Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.379
Filter
1.
Adipocyte ; 13(1): 2411453, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39385585

ABSTRACT

Obesity is a globally prevalent metabolic disorder characterized by an increased number of adipose cells and excessive fat in adipocytes. Herbal medicines, such as ginger, have shown potential in treating obesity by inhibiting adipogenesis and reducing adipocyte hypertrophy. Ginger contains bioactive compounds, particularly gingerols, which have demonstrated anti-adipogenic and/or lipolytic effects. However, research on the effects of 10-gingerol on adipose tissue remains limited. This study aimed to evaluate the effect of 10-gingerol on lipid content, lipolysis markers, and the expression of genes related to lipid metabolism in 3T3-L1 adipocytes. Three groups were analyzed: a negative control (preadipocytes), a positive control (mature adipocytes), and a group treated with 10-gingerol (10-G). Results showed that 10-G reduced lipid accumulation by 42.16% in mature adipocytes compared to the control, without affecting cell viability. Additionally, 10-G increased glycerol release and downregulated lipogenic genes such as Pparγ, Acaca, Fabp4, and Mtor, while upregulating genes related to fatty acid oxidation, including Cebpα, Cpt1a, Lipe, and Prkaa1. In conclusion, 10-gingerol reduces lipid content in mature adipocytes by downregulating lipogenesis, increasing lipolysis, and enhancing fatty acid oxidation.


Subject(s)
3T3-L1 Cells , Adipocytes , Catechols , Fatty Alcohols , Lipid Droplets , Lipid Metabolism , Lipolysis , Animals , Fatty Alcohols/pharmacology , Lipolysis/drug effects , Catechols/pharmacology , Mice , Adipocytes/metabolism , Adipocytes/drug effects , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Lipid Metabolism/drug effects , Adipogenesis/drug effects , Lipogenesis/drug effects , Cell Survival/drug effects
2.
Pestic Biochem Physiol ; 204: 106105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39277409

ABSTRACT

The invasive golden apple snail Pomacea canaliculata is one of the devastating threats to aquatic ecosystems and wetland agriculture worldwide. Macrolides from microbes display various advantages over other compounds in controlling snails. However, emergence of antibiotic-resistant phenotypes against certain macrolides in the field appeals for exploring more effectively molluscicidal macrolides. Here, two borrelidins, borrelidin BN1 and BN2, from the extract of a Streptomyces strain fermentation were evaluated for molluscicidal potential against P. canaliculata using both immersion and contact bioassay methods. Borrelidin BN1 (borrelidin A) presented a significant molluscicidal activity comparable to the chemical pesticide metaldehyde, and had a much lower median lethal concentration value (LC50, 522.984 µg·ml-1) than avermectin B1 at 72 h of contact-killing treatment. Snail growth was inhibited by borrelidin BN1 more than by metaldehyde at sublethal concentrations, consistent with responses of key biochemical parameters. Exposure to borrelidin BN1 decreased the activity of acetylcholinesterase (AChE), glutathione S-transferase (GST), aspartate aminotransferase (AST), alanine aminotransferase (ALT) as well as the levels of energy reserves and sex steroids in snail tissues, while increased the activity of superoxide dismutase (SOD), catalase (CAT), lactate dehydrogenase (LDH) and the level of lipid peroxidation (LPO). Further application assay confirmed that borrelidin BN1 protected crop plant Zizania latifolia from P. canaliculata damage via suppressing snail population density. These findings suggest great potential of borrelidin BN1 as a molluscicide. Additionally, its higher activity than the stereoisomeric borrelidin BN2 (borrelidin F) implied better molluscicidal borrelidins could be acquired through structural optimization.


Subject(s)
Molluscacides , Snails , Animals , Molluscacides/pharmacology , Snails/drug effects , Acetylcholinesterase/metabolism , Spiro Compounds/pharmacology , Spiro Compounds/toxicity , Streptomyces/metabolism , Glutathione Transferase/metabolism , Introduced Species , Acetaldehyde/analogs & derivatives , Fatty Alcohols
3.
ACS Synth Biol ; 13(9): 2938-2947, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39230514

ABSTRACT

Methylotrophic yeast Ogataea polymorpha has become a promising cell factory due to its efficient utilization of methanol to produce high value-added chemicals. However, the low homologous recombination (HR) efficiency in O. polymorpha greatly hinders extensive metabolic engineering for industrial applications. Overexpression of HR-related genes successfully improved HR efficiency, which however brought cellular stress and reduced chemical production due to constitutive expression of the HR-related gene. Here, we engineered an HR repair pathway using the dynamically regulated gene ScRAD51 under the control of the l-rhamnose-induced promoter PLRA3 based on the previously constructed CRISPR-Cas9 system in O. polymorpha. Under the optimal inducible conditions, the appropriate expression level of ScRAD51 achieved up to 60% of HR rates without any detectable influence on cell growth in methanol, which was 10-fold higher than that of the wild-type strain. While adopting as the chassis strain for bioproductions, the dynamically regulated recombination system had 50% higher titers of fatty alcohols than that static regulation system. Therefore, this study provided a feasible platform in O. polymorpha for convenient genetic manipulation without perturbing cellular fitness.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Homologous Recombination , Metabolic Engineering , Methanol , Saccharomycetales , Gene Editing/methods , CRISPR-Cas Systems/genetics , Saccharomycetales/genetics , Metabolic Engineering/methods , Methanol/metabolism , Promoter Regions, Genetic/genetics , Rhamnose/metabolism , Fatty Alcohols/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism
4.
Open Vet J ; 14(8): 2007-2015, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39308722

ABSTRACT

Background: Malaria remains a significant global health burden, with drug resistance posing a major challenge to its control. The emergence of resistance to antimalarial drugs represents a critical issue in malaria management, as it heightens the likelihood of morbidity and mortality associated with the disease. There is an urgent requirement for a novel candidate drug with a distinct mechanism of action. Aim: In light of the ongoing challenges in malaria management, particularly the emergence of drug resistance, this study aimed to investigate the efficacy of a novel combination therapy of borrelidin and fumagilin against Plasmodium berghei infection on Swiss Webster mice. The findings of this study could contribute to developing new and effective antimalarial treatments. Methods: This study employed a unique approach, using Swiss Webster mice aged 6-8 weeks and dividing them into five groups, each with five mice. The therapeutic efficacy of the combination treatment was evaluated through a comprehensive assessment of parasitemia levels, survival rates, and histological changes in the liver and spleen. This rigorous methodology ensures the reliability and validity of our findings. Results: The combination of borrelidin and fumagilin led to the lowest parasitemia at 5%, contrasting with the control group reaching 15%. Moreover, the combination group exhibited the highest inhibition rate of 69.6% on day nine post-infection. Histopathological alterations were limited to sinusoid dilation, hepatocyte ballooning, and the presence of hemozoin. Conclusion: These findings suggest that the combination of borrelidin and fumagilin holds promise as a potential antimalarial therapy.


Subject(s)
Antimalarials , Malaria , Plasmodium berghei , Animals , Plasmodium berghei/drug effects , Mice , Malaria/drug therapy , Malaria/veterinary , Malaria/parasitology , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/administration & dosage , Drug Therapy, Combination , Parasitemia/drug therapy , Female , Fatty Alcohols
5.
J Biochem Mol Toxicol ; 38(9): e23793, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39234939

ABSTRACT

Gold nanoparticles (AuNPs) have unique features which could be beneficial to various aspects of clinics and industry. Long-term exposure to AuNPs damages the physiologic functions and tissue structure of organs. Gingerol has anti-inflammatory and antioxidant properties. This study explored the effect of 6-gingerol on alleviation of AuNPs exposure effects in rats' liver. Thirty-two male Wistar rats were randomly assigned to four groups of negative control (received no AuNPs or treatment), positive control (received AuNPs but not treatment), and two study arms (both received AuNPs and one group 50 and the other 100 mg/Kg body weight 6-gingerol). All injections were performed intraperitoneally. After 30 days, serum levels of ALP, AST, ALT were assessed through ELISA method by an autoanalyzer while GGT, SOD, GPx, CAT, IL-6, IL-1ß, TNF-α, CRP, 8-OHdG, MDA, and Bax/Bcl2 were measured using an ELISA reader. Paraffin-embedded tissue sections of the livers from all groups were also prepared and H&E staining was performed on them for investigation of tissue changes. Statistical analyses were performed using SPSS version 26 and p = 0.05 was considered as the level of significancy. AuNPs exposure significantly increased the levels of ALP, AST, ALT, GGT, CRP, IL-6, IL-1ß, TNF-α, Bax/Bcl2, 8-OHdG, MDA (p < 0.001) in positive control groups compared to negative controls, while treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). The level of antioxidant enzymes of SOD, GPx, and CAT, on the other hand, was found to be highest and lowest in negative and positive controls, respectively (p < 0.001). Treatment with 6-gingerol significantly decreased the mentioned enzyme levels (p < 0.001). Histology results showed no signs of degeneration, necrosis, or immune cell infiltration in negative controls, while positive controls showed dilated central veins and hyperemia along with infiltration of mononuclear immune cells to the portal area, tissue degeneration, and necrosis. The study arms showed improved signs as they showed normal trabecular structures with no clear portal space. Treatment with 6-gingerol seems to significantly and efficiently reduce the hepatic side effects of AuNPs exposure in Wistar rats.


Subject(s)
Biomarkers , Catechols , Fatty Alcohols , Gold , Liver , Metal Nanoparticles , Oxidative Stress , Rats, Wistar , Animals , Fatty Alcohols/pharmacology , Catechols/pharmacology , Male , Oxidative Stress/drug effects , Liver/drug effects , Liver/pathology , Liver/metabolism , Metal Nanoparticles/toxicity , Rats , Gold/pharmacology , Biomarkers/metabolism , Biomarkers/blood , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced , Antioxidants/pharmacology , Antioxidants/metabolism
6.
J Agric Food Chem ; 72(39): 21781-21793, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39289871

ABSTRACT

α-Lipoic acid possesses remarkable antioxidant activity; however, its poor lipid solubility greatly restricts its practical utilization. The present study was the first (i) to synthesize a novel lipophilic antioxidant of octacosanol lipoate and (ii) to assess its antioxidant potency in sunflower oil by hydrogen nuclear magnetic resonance (1H NMR) spectroscopy. In brief, octacosanol lipoate was successfully synthesized using octacosanol and lipoic acid as substrates and Candida sp. 99-125 lipase as a catalyst. The conversion of octacosanol lipoate could reach as high as 98.1% within merely 2 h, with an overall yield of 87.9%. The hydrophobicity of lipoic acid was significantly enhanced upon esterification with octacosanol. Interestingly, both traditional methods and 1H NMR analysis consistently indicated that octacosanol lipoate exhibited superior antioxidant activity compared with butyl hydroxytoluene at high temperatures. It was concluded that octacosanol lipoate has the potential to be developed into a safe and efficient natural antioxidant which can be utilized not only in daily cooking oils but also in frying oils.


Subject(s)
Antioxidants , Lipase , Sunflower Oil , Antioxidants/chemistry , Antioxidants/chemical synthesis , Sunflower Oil/chemistry , Lipase/chemistry , Lipase/metabolism , Thioctic Acid/chemistry , Esterification , Candida/enzymology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Biocatalysis , Fatty Alcohols
7.
Molecules ; 29(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39339416

ABSTRACT

Triacontanol is a long-chain primary alcohol derived from policosanol, known for its diverse biological activities, including functioning as a plant growth regulator and exhibiting anti-inflammatory and antitumoral effects. However, its application is limited due to its high hydrophobicity, resulting in poor absorption and reduced therapeutic effectiveness. A potential solution to this problem is the use of niosomes. Niosomes are carriers composed of non-ionic surfactants, cholesterol, charge-inducing agents, and a hydration medium. They are effective in encapsulating drugs, improving their solubility and bioavailability. The objective of this study was to optimize and synthesize nano-niosomes for the encapsulation of triacontanol. Niosomes were synthesized using a thin-film hydration method combined with ultrasonication, following a Box-Behnken design. Niosomes were characterized using various techniques including dynamic light scattering, Fourier-transform infrared spectroscopy (FTIR), confocal microscopy, high-resolution scanning electron microscopy, and transmission electron microscopy (TEM). Formulation 14 of niosomes achieved the desired size, polydispersity index (0.198 ± 0.008), and zeta potential (-31.28 ± 1.21). FTIR analysis revealed a characteristic signal in the 3400-300 cm-1 range, indicating intermolecular interactions due to a bifurcated hydrogen bond between cholesterol and S60. Confocal microscopy confirmed the presence of triacontanol through Nile Red fluorescence. TEM revealed the spherical structure of niosomes.


Subject(s)
Fatty Alcohols , Liposomes , Liposomes/chemistry , Fatty Alcohols/chemistry , Particle Size , Spectroscopy, Fourier Transform Infrared , Nanoparticles/chemistry , Drug Carriers/chemistry , Solubility , Drug Compounding/methods , Cholesterol/chemistry , Surface-Active Agents/chemistry
8.
J Oleo Sci ; 73(10): 1289-1294, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39313397

ABSTRACT

The adsorbed film of Sodium Hexadecyl Sulfate (SHS) at the dodecane - water interface showed a first-order phase transition to a surface frozen monolayer upon cooling by the lateral van der Waals attraction between their hydrophobic tails and those of hexadecanol (C16OH) incorporated from the dodecane phase. The surface freezing transition of the SHS - C16OH monolayer was then utilized to stabilize an oil-in-water (OW) emulsion. The obtained results were compared to those examined previously for the cetyltrimethylammonium chloride (CTAC) - C16OH surface frozen monolayer. The main conclusion of this study was that the interfacial density of SHS significantly increased at the surface freezing by the cooperative adsorption with C16OH which gave rise to a higher surface freezing temperature (35°C) compared to CTAC (25°C). The formation of the surface freezing monolayer in the ambient temperature range could have a significant importance when it is applied to practical applications.


Subject(s)
Emulsions , Fatty Alcohols , Freezing , Surface Properties , Water , Adsorption , Water/chemistry , Fatty Alcohols/chemistry , Alkanes/chemistry , Phase Transition , Oils/chemistry , Sulfuric Acid Esters/chemistry , Hydrophobic and Hydrophilic Interactions , Temperature
9.
Drug Dev Ind Pharm ; 50(7): 706-719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39115285

ABSTRACT

OBJECTIVE: In the current research, 6-gingerol (GA)-loaded nanofiber drug delivery system were developed, and their potential usage in wound healing was evaluated. SIGNIFICANCE: This study investigates the effectiveness of nanofibrous membranes composed of sodium alginate (SA), poly(vinyl alcohol) (PVA), and 6-gingerol (GA) as delivery systems for anti-inflammatory agents in the context of wound dressings. METHODS: GA-loaded SA/PVA nanofiber was prepared using electrospinning. In vitro characterization of this nanofiber included the examination of comprehensive in vitro characterization, anti-inflammatory and antioxidant activities, cytotoxicity, a scratch tes and in vivo skin test. RESULTS: GA was extracted from Zingiber officinale, and its successful isolation was confirmed through analyses such as H-NMR, C-NMR. Then GA was electrospuned into the SA/PVA nanofibers, and scanning electron microscopy (SEM) imaging revealed that the fiber diameters of the formulations ranged between 148 nm and 176 nm. Anti-inflammatory and antioxidant studies demonstrated that the effectiveness of GA increased with higher doses; however, this increase was accompanied by decreased cell viability. In vitro release studies revealed that GA exhibited a burst release within the first 8 h, followed by a controlled release, reaching completion within 24 h. Within the scope of in vitro release kinetics, release data are mathematically compatible with the Weibull model with high correlation. The scratch test results indicated that TB2 (%1 GA) promoted epithelialization. Furthermore, it was determined that TB2 (%1 GA) did not cause any irritation. CONCLUSIONS: As a result, TB2 shows promise as a formulation for wound dressings, offering potential benefits in the field of wound care.


Subject(s)
Alginates , Antioxidants , Catechols , Fatty Alcohols , Nanofibers , Polyvinyl Alcohol , Wound Healing , Fatty Alcohols/chemistry , Nanofibers/chemistry , Wound Healing/drug effects , Catechols/chemistry , Catechols/pharmacology , Catechols/administration & dosage , Alginates/chemistry , Animals , Polyvinyl Alcohol/chemistry , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Humans , Zingiber officinale/chemistry , Drug Delivery Systems/methods , Cell Survival/drug effects , Drug Liberation , Bandages , Rats , Polymers/chemistry , Male , Mice
10.
Article in English | MEDLINE | ID: mdl-39090985

ABSTRACT

Chain elongating bacteria are a unique guild of strictly anaerobic bacteria that have garnered interest for sustainable chemical manufacturing from carbon-rich wet and gaseous waste streams. They produce C6-C8 medium-chain fatty acids, which are valuable platform chemicals that can be used directly, or derivatized to service a wide range of chemical industries. However, the application of chain elongating bacteria for synthesizing products beyond C6-C8 medium-chain fatty acids has not been evaluated. In this study, we assess the feasibility of expanding the product spectrum of chain elongating bacteria to C9-C12 fatty acids, along with the synthesis of C6 fatty alcohols, dicarboxylic acids, diols, and methyl ketones. We propose several metabolic engineering strategies to accomplish these conversions in chain elongating bacteria and utilize constraint-based metabolic modelling to predict pathway stoichiometries, assess thermodynamic feasibility, and estimate ATP and product yields. We also evaluate how producing alternative products impacts the growth rate of chain elongating bacteria via resource allocation modelling, revealing a trade-off between product chain length and class versus cell growth rate. Together, these results highlight the potential for using chain elongating bacteria as a platform for diverse oleochemical biomanufacturing and offer a starting point for guiding future metabolic engineering efforts aimed at expanding their product range. ONE-SENTENCE SUMMARY: In this work, the authors use constraint-based metabolic modelling and enzyme cost minimization to assess the feasibility of using metabolic engineering to expand the product spectrum of anaerobic chain elongating bacteria.


Subject(s)
Fatty Acids , Metabolic Engineering , Metabolic Engineering/methods , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Fatty Alcohols/metabolism , Bacteria/metabolism , Bacteria/genetics , Feasibility Studies , Metabolic Networks and Pathways
11.
Inflammopharmacology ; 32(5): 3311-3326, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39207636

ABSTRACT

Rheumatoid arthritis (RA) is characterized by inflammatory joint pathology leading to the degradation of articular bone and cartilage, primarily triggered by synovial inflammation, resulting in joint discomfort. The metacarpophalangeal and proximal interphalangeal joints are predominantly affected. Treatment typically involves a combination of biological and synthetic disease-modifying antirheumatic drugs (DAMARDs) alongside steroid therapy. The application of nanomedicine has been instrumental in enhancing treatment efficacy by facilitating controlled release of pharmacologically active compounds, thus augmenting bioavailability and enabling targeted drug delivery. Gingerol, a constituent of ginger, possesses multifaceted properties. including anti-inflammatory, anti-oxidant, antidiabetic, and antipyretic effects. In this study, gingerol-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), coated with chitosan, were administered orally to rats over a period of 21 days to address RA induced by complete Freund adjuvant (CFA). The rats were segregated into four experimental groups. Upon completion of the treatment regimen, blood samples were collected for the assessment of cyclooxygenase-2 (COX-2), RA factor, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Subsequent gene expression analysis was conducted to evaluate the levels of interleukin-4 (IL-4), interleukin-17a (IL-17a), IL-6, interferon-gamma (INF-γ), TNF-α, interleukin-1 beta (IL-1ß), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-B ligand (RANKL). Statistical analyses utilizing one-way ANOVA followed by Tukey tests were applied to the data. The gene expression profiling revealed significant disparities in mRNA levels of IL-1ß, IL-6, IL-4, IL-17a, RANKL, INF-γ, and TNF-α between the CFA-induced arthritis group and the control group. Consequently, it was inferred that gingerol-loaded PLGA NPs coated with chitosan exhibited heightened therapeutic efficacy in addressing CFA-induced arthritis in rats.


Subject(s)
Arthritis, Experimental , Catechols , Fatty Alcohols , Freund's Adjuvant , Nanoparticles , Osteoprotegerin , RANK Ligand , Signal Transduction , Animals , Male , Rats , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Catechols/pharmacology , Catechols/administration & dosage , Chitosan/pharmacology , Fatty Alcohols/pharmacology , Fatty Alcohols/administration & dosage , Nanoparticles/administration & dosage , Osteoprotegerin/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , RANK Ligand/metabolism , Signal Transduction/drug effects
12.
Arch Razi Inst ; 79(1): 180-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39192952

ABSTRACT

Obesity and its associated disorders, such as hyperlipidemia, have become a global issue following the consumption of unhealthy, high-fat, and high- carbohydrate foods, which burdens the economies and the health systems of human societies worldwide. This study aimed to evaluate the effect of oral consumption of 6-gingerol and L-arginine supplements on obesity factors. Thirty rats in five groups were fed a diet specific to each group for 12 weeks and then treated with the oral administration of L-arginine (200 mg/day) and 6-gingerol (100 mg/day) for 12 weeks. The food and water intake and weight change, were then measured. In addition, plasma glucose, triglyceride, cholesterol, high-density lipoprotein (HDL), very-low-density lipoprotein (VLDL) , low-density lipoprotein (LDL), and serum hormone levels, including corticosterone, testosterone, and insulin, were measured, and NPY, Y1, and Y5 receptor gene expression were recorded using real-time PCR. Administration of 6-gingerol and L-arginine decreased food intake, weight gain, glucose levels, insulin levels, and homeostasis model assessment-insulin resistance (HOMA-IR) index compared to the HCD control group. In addition, corticosterone and testosterone levels in the study groups showed a significant decrease (P<0.05) and increase (P<0.01) compared to the control groups, respectively. Triglyceride, total cholesterol, HDL, and VLDL levels in the groups treated with L-arginine and gingerol alone or combined significantly decreased compared to the control group (P<0.01). This study confirms that 6-gingerol and L-arginine supplements prevent HCD-induced hyperlipidemia by controlling hormones and neurotransmitters involved in the general metabolism. .


Subject(s)
Arginine , Catechols , Dietary Supplements , Fatty Alcohols , Obesity , Animals , Fatty Alcohols/pharmacology , Fatty Alcohols/administration & dosage , Arginine/administration & dosage , Arginine/pharmacology , Male , Catechols/pharmacology , Catechols/administration & dosage , Obesity/metabolism , Rats , Dietary Supplements/analysis , Rats, Wistar , Gene Expression Regulation/drug effects
13.
Int J Biol Macromol ; 277(Pt 3): 134334, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094890

ABSTRACT

Ginger, a Zingeberaceae family member, is notable for its anti-inflammatory properties. This study explores the pharmaceutical mechanisms of ginger and red palm wax co-extract, developing novel niosomal formulations for enhanced transdermal delivery. Evaluations included physical characteristics, drug loading, in vitro release, network pharmacology, molecular docking, and biocompatibility. The niosomal ginger with red palm wax gel (NGPW) exhibited non-Newtonian fluid properties. The optimized niosome formulation (cholesterol: Tween80: Span60 = 12.5: 20: 5 w/w) showed a high yield (93.23 %), high encapsulation efficiency (54.71 %), and small size (264.33 ± 5.84 nm), prolonging in vitro anti-inflammatory activity. Human skin irritation and biocompatibility tests on 1 % NGPW showed favorable cytotoxicity and hemocompatibility results (ISO10993). Network pharmacology identified potential targets, while molecular docking highlighted high affinities between gingerol and red palm wax compounds with TRPM8 and TRPV1 proteins, suggesting pain inhibition via serotonergic synapse pathways. NGPW presents a promising transdermal pain inhibitory drug delivery strategy.


Subject(s)
Liposomes , Molecular Docking Simulation , Zingiber officinale , Zingiber officinale/chemistry , Humans , Liposomes/chemistry , Gels/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Catechols/chemistry , Catechols/pharmacology , TRPV Cation Channels/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Drug Liberation , Waxes/chemistry , Waxes/pharmacology
14.
Bioresour Technol ; 412: 131396, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39216706

ABSTRACT

Microbial cell factories provide an efficient approach for the green manufacturing of chemicals. However, the excessive use of sugars increases the potential risk of food crisis. Methanol, an abundant feedstock, holds promise in facilitating low-carbon production processes. However, the current methanol bioconversion is hindered by limited regulatory strategies and relatively low conversion efficiency. Here, a yeast biocatalyst was extensively engineered for efficient biosynthesis of fatty alcohols through reinforcement of precursor supply and methanol assimilation in Pichia pastoris. Furthermore, the dual cytoplasmic and peroxisomal biosynthetic pathways were constructed by mating and exhibited robust production of 5.6 g/L fatty alcohols by using methanol as the sole carbon source. This study provides a heterozygous diploid P. pastoris strain with dual cytoplasmic and peroxisomal biosynthetic pathways, which achieved the highest fatty alcohol production from one-carbon feedstocks to date.


Subject(s)
Biosynthetic Pathways , Fatty Alcohols , Metabolic Engineering , Methanol , Methanol/metabolism , Fatty Alcohols/metabolism , Metabolic Engineering/methods , Saccharomycetales
15.
Sci Rep ; 14(1): 18356, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112503

ABSTRACT

This investigation delves into the influence of predicted microRNAs on DNA methyltransferases (DNMTs) and the PODXL gene within the NB4 cell line, aiming to elucidate their roles in the pathogenesis of acute myeloid leukemia (AML). A comprehensive methodological framework was adopted to explore the therapeutic implications of 6-gingerol on DNMTs. This encompassed a suite of bioinformatics tools for protein structure prediction, docking, molecular dynamics, and ADMET profiling, alongside empirical assessments of miRNA and PODXL expression levels. Such a multifaceted strategy facilitated an in-depth understanding of 6-gingerol's potential efficacy in DNMT modulation. The findings indicate a nuanced interplay where 6-gingerol administration modulated miRNA expression levels, decreasing in DNMT1 and DNMT3A expression in NB4 cells. This alteration indirectly influenced PODXL expression, contributing to the manifestation of oncogenic phenotypes. The overexpression of DNMT1 and DNMT3A in NB4 cells may contribute to AML, which appears modulable via microRNAs such as miR-193a and miR-200c. Post-treatment with 6-gingerol, DNMT1 and DNMT3A expression alterations were observed, culminating in the upregulation of miR-193a and miR-200c. This cascade effect led to the dysregulation of tumor suppressor genes in cancer cells, including downregulation of PODXL, and the emergence of cancerous traits. These insights underscore the therapeutic promise of 6-gingerol in targeting DNMTs and microRNAs within the AML context.


Subject(s)
Catechols , Fatty Alcohols , MicroRNAs , Catechols/pharmacology , Catechols/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Fatty Alcohols/pharmacology , Cell Line, Tumor , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA Methyltransferase 3A , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA (Cytosine-5-)-Methyltransferases/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Computer Simulation , Computational Biology/methods
16.
J Agric Food Chem ; 72(34): 18864-18871, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39153187

ABSTRACT

Pheromone receptor (PR)-mediated transduction of sex pheromones to electrophysiological signals is the basis for sex pheromone communication. Orthaga achatina, a serious pest of the camphor tree, uses a mixture of four components (Z11-16:OAc, Z11-16:OH, Z11-16:Ald, and Z3,Z6,Z9,Z12,Z15-23:H) as its sex pheromone. In this study, we identified five PR genes (OachPR1-5) by phylogenetic analysis. Further RT-PCR and qPCR experiments showed that PR1-3 were specifically expressed in male antennae, while PR4 was significantly female-biased in expression. Functional characterization using the XOE-TEVC assay demonstrated that PR1 and PR3 both responded strongly to Z11-16:OH, while PR1 and PR3 had a weak response to Z3,Z6,Z9,Z12,Z15-23:H and Z11-16:Ald, respectively. Finally, two key amino acid residues (N78 and R331) were confirmed to be essential for binding of PR3 with Z11-16:OH by molecular docking and site-directed mutagenesis. This study helps understand the sex pheromone recognition molecular mechanism of O. achatina.


Subject(s)
Insect Proteins , Phylogeny , Receptors, Odorant , Sex Attractants , Sex Attractants/chemistry , Sex Attractants/metabolism , Animals , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/chemistry , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Male , Female , Molecular Docking Simulation , Fatty Alcohols/metabolism , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Aldehydes
17.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997871

ABSTRACT

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Subject(s)
Agrobacterium tumefaciens , Anti-Inflammatory Agents , Catechols , Fatty Alcohols , Glucosides , alpha-Glucosidases , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Catechols/chemistry , Catechols/pharmacology , Catechols/metabolism , Glucosides/chemistry , Glucosides/pharmacology , Glucosides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Solubility , Zingiber officinale/chemistry
18.
J Phys Chem Lett ; 15(31): 8032-8041, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39083215

ABSTRACT

Human lysozyme undergoes a phase-separation process to form insoluble amyloid-architects that cause several pathologies including systemic amyloidosis. Here we have tailored 6-gingerol by extending its molecular framework with active functional groups to specifically target lysozyme phase-transition events. Aggregation assay revealed that tailored 6-gingerol with 4-aromatic moieties (MTV4) substantially suppressed the conversion of the lysozyme low-density liquid phase (LDLP) to solid-phase structured amyloids. The data obtained from biophysical, computational, and microscopic imaging tools suggest direct intervention of MTV4 with the liquid-liquid phase separation. The CD data suggest that MTV4 was able to retain the native conformation of lysozyme. Both biomolecular and computational data reveal the interference of MTV4 with the aggregation-prone hydrophobic stretches within the lysozyme, thereby retaining the native structure and reversing the misfolded intermediates to active monomers. Also, MTV4 was able to induce rapid dissolution of preformed-toxic amyloid fibrils. These results reinforce the importance of the aromatic-aromatic interaction in preventing human lysozyme phase separation.


Subject(s)
Amyloid , Catechols , Fatty Alcohols , Muramidase , Muramidase/chemistry , Muramidase/metabolism , Fatty Alcohols/chemistry , Humans , Catechols/chemistry , Amyloid/chemistry , Amyloid/metabolism , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Phase Transition , Protein Aggregates , Phase Separation
19.
Biomacromolecules ; 25(8): 5281-5287, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38967045

ABSTRACT

Slow-digesting starch with bioactive functionality has been attracting much interest with the increasing incidence of type-2 diabetes and other diet-related illnesses. The present study demonstrates a simple method for preparing a starch inclusion complex with reduced enzymic digestion and enhanced antioxidant activities using debranched pea starch (PS) and 10-gingerol (10G). Enzymically debranched starch complexed more 10G and formed more structurally ordered starch-10G complexes compared to PS that had not been debranched. Debranching for 6 h resulted in starch with better complexing ability for 10G than starches debranched for longer times. The debranched starch-10G complexes had higher antioxidant activities and a much slower in vitro enzymic digestion profile (rate and hydrolysis extent) than the 10G complex prepared with starch that was not debranched. Our study demonstrates that debranched pea starch-10G complexes with slow-digesting and antioxidant properties are likely to be of interest for developing ingredients for healthier food choices.


Subject(s)
Antioxidants , Catechols , Pisum sativum , Starch , Antioxidants/chemistry , Antioxidants/pharmacology , Starch/chemistry , Catechols/chemistry , Pisum sativum/chemistry , Fatty Alcohols/chemistry , Hydrolysis , Amylose/chemistry
20.
Res Vet Sci ; 177: 105364, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39053092

ABSTRACT

Pediculus humanus capitis (head louse), which causes pediculosis capitis, remains a global health concern. Plant products are efficient alternative pediculicides for treating the human ectoparasite P. h. capitis which is resistant to permethrin. The study evaluates the toxicity and mechanisms of 6-gingerol and Cymbopogon citratus leaf extract on P. h. capitis. Pediculus humanus capitis adult stages were exposed to three different dosages of 6-gingerol and C. citratus crude leaf extract on filter sheets for 5, 10, and 30 min, respectively. The biochemical approach was used to assess the activity of detoxifying enzymes including acetylcholinesterase (AChE), glutathione S-transferase (GST), and oxidase. Scanning electron microscope (SEM) was used to investigate the ultrastructure of the morphological body of lice. After 30 min, 6-gingerol and C. citratus leaf extract killed P. h. capitis completely. Bioassay periods significantly affected lice mortality (P < 0.05). The LC50 values for 6-gingerol and C. citratus extract were 1.79 µg/cm2 and 25.0 µg/cm2, respectively. 6-Gingerol and C. citratus leaf extract significantly lower AChE and GST activity (P < 0.05). Cymbopogon citratus also caused morphological ultrastructure changes in P. h. capitis, including an irregularly formed head, thorax, abdominal respiratory spiracles, and belly. 6-Gingerol and C. citratus leaf extracts could be used as an alternate pediculicide to decrease P. h. capitis populations.


Subject(s)
Catechols , Cymbopogon , Fatty Alcohols , Insecticides , Pediculus , Plant Extracts , Animals , Pediculus/drug effects , Pediculus/ultrastructure , Cymbopogon/chemistry , Plant Extracts/pharmacology , Fatty Alcohols/pharmacology , Fatty Alcohols/toxicity , Catechols/pharmacology , Insecticides/toxicity , Plant Leaves , Microscopy, Electron, Scanning/veterinary , Glutathione Transferase/metabolism , Lice Infestations/veterinary , Lice Infestations/drug therapy , Lice Infestations/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL