvasive marker remains highly debated. The objective of our study was to assess FeNO levels in patients with idiopathic pulmonary arterial hypertension (IPAH) and mixed connective tissue disease complicating pulmonary hypertension (MCTD-PH), and to correlate them with respiratory functional data, disease severity, and cardiopulmonary function. METHODS: We collected data from 54 patients diagnosed with IPAH and 78 patients diagnosed with MCTD-PH at the Shanghai Pulmonary Hospital Affiliated to Tongji University. Our data collection included measurements of brain natriuretic peptide (pro-BNP), cardiopulmonary exercise test (CPET), pulmonary function test (PFT), impulse oscillometry (IOS), and FeNO levels. Additionally, we assessed World Health Organization functional class (WHO-FC) of each patient. RESULTS: (1) The fractional exhaled concentration of nitric oxide was notably higher in patients with IPAH compared to those with MCTD-PH. Furthermore, within the IPAH group, FeNO levels were found to be lower in cases of severe IPAH compared to mild IPAH (P = 0.024); (2) In severe pulmonary hypertension as per the WHO-FC classification, FeNO levels in IPAH exhibited negative correlations with FEV1/FVC (Forced Expiratory Velocity at one second /Forced Vital Capacity), MEF50% (Maximum Expiratory Flow at 50%), MEF25%, and MMEF75/25% (Maximum Mid-expiratory Flow between 75% and 25%), while in severe MCTD-PH, FeNO levels were negatively correlated with R20% (Resistance at 20 Hz); (3) ROC (Receiving operator characteristic curve) analysis indicated that the optimal cutoff value of FeNO for diagnosing severe IPAH was 23ppb; (4) While FeNO levels tend to be negatively correlated with peakPETO2(peak end-tidal partial pressure for oxygen) in severe IPAH, in mild IPAH they had a positive correlation to peakO2/Heart rate (HR). An interesting find was observed in cases of severe MCTD-PH, where FeNO levels were negatively correlated with HR and respiratory exchange ratio (RER), while positively correlated with O2/HR throughout the cardiopulmonary exercise test. CONCLUSION: FeNO levels serve as a non-invasive measure of IPAH severity. Although FeNO levels may not assess the severity of MCTD-PH, their significant makes them a valuable tool when assessing severe MCTD-PH.


Subject(s)
Exercise Test , Familial Primary Pulmonary Hypertension , Mixed Connective Tissue Disease , Nitric Oxide , Humans , Female , Male , Middle Aged , Adult , Mixed Connective Tissue Disease/complications , Nitric Oxide/analysis , Nitric Oxide/metabolism , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/complications , Biomarkers/analysis , Biomarkers/metabolism , Respiratory Function Tests , Fractional Exhaled Nitric Oxide Testing , Severity of Illness Index , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/diagnosis , Natriuretic Peptide, Brain/metabolism , China , Aged
14.
Respir Med ; 227: 107643, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657739

ABSTRACT

BACKGROUND: Emerging evidence has shown that the blood urea nitrogen to serum albumin ratio (BAR) is associated with the severity and prognosis of heart failure. However, its role in idiopathic pulmonary arterial hypertension (IPAH) remains unclear. This study investigated the associations between BAR and functional status, echocardiographic findings, hemodynamics, and long-term outcomes among patients with IPAH. METHODS: This study included consecutive patients who underwent right heart catheterization (RHC) and were diagnosed with IPAH between January 2013 and January 2018 at Fuwai Hospital. The primary outcome was the worsening of clinical symptoms. Spearman correlation coefficients were used to evaluate the association between the BAR and established markers of IPAH severity. Receiver operating characteristic (ROC) curve analysis was used to determine BAR's optimal cut-off and predictive performance. Kaplan-Meier analysis and Cox proportional hazard models assessed the relationship between BAR and clinical worsening. RESULTS: A total of 340 patients with IPAH were included in this study. BAR correlated with well-validated variables that reflected the severity of IPAH, such as World Health Organization functional class, 6-min walk distance, N-terminal pro-brain natriuretic peptide (NT-proBNP) level, mixed venous oxygen saturation, and cardiac index. Kaplan-Meier curves indicated that patients with BAR>3.80 had a significantly higher clinical worsening rate (log-rank test, P < 0.001) than those with BAR≤3.80. Multivariate Cox analysis showed that BAR could independently predict clinical worsening [hazard ratio(HR):2.642, 95 % confidence interval (CI):1.659-4.208, P < 0.001]. In addition, BAR provided additional predictive value for the European Society of Cardiology (ESC)/European Respiratory Society (ERS) risk assessment score. CONCLUSIONS: BAR reflects disease severity and is independently associated with the prognosis of patients with IPAH.


Subject(s)
Biomarkers , Blood Urea Nitrogen , Serum Albumin , Severity of Illness Index , Humans , Female , Male , Prognosis , Biomarkers/blood , Serum Albumin/analysis , Serum Albumin/metabolism , Middle Aged , Adult , Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/physiopathology , Familial Primary Pulmonary Hypertension/diagnosis , Echocardiography , Cardiac Catheterization , Hemodynamics/physiology , Predictive Value of Tests , Natriuretic Peptide, Brain/blood , Peptide Fragments
15.
BMC Pulm Med ; 24(1): 185, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632547

ABSTRACT

BACKGROUND: Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS: Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS: Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS: Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Pulmonary Arterial Hypertension , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Familial Primary Pulmonary Hypertension , Choline
16.
Eur J Med Res ; 29(1): 209, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561801

ABSTRACT

BACKGROUND: Pathologic variants in the bone morphogenetic protein receptor-2 (BMPR2) gene cause a pulmonary arterial hypertension phenotype in an autosomal-dominant pattern with incomplete penetrance. Straight back syndrome is one of the causes of pseudo-heart diseases. To date, no cases of idiopathic or heritable pulmonary arterial hypertension with straight back syndrome have been reported. CASE PRESENTATION: A 30-year-old female was diagnosed with pulmonary arterial hypertension by right heart catheterization. Computed tomography revealed a decreased anteroposterior thoracic space with heart compression, indicating a straight back syndrome. Genetic analysis by whole exome sequencing identified a novel c.2423_2424delGT (p.G808Gfs*4) germline frameshift variant within BMPR2 affecting the cytoplasmic tail domain. CONCLUSIONS: This is the first report of different straight back characteristics in heritable pulmonary arterial hypertension with a novel germline BMPR2 variant. This finding may provide a new perspective on the variable penetrance of the pulmonary arterial hypertension phenotype.


Subject(s)
Pulmonary Arterial Hypertension , Female , Humans , Adult , Familial Primary Pulmonary Hypertension/genetics , Pulmonary Arterial Hypertension/genetics , Phenotype , Mutation , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism
17.
Aging (Albany NY) ; 16(6): 5027-5037, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38517365

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe pathophysiological syndrome resulting in heart failure, which is found to be induced by pulmonary vascular remodeling mediated by oxidative stress (OS) and inflammation. Phoenixin-20 (PNX-20) is a reproductive peptide first discovered in mice with potential suppressive properties against OS and inflammatory response. Our study will explore the possible therapeutic functions of PHN-20 against PAH for future clinical application. Rats were treated with normal saline, PHN-20 (100 ng/g body weight daily), hypoxia, hypoxia+PHN-20 (100 ng/g body weight daily), respectively. A signally elevated RVSP, mPAP, RV/LV + S, and W%, increased secretion of cytokines, enhanced malondialdehyde (MDA) level, repressed superoxide dismutase (SOD) activity, and activated NLRP3 signaling were observed in hypoxia-stimulated rats, which were notably reversed by PHN-20 administration. Pulmonary microvascular endothelial cells (PMECs) were treated with hypoxia with or without PHN-20 (10 and 20 nM). Marked elevation of inflammatory cytokine secretion, increased MDA level, repressed SOD activity, and activated NLRP3 signaling were observed in hypoxia-stimulated PMECs, accompanied by a downregulation of SIRT1. Furthermore, the repressive effect of PHN-20 on the domains-containing protein 3 (NLRP3) pathway in hypoxia-stimulated PMECs was abrogated by sirtuin1 (SIRT1) knockdown. Collectively, PHN-20 alleviated PAH via inhibiting OS and inflammation by mediating the transcriptional function of SIRT1.


Subject(s)
Hypertension, Pulmonary , Peptide Hormones , Pulmonary Arterial Hypertension , Rats , Mice , Animals , Pulmonary Arterial Hypertension/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Sirtuin 1/metabolism , Endothelial Cells/metabolism , Familial Primary Pulmonary Hypertension , Oxidative Stress , Inflammation , Hypoxia , Superoxide Dismutase/metabolism , Body Weight
18.
Chest ; 166(1): 190-200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38432552

ABSTRACT

BACKGROUND: The clinical phenotype of patients with idiopathic pulmonary arterial hypertension (IPAH) has changed. Whether subgroups of patients with IPAH have different vascular phenotypes is a subject of debate. RESEARCH QUESTION: What are the histologic patterns and their clinical correlates in patients with a diagnosis of IPAH or hereditary pulmonary arterial hypertension? STUDY DESIGN AND METHODS: In this this cross-sectional registry study, lung histology of 50 patients with IPAH was assessed qualitatively by two experienced pathologists. In addition, quantitative analysis by means of histopathologic morphometry using immunohistochemistry was performed. Histopathologic characteristics were correlated with clinical and hemodynamic parameters. RESULTS: In this cohort of 50 patients with IPAH, a plexiform vasculopathy was observed in 26 of 50 patients (52%), whereas 24 of 50 patients (48%) showed a nonplexiform vasculopathy. The nonplexiform vasculopathy was characterized by prominent pulmonary microvascular (arterioles and venules) remodeling and vascular rarefaction. Although hemodynamic parameters were comparable in plexiform vs nonplexiform vasculopathy, patients with nonplexiform vasculopathy were older, more often were male, more often had a history of cigarette smoking, and had lower diffusing capacity of the lungs for carbon monoxide at diagnosis. No mutations in established pulmonary arterial hypertension genes were found in the nonplexiform group. INTERPRETATION: This study revealed different vascular phenotypes within the current spectrum of patients with a diagnosis of IPAH, separated by clinical characteristics (age, sex, history of cigarette smoking, and diffusing capacity of the lungs for carbon monoxide at diagnosis). Potential differences in underlying pathobiological mechanisms between patients with plexiform and nonplexiform microvascular disease should be taken into account in future research strategies unravelling the pathophysiologic features of pulmonary hypertension and developing biology-targeted treatment approaches.


Subject(s)
Familial Primary Pulmonary Hypertension , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Familial Primary Pulmonary Hypertension/diagnosis , Familial Primary Pulmonary Hypertension/physiopathology , Registries , Phenotype , Lung/blood supply , Lung/pathology , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/etiology
19.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473983

ABSTRACT

Asians have a higher carrier rate of pulmonary arterial hypertension (PAH)-related genetic variants than Caucasians do. This study aimed to identify PAH-related genetic variants using whole exome sequencing (WES) in Asian idiopathic and heritable PAH cohorts. A WES library was constructed, and candidate variants were further validated by polymerase chain reaction and Sanger sequencing in the PAH cohort. In a total of 69 patients, the highest incidence of variants was found in the BMPR2, ATP13A3, and GDF2 genes. Regarding the BMPR2 gene variants, there were two nonsense variants (c.994C>T, p. Arg332*; c.1750C>T, p. Arg584*), one missense variant (c.1478C>T, p. Thr493Ile), and one novel in-frame deletion variant (c.877_888del, p. Leu293_Ser296del). Regarding the GDF2 variants, there was one likely pathogenic nonsense variant (c.259C>T, p. Gln87*) and two missense variants (c.1207G>A, p. Val403Ile; c.38T>C, p. Leu13Pro). The BMPR2 and GDF2 variant subgroups had worse hemodynamics. Moreover, the GDF2 variant patients were younger and had a significantly lower GDF2 value (135.6 ± 36.2 pg/mL, p = 0.002) in comparison to the value in the non-BMPR2/non-GDF2 mutant group (267.8 ± 185.8 pg/mL). The BMPR2 variant carriers had worse hemodynamics compared to the patients with the non-BMPR2/non-GDF2 mutant group. Moreover, there was a significantly lower GDF2 value in the GDF2 variant carriers compared to the control group. GDF2 may be a protective or corrected modifier in certain genetic backgrounds.


Subject(s)
Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/genetics , Familial Primary Pulmonary Hypertension/genetics , Mutation, Missense , Hemodynamics , Sequence Deletion , Bone Morphogenetic Protein Receptors, Type II/genetics , Mutation , Adenosine Triphosphatases/genetics , Membrane Transport Proteins/genetics , Growth Differentiation Factor 2/genetics
20.
PLoS One ; 19(3): e0299912, 2024.
Article in English | MEDLINE | ID: mdl-38451963

ABSTRACT

PURPOSE: In chronic thromboembolic pulmonary hypertension (CTEPH), fibrosis of thrombi in the lumen of blood vessels and obstruction of blood vessels are important factors in the progression of the disease. Therefore, it is important to explore the key genes that lead to chronic thrombosis in order to understand the development of CTEPH, and at the same time, it is beneficial to provide new directions for early identification, disease prevention, clinical diagnosis and treatment, and development of novel therapeutic agents. METHODS: The GSE130391 dataset was downloaded from the Gene Expression Omnibus (GEO) public database, which includes the full gene expression profiles of patients with CTEPH and Idiopathic Pulmonary Arterial Hypertension (IPAH). Differentially Expressed Genes (DEGs) of CTEPH and IPAH were screened, and then Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) functional enrichment analyses were performed on the DEGs; Weighted Gene Co-Expression Network Analysis (WGCNA) to screen the key gene modules and take the intersection genes of DEGs and the key module genes in WGCNA; STRING database was used to construct the protein-protein interaction (PPI) network; and cytoHubba analysis was performed to identify the hub genes. RESULTS: A total of 924 DEGs were screened, and the MEturquoise module with the strongest correlation was selected to take the intersection with DEGs A total of 757 intersecting genes were screened. The top ten hub genes were analyzed by cytoHubba: IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4. CONCLUSION: IL-1B, CXCL8, CCL22, CCL5, CCL20, TNF, IL-12B, JUN, EP300, and CCL4 have diagnostic and therapeutic value in CTEPH disease, especially playing a role in chronic thrombosis. The discovery of NF-κB, AP-1 transcription factors, and TNF signaling pathway through pivotal genes may be involved in the disease progression process.


Subject(s)
Hypertension, Pulmonary , Thrombosis , Humans , Hypertension, Pulmonary/genetics , Thrombosis/genetics , Familial Primary Pulmonary Hypertension , Databases, Factual , Gene Expression Profiling , Computational Biology
SELECTION OF CITATIONS
SEARCH DETAIL