Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.352
Filter
1.
BMC Pediatr ; 24(1): 426, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961351

ABSTRACT

BACKGROUND: Adipose tissue is significantly involved in inflammatory bowel disease (IBD). Vitamin D can affect both adipogenesis and inflammation. The aim of this study was to compare the production of selected adipokines, potentially involved in the pathogenesis of IBD - adiponectin, resistin, retinol binding protein 4 (RBP-4), adipocyte fatty acid binding protein and nesfatin-1 in children with IBD according to the presence of 25-hydroxyvitamin D (25(OH)D) deficiency. METHODS: The study was conducted as a case-control study in pediatric patients with IBD and healthy children of the same sex and age. In addition to adipokines and 25(OH)D, anthropometric parameters, markers of inflammation and disease activity were assessed in all participants. RESULTS: Children with IBD had significantly higher resistin levels regardless of 25(OH)D levels. IBD patients with 25(OH)D deficiency only had significantly lower RBP-4 compared to healthy controls and also compared to IBD patients without 25(OH)D deficiency. No other significant differences in adipokines were found in children with IBD with or without 25(OH)D deficiency. 25(OH)D levels in IBD patients corelated with RBP-4 only, and did not correlate with other adipokines. CONCLUSIONS: Whether the lower RBP-4 levels in the 25(OH)D-deficient group of IBD patients directly reflect vitamin D deficiency remains uncertain. The production of other adipokines does not appear to be directly related to vitamin D deficiency.


Subject(s)
Adipokines , Vitamin D Deficiency , Vitamin D , Humans , Vitamin D Deficiency/complications , Vitamin D Deficiency/blood , Male , Female , Child , Case-Control Studies , Adipokines/blood , Adolescent , Vitamin D/blood , Vitamin D/analogs & derivatives , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Resistin/blood , Nucleobindins/blood , Adiponectin/blood , Adiponectin/deficiency , Calcium-Binding Proteins/blood , Fatty Acid-Binding Proteins/blood , DNA-Binding Proteins/blood , Biomarkers/blood , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/complications
2.
Sci Rep ; 14(1): 15390, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965292

ABSTRACT

Non-muscle invasive bladder cancers (NMIBC) pTa-pT1 are depicted by a high risk of recurrence and/or progression with an unpredictable clinical evolution. Our aim was to identify, from the original resection specimen, tumors that will progress to better manage patients. We previously showed that A-FABP (Adipocyte- Fatty Acid Binding Protein) loss predicted NMIBC progression. Here we determined by immunohistochemistry the prognostic value of E-FABP (Epidermal-Fatty Acid Binding Protein) expression in 210 tumors (80 pTa, 75 pT1, 55 pT2-T4). Thus, E-FABP low expression was correlated with a high grade/stage, the presence of metastatic lymph nodes, and visceral metastases (p < 0.001). Unlike A-FABP in NMIBC, E-FABP low expression was not associated with RFS or PFS in Kaplan-Meier analysis. But patients of the overall cohort with a high E-FABP expression had a longer mOS (53.8 months vs. 29.3 months, p = 0.029). The immunohistochemical analysis on the same NMIBC tissue sections revealed that when A-FABP is absent, a high E-FABP expression is detected. E-FABP could compensate A-FABP loss. Interestingly, patients, whose original tumor presents both low E-FABP and negative A-FABP, had the worse survival, those maintaining the expression of both markers had better survival. To conclude, the combined evaluation of A- and E-FABP expression allowed to stratify patients with urothelial carcinoma for optimizing treatment and follow-up.


Subject(s)
Fatty Acid-Binding Proteins , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/genetics , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Male , Female , Aged , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Aged, 80 and over , Kaplan-Meier Estimate , Immunohistochemistry
3.
Cells ; 13(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38994990

ABSTRACT

In zebrafish, like in mammals, radial glial cells (RGCs) can act as neural progenitors during development and regeneration in adults. However, the heterogeneity of glia subpopulations entails the need for different specific markers of zebrafish glia. Currently, fluorescent protein expression mediated by a regulatory element from the glial fibrillary acidic protein (gfap) gene is used as a prominent glia reporter. We now expand this tool by demonstrating that a regulatory element from the mouse Fatty acid binding protein 7 (Fabp7) gene drives reliable expression in fabp7-expressing zebrafish glial cells. By using three different Fabp7 regulatory element-mediated fluorescent protein reporter strains, we reveal in double transgenic zebrafish that progenitor cells expressing fluorescent proteins driven by the Fabp7 regulatory element give rise to radial glia, oligodendrocyte progenitors, and some neuronal precursors. Furthermore, Bergmann glia represent the almost only glial population of the zebrafish cerebellum (besides a few oligodendrocytes), and the radial glia also remain in the mature cerebellum. Fabp7 regulatory element-mediated reporter protein expression in Bergmann glia progenitors suggests their origin from the ventral cerebellar proliferation zone, the ventricular zone, but not from the dorsally positioned upper rhombic lip. These new Fabp7 reporters will be valuable for functional studies during development and regeneration.


Subject(s)
Animals, Genetically Modified , Fatty Acid-Binding Protein 7 , Zebrafish , Animals , Zebrafish/genetics , Zebrafish/metabolism , Fatty Acid-Binding Protein 7/metabolism , Fatty Acid-Binding Protein 7/genetics , Neuroglia/metabolism , Cerebellum/metabolism , Cerebellum/cytology , Oligodendroglia/metabolism , Oligodendroglia/cytology , Mice , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/genetics
4.
Sci Adv ; 10(28): eadm8206, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996022

ABSTRACT

Melanoma clinical outcomes emerge from incompletely understood genetic mechanisms operating within the tumor and its microenvironment. Here, we used single-cell RNA-based spatial molecular imaging (RNA-SMI) in patient-derived archival tumors to reveal clinically relevant markers of malignancy progression and prognosis. We examined spatial gene expression of 203,472 cells inside benign and malignant melanocytic neoplasms, including melanocytic nevi and primary invasive and metastatic melanomas. Algorithmic cell clustering paired with intratumoral comparative two-dimensional analyses visualized synergistic, spatial gene signatures linking cellular proliferation, metabolism, and malignancy, validated by protein expression. Metastatic niches included up-regulation of CDK2 and FABP5, which independently predicted poor clinical outcome in 473 patients with melanoma via Cox regression analysis. More generally, our work demonstrates a framework for applying single-cell RNA-SMI technology toward identifying gene regulatory landscapes pertinent to cancer progression and patient survival.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic , Melanoma , Single-Cell Analysis , Humans , Melanoma/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/mortality , Prognosis , Single-Cell Analysis/methods , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Cyclin-Dependent Kinase 2/metabolism , Cyclin-Dependent Kinase 2/genetics , Tumor Microenvironment , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Male , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/mortality , Gene Expression Profiling
5.
FASEB J ; 38(14): e23824, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39012304

ABSTRACT

The regenerative ability of limb bones after injury decreases during aging, but whether a similar phenomenon occurs in jawbones and whether autophagy plays a role in this process remain unclear. Through retrospective analysis of clinical data and studies on a mouse model of jawbone defects, we confirmed the presence of delayed or impaired bone regeneration in the jawbones of old individuals and mice. Subsequently, osteoblasts (OBs) derived from mouse jawbones were isolated, showing reduced osteogenesis in senescent osteoblasts (S-OBs). We observed a reduction in autophagy within both aged jawbones and S-OBs. Additionally, pharmacological inhibition of autophagy in normal OBs (N-OBs) led to cell aging and decreased osteogenesis, while autophagic activation reversed the aging phenotype of S-OBs. The activator rapamycin (RAPA) increased the autophagy level and bone regeneration in aged jawbones. Finally, we found that fatty acid-binding protein 3 (FABP3) was degraded by autolysosomes through its interaction with sequestosome 1 (P62/SQSTM1). Autophagy inhibition within senescent jawbones and S-OBs led to the excessive accumulation of FABP3, and FABP3 knockdown partially rescued the decreased osteogenesis in S-OBs and alleviated age-related compromised jawbone regeneration. In summary, we confirmed that autophagy inhibition plays an important role in delaying bone regeneration in aging jawbones. Autophagic activation or FABP3 knockdown can partially rescue the osteogenesis of S-OBs and the regeneration of aging jawbones, providing insight into jawbone aging.


Subject(s)
Aging , Autophagy , Bone Regeneration , Fatty Acid-Binding Proteins , Osteoblasts , Osteogenesis , Animals , Autophagy/physiology , Osteoblasts/metabolism , Mice , Osteogenesis/physiology , Aging/physiology , Aging/metabolism , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Male , Humans , Mice, Inbred C57BL , Jaw , Female , Cellular Senescence/physiology
6.
Front Biosci (Landmark Ed) ; 29(6): 212, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38940038

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a leading cause of cancer-associated death worldwide. Its molecular mechanisms, especially concerning autophagy and various signaling pathways, are not fully understood. Fatty Acid Binding Protein 6 (FABP6) and RE1 Silencing Transcription Factor (REST) emerge as potential key players in this context. This study sought to analyze the functional relationship of FABP6 and REST concerning autophagy and their implications on the Akt/mTOR signaling pathway within GC cells. METHODS: A comprehensive bioinformatics approach was used to identify key prognostic markers in GC. The effects of FABP6 and REST on autophagy along with Akt/mTOR signaling pathways were analyzed by techniques including Western blotting (WB), flow cytometry, Transwell assay, dual luciferase reporter assay, and others. RESULTS: FABP6 was identified as overexpressed in GC, linked with poor prognosis. FABP6 silencing reduces GC cell proliferation, induces S- and G2-phase arrest, and downregulates cyclins CDK2 and CDK4. It also inhibited GC cell invasion/migration and autophagy, effects that were counteracted by MG132. When combined with PI3K inhibitor LY294002c, FABP6 knockdown showed synergistic anti-proliferative effects, modulating the Akt/mTOR pathway. Besides, the transcription factor REST has been shown to directly regulate FABP6 expression, affecting autophagy and the Akt/mTOR signaling pathway in a FABP6-dependent manner. CONCLUSIONS: REST positively regulates autophagy and negatively affects the Akt/mTOR signaling pathway in GC cells in a FABP6-dependent manner, providing valuable insights into regulatory networks involving FABP6 and REST.


Subject(s)
Autophagy , Fatty Acid-Binding Proteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms , TOR Serine-Threonine Kinases , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , TOR Serine-Threonine Kinases/metabolism , Autophagy/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line, Tumor , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic
7.
BMC Nephrol ; 25(1): 206, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918734

ABSTRACT

BACKGROUND: Tubular biomarkers, which reflect tubular dysfunction or injury, are associated with incident chronic kidney disease and kidney function decline. Several tubular biomarkers have also been implicated in the progression of autosomal dominant polycystic kidney disease (ADPKD). We evaluated changes in multiple tubular biomarkers in four groups of patients with ADPKD who participated in one of two clinical trials (metformin therapy and diet-induced weight loss), based on evidence suggesting that such interventions could reduce tubule injury. METHODS: 66 participants (26 M/40 F) with ADPKD and an estimated glomerular filtration rate (eGFR) ≥ 30 ml/min/1.73m2 who participated in either a metformin clinical trial (n = 22 metformin; n = 23 placebo) or dietary weight loss study (n = 10 daily caloric restriction [DCR]; n = 11 intermittent fasting [IMF]) were included in assessments of urinary tubular biomarkers (kidney injury molecule-1 [KIM-1], fatty-acid binding protein [FABP], interleukin-18 [IL-18], monocyte chemoattractant protein-1 [MCP-1], neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and human cartilage glycoprotein-40 [YKL-40]; normalized to urine creatinine), at baseline and 12 months. The association of baseline tubular biomarkers with both baseline and change in height-adjusted total kidney volume (HtTKV; percent change from baseline to 12 months) and estimated glomerular filtration rate (eGFR; absolute change at 12 months vs. baseline), with covariate adjustment, was also assessed using multiple linear regression. RESULTS: Mean ± s.d. age was 48 ± 8 years, eGFR was 71 ± 16 ml/min/1.73m2, and baseline BMI was 30.5 ± 5.9 kg/m2. None of the tubular biomarkers changed with any intervention as compared to placebo. Additionally, baseline tubular biomarkers were not associated with either baseline or change in eGFR or HtTKV over 12 months, after adjustments for demographics, group assignment, and clinical characteristics. CONCLUSIONS: Tubular biomarkers did not change with dietary-induced weight loss or metformin, nor did they associate with kidney disease progression, in this cohort of patients with ADPKD.


Subject(s)
Biomarkers , Caloric Restriction , Glomerular Filtration Rate , Kidney Tubules , Metformin , Polycystic Kidney, Autosomal Dominant , Humans , Metformin/therapeutic use , Polycystic Kidney, Autosomal Dominant/urine , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/diet therapy , Male , Female , Biomarkers/urine , Middle Aged , Kidney Tubules/pathology , Kidney Tubules/drug effects , Adult , Lipocalin-2/urine , Chemokine CCL2/urine , Fatty Acid-Binding Proteins/urine , Hepatitis A Virus Cellular Receptor 1/metabolism , Hepatitis A Virus Cellular Receptor 1/analysis , Chitinase-3-Like Protein 1/urine , Hypoglycemic Agents/therapeutic use
8.
Int J Biol Sci ; 20(8): 3201-3218, 2024.
Article in English | MEDLINE | ID: mdl-38904015

ABSTRACT

Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.


Subject(s)
Exosomes , Liver Neoplasms , Macrophages , MicroRNAs , Neuroendocrine Tumors , Pancreatic Neoplasms , MicroRNAs/metabolism , MicroRNAs/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Exosomes/metabolism , Humans , Animals , Mice , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Neuroendocrine Tumors/genetics , Macrophages/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Liver Neoplasms/genetics , Cell Line, Tumor , Fatty Acids/metabolism , Oxidation-Reduction , Tumor Microenvironment , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice, Nude , Signal Transduction
9.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 941-949, 2024 May 20.
Article in Chinese | MEDLINE | ID: mdl-38862452

ABSTRACT

OBJECTIVE: To explore the potential pathogenic genes of intestinal metaplasia. METHODS: Twenty-one patients with intestinal metaplasia admitted to the Department of Gastroenterology at the Second Affiliated Hospital of Anhui University of Chinese Medicine from January, 2022 to June, 2022, and 21 healthy subjects undergoing gastroscopic examination during the same period were enrolled in this study. All the participants underwent gastroscopy and pathological examination, and gastric tissue samples were collected for transcriptome sequencing to screen for differentially expressed genes (DEGs). The biological functions of the DEGs were analyzed using bioinformatics analysis, and qRT-PCR was used to validate the results. RESULTS: Transcriptomic sequencing identified a total of 1373 DEGs, including 827 upregulated and 546 downregulated ones. The top 6 upregulated genes (AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2), ranked based on their significance and average expression level, were selected for validation, and qRT-PCR showed significant upregulation of their mRNAs in the gastric tissues of patients with intestinal metaplasia (P < 0.05). CONCLUSION: AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2 participate in the occurrence and development of intestinal metaplasia, and may serve as potential biomarkers for diagnosing intestinal metaplasia.


Subject(s)
Computational Biology , Metaplasia , Humans , Metaplasia/genetics , Computational Biology/methods , Fatty Acid-Binding Proteins/genetics , Transcriptome , Mucin-2/genetics , Mucin-2/metabolism , Homeodomain Proteins/genetics , Gene Expression Profiling , Male , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Intestines/pathology , Female , RNA, Messenger/genetics
11.
BMC Cancer ; 24(1): 768, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926671

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a 'difficult-to-treat' entity. To forecast its prognosis, we introduced a new biomarker, SARIFA (stroma areactive invasion front areas), which are areas at the tumour invasion front lacking desmoplastic stroma reaction upon malignant invasion in the surrounding tissue, leading to direct contact between tumour cells and adipocytes. SARIFA showed its significance in gastric and colorectal carcinoma, revealing lipid metabolism alternations that promote tumour progression. METHODS: We reviewed the SARIFA status of 166 PDAC cases on all available H&E-stained tumour slides from archival Whipple-resection specimens. SARIFA positivity was defined as SARIFA detection in at least 66% of the available slides. To investigate alterations in tumour metabolism and microenvironment, we performed immunohistochemical staining for FABP4, CD36 and CD68. To verify and quantify a supposed delipidation of adipocytes, adipose tissue was digitally morphometrised. RESULTS: In total, 53 cases (32%) were classified as SARIFA positive and 113 (68%) as SARIFA negative. Patients with SARIFA-positive PDAC showed a significantly worse overall survival compared with SARIFA-negative cases (median overall survival: 11.0 months vs. 22.0 months, HR: 1.570 (1.082-2.278), 95% CI, p = 0.018), which was independent from other prognostic markers (p = 0.014). At the invasion front of SARIFA-positive PDAC, we observed significantly higher expression of FABP4 (p < 0.0001) and higher concentrations of CD68+ macrophages (p = 0.031) related to a higher risk of tumour progression. CD36 staining showed no significant expression differences. The adipocyte areas at the invasion front were significantly smaller, with mean values of 4021 ± 1058 µm2 and 1812 ± 1008 µm2 for the SARIFA-negative and -positive cases, respectively (p < 0.001). CONCLUSIONS: SARIFA is a promising prognostic biomarker for PDAC. Its assessment is characterised by simplicity and low effort. The mechanisms behind SARIFA suggest a tumour-promoting increased lipid metabolism and altered immune background, both showing new therapeutic avenues.


Subject(s)
Biomarkers, Tumor , Carcinoma, Pancreatic Ductal , Fatty Acid-Binding Proteins , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/mortality , Female , Male , Biomarkers, Tumor/metabolism , Prognosis , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Aged , Middle Aged , Fatty Acid-Binding Proteins/metabolism , Neoplasm Invasiveness , Tumor Microenvironment , Lipid Metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , CD36 Antigens/metabolism , Adipocytes/metabolism , Adipocytes/pathology , Adult , Aged, 80 and over , CD68 Molecule
12.
J Int Med Res ; 52(6): 3000605241254788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867509

ABSTRACT

OBJECTIVE: Neonatal necrotizing enterocolitis (NEC) is a serious intestinal inflammatory disease. We investigated intestinal fatty acid binding protein (I-FABP), I-FABP mRNA, and interleukin-6 (IL-6) as potential diagnostic biomarkers in NEC. METHODS: Forty mice were subjected to hypoxic-ischemic intestinal injury, and then serum I-FABP protein and mRNA levels were quantified. Ileal tissue pathological scores were determined by hematoxylin and eosin staining. I-FABP expression levels and translocation in these tissues were detected using western blotting and immunofluorescence, respectively. Samples from 30 human neonates with NEC and 30 healthy neonates had serum I-FABP protein/mRNA and IL-6 levels measured. RESULTS: The mouse ileal tissue pathological score and I-FABP levels, as well as serum I-FABP and I-FABP mRNA levels, were significantly higher in the model group than in the control group. Serum I-FABP, I-FABP mRNA, and IL-6 levels were significantly higher in human neonates with NEC than in the healthy group. Logistic regression and receiver operating curve analyses revealed that I-FABP protein/mRNA and IL-6 levels could be diagnostic biomarkers for NEC. CONCLUSIONS: I-FABP protein/mRNA and IL-6 levels are useful biomarkers of intestinal ischemic injury in neonates with NEC. The combined detection of I-FABP protein/mRNA and IL-6 is recommended rather than using a single biomarker.


Subject(s)
Biomarkers , Disease Models, Animal , Enterocolitis, Necrotizing , Fatty Acid-Binding Proteins , Interleukin-6 , Mice, Inbred BALB C , RNA, Messenger , Enterocolitis, Necrotizing/metabolism , Enterocolitis, Necrotizing/blood , Enterocolitis, Necrotizing/pathology , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/diagnosis , Animals , Fatty Acid-Binding Proteins/blood , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Interleukin-6/blood , Interleukin-6/genetics , Infant, Newborn , Humans , Biomarkers/blood , Biomarkers/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Messenger/blood , Mice , Male , Female , Animals, Newborn , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Ileum/metabolism , Ileum/pathology , Case-Control Studies , ROC Curve
13.
J Acquir Immune Defic Syndr ; 96(3): 214-222, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38905473

ABSTRACT

OBJECTIVES: Estrogens may protect the gut barrier and reduce microbial translocation and immune activation, which are prevalent in HIV infection. We investigated relationships of the menopausal transition and estrogens with gut barrier, microbial translocation, and immune activation biomarkers in women with and without HIV. DESIGN: Longitudinal and cross-sectional studies nested in the Women's Interagency HIV Study. METHODS: Intestinal fatty acid binding protein, lipopolysaccharide binding protein, and soluble CD14 (sCD14) levels were measured in serum from 77 women (43 with HIV) before, during, and after the menopausal transition (∼6 measures per woman over ∼13 years). A separate cross-sectional analysis was conducted among 72 postmenopausal women with HIV with these biomarkers and serum estrogens. RESULTS: Women in the longitudinal analysis were a median age of 43 years at baseline. In piecewise, linear, mixed-effects models with cutpoints 2 years before and after the final menstrual period to delineate the menopausal transition, sCD14 levels increased over time during the menopausal transition (Beta [95% CI]: 38 [12 to 64] ng/mL/yr, P = 0.004), followed by a decrease posttransition (-46 [-75 to -18], P = 0.001), with the piecewise model providing a better fit than a linear model (P = 0.0006). In stratified analyses, these results were only apparent in women with HIV. In cross-sectional analyses, among women with HIV, free estradiol inversely correlated with sCD14 levels (r = -0.26, P = 0.03). Lipopolysaccharide binding protein and intestinal fatty acid binding protein levels did not appear related to the menopausal transition and estrogen levels. CONCLUSIONS: Women with HIV may experience heightened innate immune activation during menopause, possibly related to the depletion of estrogens.


Subject(s)
Bacterial Translocation , Biomarkers , Estrogens , Fatty Acid-Binding Proteins , HIV Infections , Lipopolysaccharide Receptors , Menopause , Humans , Female , HIV Infections/immunology , HIV Infections/blood , Adult , Cross-Sectional Studies , Lipopolysaccharide Receptors/blood , Menopause/blood , Biomarkers/blood , Middle Aged , Longitudinal Studies , Estrogens/blood , Fatty Acid-Binding Proteins/blood , Membrane Glycoproteins/blood , Acute-Phase Proteins , Carrier Proteins
14.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
15.
PLoS One ; 19(6): e0300168, 2024.
Article in English | MEDLINE | ID: mdl-38900831

ABSTRACT

The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.


Subject(s)
Autophagy , Fatty Acid-Binding Proteins , Humans , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Cell Line, Tumor , Cell Differentiation , Dopaminergic Neurons/metabolism , Signal Transduction
16.
Mol Cell Biol ; 44(7): 261-272, 2024.
Article in English | MEDLINE | ID: mdl-38828991

ABSTRACT

The protein tyrosine phosphatase Src homology region 2 domain-containing phosphatase-1 (SHP-1) plays an important role in modulating glucose and lipid homeostasis. We previously suggested a potential role of SHP-1 in the regulation of peroxisome proliferator-activated receptor γ2 (PPARγ2) expression and activity but the mechanisms were unexplored. PPARγ2 is the master regulator of adipogenesis, but how its activity is regulated by tyrosine phosphorylation is largely unknown. Here, we found that SHP-1 binds to PPARγ2 primarily via its N-terminal SH2-domain. We confirmed the phosphorylation of PPARγ2 on tyrosine-residue 78 (Y78), which was reduced by SHP-1 in vitro resulting in decreased PPARγ2 stability. Loss of SHP-1 led to elevated, agonist-induced expression of the classical PPARγ2 targets FABP4 and CD36, concomitant with increased lipid content in cells expressing PPARγ2, an effect blunted by abrogation of PPARγ2 phosphorylation. Collectively, we discovered that SHP-1 affects the stability of PPARγ2 through dephosphorylation thereby influencing adipogenesis.


Subject(s)
Adipogenesis , PPAR gamma , Protein Tyrosine Phosphatase, Non-Receptor Type 6 , PPAR gamma/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Phosphorylation , Humans , Animals , Mice , CD36 Antigens/metabolism , CD36 Antigens/genetics , HEK293 Cells , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Protein Stability , 3T3-L1 Cells , src Homology Domains , Protein Binding
17.
BMC Vet Res ; 20(1): 236, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824607

ABSTRACT

BACKGROUND: The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS: A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS: Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.


Subject(s)
Acute-Phase Proteins , Acute-Phase Reaction , Biomarkers , Chickens , Escherichia coli , Lipopolysaccharides , Animals , Biomarkers/blood , Lipopolysaccharides/pharmacology , Acute-Phase Proteins/metabolism , Acute-Phase Proteins/analysis , Endotoxins , Serum Amyloid A Protein/analysis , Serum Amyloid A Protein/metabolism , Orosomucoid/metabolism , Dietary Supplements , Plant Extracts/pharmacology , Fatty Acid-Binding Proteins/metabolism , Poultry Diseases/microbiology , Hemopexin/metabolism
18.
Clin Res Hepatol Gastroenterol ; 48(6): 102364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788255

ABSTRACT

BACKGROUND: Non-alcoholic fatty pancreas disease (NAFPD) can be detected using various imaging techniques, but accurately measuring the amount of fat in the pancreas remains difficult. Fatty acid binding protein-1 (FABP-1) is a marker specific to certain tissues and can aid in diagnosing NAFPD. However, this study aimed to investigate the prevalence of NAFPD among obese and non-obese people with and without diabetes mellitus (DM). Additionally, it aimed to evaluate the associated risk factors for NAFPD and the utility of the FABP-1 level as a simple, non-invasive biomarker for diagnosing NAFPD. METHODS: This study is a prospective cross-sectional study. RESULTS: Ninety-five patients were enrolled in the study, comprising 35 males and 60 females, with a mean age of 44 years and a standard deviation (SD) of 11 years. However, 26.3 % were morbidly obese, 22.1 % were severely obese, 31.6 % were obese, 12.6 % were overweight, and 7.4 % were normal. Additionally, 35.8 % had diabetes mellitus, while 26.3 % of patients had hypertension. Regarding the ultrasonographic findings, 94.7 % of the patients had fatty liver, with the majority (41.1 %) classified as grade II, followed by 38.9 % classified as grade I, and 14.7 % classified as grade III fatty liver. Among these patients, 78.9 % had fatty pancreas, with 38.9 % classified as grade II, 31.6 % classified as grade I, and 8.4 % classified as grade III fatty pancreas. The median FABP-1 level among patients with fatty pancreas was 3.3 ng/ml, which exhibited a significant fair negative correlation with total bilirubin and a fair, positive correlation with alkaline phosphatase and portal vein diameter. A statistically substantial distinction was observed between the levels of AFABP-1 and the presence or grading of the fatty pancreas (p-value = 0.048 and < 0.001, respectively). Using multivariate analysis, FABP-1 was the only significant predictor of a fatty pancreas. The receiver operating characteristic (ROC) curve analysis indicated that at a cut-off point of FABP-1 of ≤ 3.7, it had a sensitivity of 58 %, specificity of 80 %, positive predictive value (PPV) of 96.6 %, negative predictive value (NPV) of 17 %, and an area under the curve (AUC) of 0.77. CONCLUSION: NAFPD is becoming an increasingly significant challenge. FABP-1 can potentially be a straightforward and non-invasive predictor of the fatty pancreas.


Subject(s)
Biomarkers , Fatty Acid-Binding Proteins , Humans , Male , Female , Adult , Cross-Sectional Studies , Egypt/epidemiology , Fatty Acid-Binding Proteins/blood , Biomarkers/blood , Prospective Studies , Middle Aged , Obesity/blood , Obesity/complications , Pancreatic Diseases/blood , Prevalence , Ultrasonography
19.
Talanta ; 276: 126272, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38776780

ABSTRACT

The development of photoelectrochemical (PEC) biosensors plays a critical role in enabling timely intervention and personalized treatment for cardiac injury. Herein, a novel approach is presented for the fabrication of highly sensitive PEC biosensor employing Bi2O3/MgIn2S4 heterojunction for the ultrasensitive detection of heart fatty acid binding protein (H-FABP). The Bi2O3/MgIn2S4 heterojunction, synthesized through in-situ growth of MgIn2S4 on Bi2O3 nanoplates, offers superior attributes including a larger specific surface area and more homogeneous distribution, leading to enhanced sensing sensitivity. The well-matched valence and conduction bands of Bi2O3 and MgIn2S4 effectively suppress the recombination of photogenerated carriers and facilitate electron transfer, resulting in a significantly improved photocurrent signal response. And the presence of the secondary antibody marker (ZnSnO3) introduces steric hindrance that hinders electron transfer between ascorbic acid and the photoelectrode, leading to a reduction in photocurrent signal. Additionally, the competition between the ZnSnO3 marker and the Bi2O3/MgIn2S4 heterojunction material for the excitation light source further diminishes the photocurrent signal response. After rigorous repeatability and selectivity tests, the PEC biosensor exhibited excellent performance, and the linear detection range of the biosensor was determined to be 0.05 pg/mL to 100 ng/mL with a remarkable detection limit of 0.029 pg/mL (S/N = 3).


Subject(s)
Biosensing Techniques , Bismuth , Electrochemical Techniques , Biosensing Techniques/methods , Bismuth/chemistry , Electrochemical Techniques/methods , Electrodes , Humans , Photochemical Processes , Sulfides/chemistry , Limit of Detection , Fatty Acid-Binding Proteins/analysis , Indium/chemistry , Zinc Compounds/chemistry , Tin Compounds/chemistry
20.
Acta Trop ; 255: 107247, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729330

ABSTRACT

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Subject(s)
Echinococcus multilocularis , Fatty Acid-Binding Proteins , Helminth Proteins , Macrophages , Phagocytosis , Animals , Echinococcus multilocularis/genetics , Echinococcus multilocularis/immunology , Macrophages/immunology , Macrophages/parasitology , Mice , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Helminth Proteins/genetics , Helminth Proteins/metabolism , Helminth Proteins/immunology , Nitric Oxide/metabolism , Apoptosis , Cytokines/metabolism , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL