Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.072
Filter
1.
Transl Psychiatry ; 14(1): 319, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097609

ABSTRACT

Nicotine intake is linked to the maintenance and development of anxiety disorders and impairs adaptive discrimination of threat and safety in rodents and humans. Yet, it is unclear if nicotine exerts a causal pharmacological effect on the affective and neural mechanisms that underlie aversive learning. We conducted a pre-registered, pseudo-randomly and double-blinded pharmacological fMRI study to investigate the effect of acute nicotine on Fear Acquisition and Extinction in non-smokers (n = 88). Our results show that nicotine administration led to decreased discrimination between threat and safety in subjective fear. Nicotine furthermore decreased differential (threat vs. safety) activation in the hippocampus, which was functionally coupled with Nucleus Accumbens and amygdala, compared to placebo controls. Additionally, nicotine led to enhanced physiological arousal to learned threats and overactivation of the ventral tegmental area. This study provides mechanistic evidence that single doses of nicotine impair neural substrates of adaptive aversive learning in line with the risk for the development of pathological anxiety.


Subject(s)
Amygdala , Fear , Hippocampus , Magnetic Resonance Imaging , Nicotine , Nucleus Accumbens , Humans , Nicotine/pharmacology , Nicotine/adverse effects , Nicotine/administration & dosage , Nucleus Accumbens/drug effects , Nucleus Accumbens/diagnostic imaging , Male , Hippocampus/drug effects , Fear/drug effects , Adult , Amygdala/drug effects , Amygdala/diagnostic imaging , Female , Young Adult , Double-Blind Method , Discrimination, Psychological/drug effects , Nicotinic Agonists/pharmacology , Nicotinic Agonists/adverse effects , Nicotinic Agonists/administration & dosage , Extinction, Psychological/drug effects
2.
Article in English | MEDLINE | ID: mdl-38950840

ABSTRACT

Growing evidence supports dopamine's role in aversive states, yet systematic reviews focusing on dopamine receptors in defensive behaviors are lacking. This study presents a systematic review of the literature examining the influence of drugs acting on dopamine D2-like receptors on unconditioned and conditioned fear in rodents. The review reveals a predominant use of adult male rats in the studies, with limited inclusion of female rodents. Commonly employed tests include the elevated plus maze and auditory-cued fear conditioning. The findings indicate that systemic administration of D2-like drugs has a notable impact on both innate and learned aversive states. Generally, antagonists tend to increase unconditioned fear, while agonists decrease it. Moreover, both agonists and antagonists typically reduce conditioned fear. These effects are attributed to the involvement of distinct neural circuits in these states. The observed increase in unconditioned fear induced by D2-like antagonists aligns with dopamine's role in suppressing midbrain-mediated responses. Conversely, the reduction in conditioned fear is likely a result of blocking dopamine activity in the mesolimbic pathway. The study highlights the need for future research to delve into sex differences, explore alternative testing paradigms, and identify specific neural substrates. Such investigations have the potential to advance our understanding of the neurobiology of aversive states and enhance the therapeutic application of dopaminergic agents.


Subject(s)
Fear , Receptors, Dopamine D2 , Animals , Fear/drug effects , Fear/physiology , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D2/drug effects , Dopamine D2 Receptor Antagonists/pharmacology , Rats , Dopamine Agonists/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Rodentia , Male , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology
3.
Sci Rep ; 14(1): 15136, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956153

ABSTRACT

The potential long-term effects of anesthesia on cognitive development, especially in neonates and infants, have raised concerns. However, our understanding of its underlying mechanisms and effective treatments is still limited. In this study, we found that early exposure to isoflurane (ISO) impaired fear memory retrieval, which was reversed by dexmedetomidine (DEX) pre-treatment. Measurement of c-fos expression revealed that ISO exposure significantly increased neuronal activation in the zona incerta (ZI). Fiber photometry recording showed that ZI neurons from ISO mice displayed enhanced calcium activity during retrieval of fear memory compared to the control group, while DEX treatment reduced this enhanced calcium activity. Chemogenetic inhibition of ZI neurons effectively rescued the impairments caused by ISO exposure. These findings suggest that the ZI may play a pivotal role in mediating the cognitive effects of anesthetics, offering a potential therapeutic target for preventing anesthesia-related cognitive impairments.


Subject(s)
Fear , Isoflurane , Memory Disorders , Zona Incerta , Isoflurane/pharmacology , Isoflurane/adverse effects , Animals , Fear/drug effects , Mice , Memory Disorders/chemically induced , Zona Incerta/drug effects , Male , Anesthetics, Inhalation/adverse effects , Anesthetics, Inhalation/pharmacology , Neurons/drug effects , Neurons/metabolism , Mice, Inbred C57BL , Dexmedetomidine/pharmacology , Female , Proto-Oncogene Proteins c-fos/metabolism , Memory/drug effects
4.
Biol Psychiatry ; 95(8): 785-799, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38952926

ABSTRACT

Background: Responding to social signals by expressing the correct behavior is not only challenged in autism, but also in diseases with high prevalence of autism, like Prader-Willi Syndrome (PWS). Clinical evidence suggests aberrant pro-social behavior in patients can be regulated by intranasal oxytocin (OXT) or vasopressin (AVP). However, what neuronal mechanisms underlie impaired behavioral responses in a socially-aversive context, and how can they be corrected, remains largely unknown. Methods: Using the Magel2 knocked-out (KO) mouse model of PWS (crossed with CRE-dependent transgenic lines), we devised optogenetic, physiological and pharmacological strategies in a social-fear-conditioning paradigm. Pathway specific roles of OXT and AVP signaling were investigated converging on the lateral septum (LS), a region which receives dense hypothalamic inputs. Results: OXT and AVP signaling promoted inhibitory synaptic transmission in the LS, which failure in Magel2KO mice disinhibited somatostatin (SST) neurons and disrupted social-fear extinction. The source of OXT and AVP deficits mapped specifically in the supraoptic nucleus→LS pathway of Magel2KO mice disrupting social-fear extinction, which could be corrected by optogenetic or pharmacological inhibition of SST-neurons in the LS. Interestingly, LS SST-neurons also gated the expression of aggressive behavior, possibly as part of functional units operating beyond local septal circuits. Conclusions: SST cells in the LS play a crucial role in integration and expression of disrupted neuropeptide signals in autism, thereby altering the balance in expression of safety versus fear. Our results uncover novel mechanisms underlying dysfunction in a socially-aversive context, and provides a new framework for future treatments in autism-spectrum disorders.


Subject(s)
Disease Models, Animal , Extinction, Psychological , Fear , Mice, Knockout , Neurons , Oxytocin , Prader-Willi Syndrome , Somatostatin , Vasopressins , Animals , Oxytocin/pharmacology , Somatostatin/pharmacology , Somatostatin/metabolism , Fear/drug effects , Fear/physiology , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Neurons/drug effects , Neurons/metabolism , Mice , Prader-Willi Syndrome/physiopathology , Prader-Willi Syndrome/drug therapy , Vasopressins/metabolism , Aggression/drug effects , Aggression/physiology , Male , Social Behavior , Septal Nuclei/drug effects , Septal Nuclei/metabolism , Optogenetics , Mice, Inbred C57BL , Intracellular Signaling Peptides and Proteins , Intrinsically Disordered Proteins
5.
Pharmacol Biochem Behav ; 242: 173822, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38996927

ABSTRACT

The volatile compound 2,4,5-trimethylthiazoline (TMT, a synthetic predator scent) triggers fear, anxiety, and defensive responses in rodents that can outlast the encounter. The receptor systems underlying the development and persistence of TMT-induced behavioral changes remain poorly characterized, especially in females. Kappa opioid receptors regulate threat generalization and fear conditioning and alter basal anxiety, but their role in unconditioned fear responses in females has not been examined. Here, we investigated the effects of the long-lasting kappa opioid receptor antagonist, nor-binalthorphinmine dihydrochloride (nor-BNI; 10 mg/kg), on TMT-induced freezing and conditioned place aversion in female mice. We also measured anxiety-like behavior in the elevated plus maze three days after TMT and freezing behavior when returned to the TMT-paired context ten days after the single exposure. We found that 35µl of 10 % TMT elicited a robust freezing response during a five-minute exposure in female mice. TMT evoked persistent fear as measured by conditioned place aversion, reduced entries into the open arm of the elevated plus maze, and increased general freezing behavior long after TMT exposure. In line with the known role of kappa-opioid receptors in threat generalization, we found that kappa-opioid receptor antagonism increased basal freezing but reduced freezing during TMT presentation. Together, these findings indicate that a single exposure to TMT causes long-lasting changes in fear-related behavioral responses in female mice and highlights the modulatory role of kappa-opioid receptor signaling on fear-related behavioral patterns in females.


Subject(s)
Behavior, Animal , Fear , Odorants , Receptors, Opioid, kappa , Thiazoles , Animals , Female , Receptors, Opioid, kappa/metabolism , Mice , Thiazoles/pharmacology , Fear/drug effects , Behavior, Animal/drug effects , Naltrexone/pharmacology , Naltrexone/analogs & derivatives , Signal Transduction/drug effects , Anxiety/psychology , Anxiety/metabolism , Mice, Inbred C57BL , Narcotic Antagonists/pharmacology
6.
Neurobiol Learn Mem ; 213: 107960, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39004160

ABSTRACT

Labilization-reconsolidation, which relies on retrieval, has been considered an opportunity to attenuate the negative aspects of traumatic memories. A therapeutic strategy based on reconsolidation blockade is deemed more effective than current therapies relying on memory extinction. Nevertheless, extremely stressful memories frequently prove resistant to this process. Here, after inducing robust fear memory in mice through strong fear conditioning, we examined the possibility of rendering it susceptible to pharmacological modulation based on the degree of generalized fear (GF). To achieve this, we established an ordered gradient of GF, determined by the perceptual similarity between the associated context (CA) and non-associated contexts (CB, CC, CD, and CE) to the aversive event. We observed that as the exposure context became less similar to CA, the defensive pattern shifted from passive to active behaviors in both male and female mice. Subsequently, in conditioned animals, we administered propranolol after exposure to the different contexts (CA, CB, CC, CD or CE). In males, propranolol treatment resulted in reduced freezing time and enhanced risk assessment behaviors when administered following exposure to CA or CB, but not after CC, CD, or CE, compared to the control group. In females, a similar change in behavioral pattern was observed with propranolol administered after exposure to CC, but not after the other contexts. These results highlight the possibility of indirectly manipulating a robust contextual fear memory by controlling the level of generalization during recall. Additionally, it was demonstrated that the effect of propranolol on reconsolidation would not lead to a reduction in fear memory per se, but rather to its reorganization resulting in greater behavioral flexibility (from passive to active behaviors). Finally, from a clinical viewpoint, this would be of considerable relevance since following this strategy could make the treatment of psychiatric disorders associated with traumatic memory formation more effective and less stressful.


Subject(s)
Conditioning, Classical , Fear , Propranolol , Fear/drug effects , Fear/physiology , Animals , Male , Propranolol/pharmacology , Female , Mice , Conditioning, Classical/drug effects , Memory Consolidation/drug effects , Memory Consolidation/physiology , Mice, Inbred C57BL , Memory/drug effects , Memory/physiology , Generalization, Psychological/drug effects , Generalization, Psychological/physiology , Extinction, Psychological/drug effects
7.
Neurobiol Learn Mem ; 213: 107959, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964600

ABSTRACT

Adolescence is characterized by a critical period of maturation and growth, during which regions of the brain are vulnerable to long-lasting cognitive disturbances. Adolescent exposure to nicotine can lead to deleterious neurological and psychological outcomes. Moreover, the nicotinic acetylcholine receptor (nAChR) has been shown to play a functionally distinct role in the development of the adolescent brain. CHRNA2 encodes for the α2 subunit of nicotinic acetylcholine receptors associated with CA1 oriens lacunosum moleculare GABAergic interneurons and is associated with learning and memory. Previously, we found that adolescent male hypersensitive CHRNA2L9'S/L9' mice had impairments in learning and memory during a pre-exposure-dependent contextual fear conditioning task that could be rescued by low-dose nicotine exposure. In this study, we assessed learning and memory in female adolescent hypersensitive CHRNA2L9'S/L9' mice exposed to saline or a subthreshold dose of nicotine using a hippocampus-dependent task of pre-exposure-dependent contextual fear conditioning. We found that nicotine-treated wild-type female mice had significantly greater improvements in learning and memory than both saline-treated wild-type mice and nicotine-treated CHRNA2L9'S/L9' female mice. Thus, hyperexcitability of CHRNA2 in female adolescent mice ablated the nicotine-mediated potentiation of learning and memory seen in wild-types. Our results indicate that nicotine exposure during adolescence mediates sexually dimorphic patterns of learning and memory, with wild-type female adolescents being more susceptible to the effects of sub-threshold nicotine exposure. To understand the mechanism underlying sexually dimorphic behavior between hyperexcitable CHRNA2 mice, it is critical that further research be conducted.


Subject(s)
Fear , Hippocampus , Memory , Nicotine , Receptors, Nicotinic , Animals , Receptors, Nicotinic/metabolism , Nicotine/pharmacology , Female , Mice , Hippocampus/drug effects , Hippocampus/metabolism , Fear/drug effects , Fear/physiology , Memory/drug effects , Memory/physiology , Nicotinic Agonists/pharmacology , Learning/drug effects , Learning/physiology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Mice, Inbred C57BL
8.
Neuroscience ; 554: 118-127, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39019393

ABSTRACT

Despite significant advances in the study of fear and fear memory formation, little is known about fear learning and expression in females. This omission has been proven surprising, as normal and pathological behaviors are highly influenced by ovarian hormones, particularly estradiol and progesterone. In the current study, we investigated the joint influence of serotonin (5-HT) neurotransmission and estrous cycle phases (low or high levels of estradiol and progesterone) on the expression of conditioned fear in a group of female rats that were previously divided according to their response to stressful stimuli into low or high anxiety-like subjects. The baseline amplitude of the unconditioned acoustic startle responses was high in high-anxiety female rats, with no effect on the estrous cycle observed. Data collected during the proestrus-estrus phase revealed that low-anxiety rats had startle amplitudes similar to those of high-anxiety rats. It is supposed that high-anxiety female rats benefit from increased estradiol and progesterone levels to achieve comparable potentiated startle amplitudes. In contrast, female rats experienced a significant decrease in hormone levels during the Diestrus phase. This decrease is believed to play a role in preventing them from displaying a heightened startle response when faced with strongly aversive stimuli. Data collected after 5-HT and 8-OH-DPAT were administered into the basolateral nuclei and dorsal periaqueductal gray suggest that 5-HT neurotransmission works with progesterone and estrogen to reduce startle potentiation, most likely by activating the serotonin-1A receptor subtype.


Subject(s)
Basolateral Nuclear Complex , Estradiol , Fear , Periaqueductal Gray , Progesterone , Receptor, Serotonin, 5-HT1A , Reflex, Startle , Animals , Female , Rats , Anxiety/metabolism , Anxiety/physiopathology , Basolateral Nuclear Complex/metabolism , Basolateral Nuclear Complex/drug effects , Conditioning, Classical/physiology , Conditioning, Classical/drug effects , Estradiol/pharmacology , Estradiol/metabolism , Estrous Cycle/physiology , Fear/physiology , Fear/drug effects , Periaqueductal Gray/metabolism , Periaqueductal Gray/drug effects , Progesterone/pharmacology , Progesterone/metabolism , Rats, Wistar , Receptor, Serotonin, 5-HT1A/metabolism , Reflex, Startle/physiology , Reflex, Startle/drug effects , Serotonin/metabolism
9.
Int Rev Neurobiol ; 177: 235-250, 2024.
Article in English | MEDLINE | ID: mdl-39029986

ABSTRACT

Cannabidiol (CBD) modulates aversive memory and its extinction, with potential implications for treating anxiety- and stress-related disorders. Here, we summarize and discuss scientific evidence showing that CBD administered after the acquisition (consolidation) and retrieval (reconsolidation) of fear memory attenuates it persistently in rats and mice. CBD also reduces fear expression and enhances fear extinction. These effects involve the activation of cannabinoid type-1 (CB1) receptors in the dorsal hippocampus, bed nucleus of stria terminalis, and medial prefrontal cortex, comprising the anterior cingulate, prelimbic, and infralimbic subregions. Serotonin type-1A (5-HT1A) receptors also mediate some CBD effects on fear memory. CBD effects on fear memory acquisition vary, depending on the aversiveness of the conditioning procedure. While rodent findings are relatively consistent and encouraging, human studies investigating CBD's efficacy in modulating aversive/traumatic memories are still limited. More studies are needed to investigate CBD's effects on maladaptive, traumatic memories, particularly in post-traumatic stress disorder patients.


Subject(s)
Cannabidiol , Fear , Stress Disorders, Post-Traumatic , Animals , Cannabidiol/pharmacology , Fear/drug effects , Fear/physiology , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/physiopathology , Humans , Extinction, Psychological/drug effects , Extinction, Psychological/physiology
10.
J Psychopharmacol ; 38(7): 672-682, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39068641

ABSTRACT

BACKGROUND: The neurotransmitter dopamine plays an important role in the processing of emotional memories, and prior research suggests that dopaminergic manipulations immediately after fear learning can affect the retention and generalization of acquired fear. AIMS: The current study focuses specifically on the role of dopamine D2 receptors (D2Rs) regarding fear generalization in adult, male Wistar rats, and aims to replicate previous findings in mice. METHODS: In a series of five experiments, D2R (ant)agonists were injected systemically, immediately after differential cued fear conditioning (CS+ followed by shock, CS- without shock). All five experiments involved the administration of the D2R agonist quinpirole at different doses versus saline (n = 12, 16, or 44 rats/group). In addition, one of the studies administered the D2R antagonist raclopride (n = 12). One day later, freezing during the CS+ and CS- was assessed. RESULTS: We found no indications for an effect of quinpirole or raclopride on fear generalization during this drug-free test. Importantly, and contradicting earlier research in mice, the evidence for the absence of an effect of D2R agonist quinpirole (1 mg/kg) on fear generalization was substantial according to Bayesian analyses and was observed in a highly powered experiment (N = 87). We did find acute behavioral effects in line with the literature, for both quinpirole and raclopride in a locomotor activity test. CONCLUSION: In contrast with prior studies in mice, we have obtained evidence against a preventative effect of post-training D2R agonist quinpirole administration on subsequent fear generalization in rats.


Subject(s)
Conditioning, Classical , Dopamine Agonists , Fear , Generalization, Psychological , Quinpirole , Raclopride , Rats, Wistar , Receptors, Dopamine D2 , Animals , Fear/drug effects , Male , Receptors, Dopamine D2/agonists , Receptors, Dopamine D2/metabolism , Quinpirole/pharmacology , Dopamine Agonists/pharmacology , Rats , Generalization, Psychological/drug effects , Raclopride/pharmacology , Conditioning, Classical/drug effects , Dopamine D2 Receptor Antagonists/pharmacology
11.
Commun Biol ; 7(1): 728, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877285

ABSTRACT

Benzodiazepines, commonly used for anxiolytics, hinder conditioned fear extinction, and the underlying circuit mechanisms are unclear. Utilizing remimazolam, an ultra-short-acting benzodiazepine, here we reveal its impact on the thalamic nucleus reuniens (RE) and interconnected hippocamposeptal circuits during fear extinction. Systemic or RE-specific administration of remimazolam impedes fear extinction by reducing RE activation through A type GABA receptors. Remimazolam enhances long-range GABAergic inhibition from lateral septum (LS) to RE, underlying the compromised fear extinction. RE projects to ventral hippocampus (vHPC), which in turn sends projections characterized by feed-forward inhibition to the GABAergic neurons of the LS. This is coupled with long-range GABAergic projections from the LS to RE, collectively constituting an overall positive feedback circuit construct that promotes fear extinction. RE-specific remimazolam negates the facilitation of fear extinction by disrupting this circuit. Thus, remimazolam in RE disrupts fear extinction caused by hippocamposeptal intermediation, offering mechanistic insights for the dilemma of combining anxiolytics with extinction-based exposure therapy.


Subject(s)
Benzodiazepines , Extinction, Psychological , Fear , Hippocampus , Midline Thalamic Nuclei , Fear/drug effects , Animals , Benzodiazepines/pharmacology , Hippocampus/drug effects , Hippocampus/physiology , Hippocampus/metabolism , Extinction, Psychological/drug effects , Male , Midline Thalamic Nuclei/drug effects , Midline Thalamic Nuclei/physiology , Midline Thalamic Nuclei/metabolism , Rats , Anti-Anxiety Agents/pharmacology , Mice
12.
J Toxicol Sci ; 49(7): 301-311, 2024.
Article in English | MEDLINE | ID: mdl-38945841

ABSTRACT

Clothianidin (CLO), a neonicotinoid that is widely used in forests and agricultural areas, was recently reported to cause toxicity in mammals. Although sensitivity to chemicals varies between sexes and developmental stages, studies that comprehensively evaluate both males and females are limited. Therefore, in this study we utilized murine models to compare the sex-specific differences in behavioral effects following CLO exposure at different developmental stages. We orally administered CLO to male and female mice as a single high-dose solution (80 mg/kg) during the postnatal period (2-week-old), adolescence (6-week-old), or maturity (10-week-old), and subsequently evaluated higher brain function. The behavioral battery test consisted of open field, light/dark transition, and contextual/cued fear conditioning tests conducted at three and seven months of age. After the behavioral test, the brains were dissected and prepared for immunohistochemical staining. We observed behavioral abnormalities in anxiety, spatial memory, and cued memory only in female mice. Moreover, the immunohistochemical analysis showed a reduction in astrocytes within the hippocampus of female mice with behavioral abnormalities. The behavioral abnormalities observed in female CLO-treated mice were consistent with the typical behavioral abnormalities associated with hippocampal astrocyte dysfunction. It is therefore possible that the CLO-induced behavioral abnormalities are at least in part related to a reduction in astrocyte numbers. The results of this study highlight the differences in behavioral effects following CLO exposure between sexes and developmental stages.


Subject(s)
Behavior, Animal , Guanidines , Hippocampus , Neonicotinoids , Thiazoles , Animals , Female , Neonicotinoids/toxicity , Guanidines/toxicity , Guanidines/administration & dosage , Male , Behavior, Animal/drug effects , Thiazoles/toxicity , Thiazoles/administration & dosage , Hippocampus/drug effects , Sex Characteristics , Fear/drug effects , Astrocytes/drug effects , Anxiety/chemically induced , Mice , Sex Factors , Spatial Memory/drug effects , Administration, Oral , Insecticides/toxicity
13.
Physiol Behav ; 281: 114583, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38750806

ABSTRACT

The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.


Subject(s)
Administration, Intranasal , Disease Models, Animal , Frailty , Insulin , Mice, Transgenic , Muscle Strength , Spatial Memory , Animals , Insulin/administration & dosage , Insulin/pharmacology , Muscle Strength/drug effects , Spatial Memory/drug effects , Female , Frailty/drug therapy , Mice , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Alzheimer Disease/drug therapy , Maze Learning/drug effects , Dose-Response Relationship, Drug , Memory Disorders/drug therapy , Amyloid beta-Protein Precursor/genetics , Hand Strength/physiology , Fear/drug effects , Hippocampus/drug effects , Hippocampus/metabolism
14.
Sci Rep ; 14(1): 11557, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773352

ABSTRACT

Juvenile loneliness is a risk factor for psychopathology in later life. Deprivation of early social experience due to peer rejection has a detrimental impact on emotional and cognitive brain function in adulthood. Accumulating evidence indicates that soy peptides have many positive effects on higher brain function in rodents and humans. However, the effects of soy peptide use on juvenile social isolation are unknown. Here, we demonstrated that soy peptides reduced the deterioration of behavioral and cellular functions resulting from juvenile socially-isolated rearing. We found that prolonged social isolation post-weaning in male C57BL/6J mice resulted in higher aggression and impulsivity and fear memory deficits at 7 weeks of age, and that these behavioral abnormalities, except impulsivity, were mitigated by ingestion of soy peptides. Furthermore, we found that daily intake of soy peptides caused upregulation of postsynaptic density 95 in the medial prefrontal cortex and phosphorylation of the cyclic adenosine monophosphate response element binding protein in the hippocampus of socially isolated mice, increased phosphorylation of the adenosine monophosphate-activated protein kinase in the hippocampus, and altered the microbiota composition. These results suggest that soy peptides have protective effects against juvenile social isolation-induced behavioral deficits via synaptic maturation and cellular functionalization.


Subject(s)
Aggression , Dietary Supplements , Fear , Hippocampus , Mice, Inbred C57BL , Social Isolation , Animals , Social Isolation/psychology , Male , Fear/drug effects , Aggression/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Soybean Proteins/pharmacology , Memory/drug effects , Behavior, Animal/drug effects , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Disks Large Homolog 4 Protein/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism
15.
Dev Psychobiol ; 66(5): e22501, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807259

ABSTRACT

Selective serotonin reuptake inhibitors, such as fluoxetine (Prozac), are commonly prescribed pharmacotherapies for anxiety. Fluoxetine may be a useful adjunct because it can reduce the expression of learned fear in adult rodents. This effect is associated with altered expression of perineuronal nets (PNNs) in the amygdala and hippocampus, two brain regions that regulate fear. However, it is unknown whether fluoxetine has similar effects in adolescents. Here, we investigated the effect of fluoxetine exposure during adolescence or adulthood on context fear memory and PNNs in the basolateral amygdala (BLA), the CA1 subregion of the hippocampus, and the medial prefrontal cortex in rats. Fluoxetine impaired context fear memory in adults but not in adolescents. Further, fluoxetine increased the number of parvalbumin (PV)-expressing neurons surrounded by a PNN in the BLA and CA1, but not in the medial prefrontal cortex, at both ages. Contrary to previous reports, fluoxetine did not shift the percentage of PNNs toward non-PV cells in either the BLA or CA1 in the adults, or adolescents. These findings demonstrate that fluoxetine differentially affects fear memory in adolescent and adult rats but does not appear to have age-specific effects on PNNs.


Subject(s)
Fear , Fluoxetine , Memory , Prefrontal Cortex , Selective Serotonin Reuptake Inhibitors , Fluoxetine/pharmacology , Fluoxetine/administration & dosage , Animals , Fear/drug effects , Fear/physiology , Male , Rats , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/administration & dosage , Prefrontal Cortex/drug effects , Memory/drug effects , Memory/physiology , Age Factors , Rats, Sprague-Dawley , Parvalbumins/metabolism , Basolateral Nuclear Complex/drug effects , Basolateral Nuclear Complex/metabolism , CA1 Region, Hippocampal/drug effects , Nerve Net/drug effects
16.
Neurobiol Learn Mem ; 212: 107937, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735637

ABSTRACT

Systemic manipulations that enhance dopamine (DA) transmission around the time of fear extinction can strengthen fear extinction and reduce conditioned fear relapse. Prior studies investigating the brain regions where DA augments fear extinction focus on targets of mesolimbic and mesocortical DA systems originating in the ventral tegmental area, given the role of these DA neurons in prediction error. The dorsal striatum (DS), a primary target of the nigrostriatal DA system originating in the substantia nigra (SN), is implicated in behaviors beyond its canonical role in movement, such as reward and punishment, goal-directed action, and stimulus-response associations, but whether DS DA contributes to fear extinction is unknown. We have observed that chemogenetic stimulation of SN DA neurons during fear extinction prevents the return of fear in contexts different from the extinction context, a form of relapse called renewal. This effect of SN DA stimulation is mimicked by a DA D1 receptor (D1R) agonist injected into the DS, thus implicating DS DA in fear extinction. Different DS subregions subserve unique functions of the DS, but it is unclear where in the DS D1R agonist acts during fear extinction to reduce renewal. Furthermore, although fear extinction increases neural activity in DS subregions, whether neural activity in DS subregions is causally involved in fear extinction is unknown. To explore the role of DS subregions in fear extinction, adult, male Long-Evans rats received microinjections of either the D1R agonist SKF38393 or a cocktail consisting of GABAA/GABAB receptor agonists muscimol/baclofen selectively into either dorsomedial (DMS) or dorsolateral (DLS) DS subregions immediately prior to fear extinction, and extinction retention and renewal were subsequently assessed drug-free. While increasing D1R signaling in the DMS during fear extinction did not impact fear extinction retention or renewal, DMS inactivation reduced later renewal. In contrast, DLS inactivation had no effect on fear extinction retention or renewal but increasing D1R signaling in the DLS during extinction reduced fear renewal. These data suggest that DMS and DLS activity during fear extinction can have opposing effects on later fear renewal, with the DMS promoting renewal and the DLS opposing renewal. Mechanisms through which the DS could influence the contextual gating of fear extinction are discussed.


Subject(s)
Corpus Striatum , Extinction, Psychological , Fear , Receptors, Dopamine D1 , Animals , Fear/physiology , Fear/drug effects , Extinction, Psychological/drug effects , Extinction, Psychological/physiology , Male , Rats , Corpus Striatum/drug effects , Corpus Striatum/physiology , Corpus Striatum/metabolism , Receptors, Dopamine D1/physiology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D1/antagonists & inhibitors , Dopamine Agonists/pharmacology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/physiology , Substantia Nigra/drug effects , Substantia Nigra/physiology , Rats, Long-Evans , Dopamine/metabolism , Dopamine/physiology
17.
Biochem Pharmacol ; 225: 116264, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710334

ABSTRACT

The retrosplenial cortex (RSC) plays a central role in processing contextual fear conditioning. In addition to corticocortical and thalamocortical projections, the RSC receives subcortical inputs, including a substantial projection from the nucleus incertus in the pontine tegmentum. This GABAergic projection contains the neuropeptide, relaxin-3 (RLN3), which inhibits target neurons via its Gi/o-protein-coupled receptor, RXFP3. To assess this peptidergic system role in contextual fear conditioning, we bilaterally injected the RSC of adult rats with an adeno-associated-virus (AAV), expressing the chimeric RXFP3 agonist R3/I5 or a control AAV, and subjected them to contextual fear conditioning. The R3/I5 injected rats did not display any major differences to control-injected and naïve rats but displayed a significantly delayed extinction. Subsequently, we employed acute bilateral injections of the specific RXFP3 agonist peptide, RXFP3-Analogue 2 (A2), into RSC. While the administration of A2 before each extinction trial had no impact on the extinction process, treatment with A2 before each acquisition trial resulted in delayed extinction. In related anatomical studies, we detected an enrichment of RLN3-immunoreactive nerve fibers in deep layers of the RSC, and a higher level of co-localization of RXFP3 mRNA with vesicular GABA transporter (vGAT) mRNA than with vesicular glutamate transporter-1 (vGLUT1) mRNA across the RSC, consistent with an effect of RLN3/RXFP3 signalling on the intrinsic, inhibitory circuits within the RSC. These findings suggest that contextual conditioning processes in the RSC involve, in part, RLN3 afferent modulation of local inhibitory neurons that provides a stronger memory acquisition which, in turn, retards the extinction process.


Subject(s)
Extinction, Psychological , Fear , Receptors, G-Protein-Coupled , Animals , Male , Fear/physiology , Fear/drug effects , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/agonists , Rats , Extinction, Psychological/physiology , Extinction, Psychological/drug effects , Relaxin/metabolism , Cerebral Cortex/metabolism , Cerebral Cortex/drug effects , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/physiology , Receptors, Peptide
18.
J Anxiety Disord ; 104: 102870, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733644

ABSTRACT

Exposure therapy is an evidence-based treatment option for anxiety-related disorders. Many patients also take medication that could, in principle, affect exposure therapy efficacy. Clinical and laboratory evidence indeed suggests that benzodiazepines may have detrimental effects. Large clinical trials with propranolol, a common beta-blocker, are currently lacking, but several preclinical studies do indicate impaired establishment of safety memories. Here, we investigated the effects of propranolol given prior to extinction training in 9 rat studies (N = 215) and one human study (N = 72). A Bayesian meta-analysis of our rat studies provided strong evidence against propranolol-induced extinction memory impairment during a drug-free test, and the human study found no significant difference with placebo. Two of the rat studies actually suggested a small beneficial effect of propranolol. Lastly, two rat studies with a benzodiazepine (midazolam) group provided some evidence for a harmful effect on extinction memory, i.e., impaired extinction retention. In conclusion, our midazolam findings are in line with prior literature (i.e., an extinction retention impairment), but this is not the case for the 10 studies with propranolol. Our data thus support caution regarding the use of benzodiazepines during exposure therapy, but argue against a harmful effect of propranolol on extinction learning.


Subject(s)
Adrenergic beta-Antagonists , Extinction, Psychological , Fear , Memory , Midazolam , Propranolol , Propranolol/pharmacology , Propranolol/administration & dosage , Animals , Fear/drug effects , Extinction, Psychological/drug effects , Rats , Humans , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/administration & dosage , Male , Memory/drug effects , Midazolam/pharmacology , Midazolam/administration & dosage , Midazolam/adverse effects , Adult , Bayes Theorem , Female , Conditioning, Classical/drug effects , Young Adult
19.
Article in English | MEDLINE | ID: mdl-38692472

ABSTRACT

Stress exposure can lead to post-traumatic stress disorder (PTSD) in male and female rats. Social-Single Prolonged Stress (SPS) protocol has been considered a potential PTSD model. This study aimed to pharmacologically validate the Social-SPS as a PTSD model in male and female rats. Male and female Wistar rats (60-day-old) were exposed to Social-SPS protocol and treated with fluoxetine (10 mg/Kg) or saline solution intraperitoneally 24 h before euthanasia. Two cohorts of animals were used; for cohort 1, male and female rats were still undisturbed until day 7 post-Social-SPS exposure, underwent locomotor and conditioned fear behaviors, and were euthanized on day 9. Animals of cohort 2 were subjected to the same protocol but were re-exposed to contextual fear behavior on day 14. Results showed that fluoxetine-treated rats gained less body weight than control and Social-SPS in both sexes. Social-SPS effectively increased the freezing time in male and female rats on day eight but not on day fourteen. Fluoxetine blocked the increase of freezing in male and female rats on day 8. Different mechanisms for fear behavior were observed in males, such as Social-SPS increased levels of glucocorticoid receptors and Beclin-1 in the amygdala. Social-SPS was shown to increase the levels of NMDA2A, GluR-1, PSD-95, and CAMKII in the amygdala of female rats. No alterations were observed in the amygdala of rats on day fourteen. The study revealed that Social-SPS is a potential PTSD protocol applicable to both male and female rats.


Subject(s)
Amygdala , Fear , Fluoxetine , Rats, Wistar , Stress, Psychological , Animals , Male , Female , Fear/drug effects , Fear/physiology , Fluoxetine/pharmacology , Amygdala/drug effects , Amygdala/metabolism , Stress, Psychological/metabolism , Rats , Disease Models, Animal , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/psychology , Conditioning, Classical/drug effects , Conditioning, Classical/physiology , Conditioning, Psychological/drug effects , Conditioning, Psychological/physiology , Selective Serotonin Reuptake Inhibitors/pharmacology , Disks Large Homolog 4 Protein , Receptors, AMPA
20.
Behav Res Ther ; 178: 104553, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38728832

ABSTRACT

Previous studies showed that glucose has beneficial effects on memory function and can enhance contextual fear learning. To derive potential therapeutic interventions, further research is needed regarding the effects of glucose on fear extinction. In two experimental studies with healthy participants (Study 1: N = 68, 39 females; Study 2: N = 89, 67 females), we investigated the effects of glucose on fear extinction learning and its consolidation. Participants completed a differential fear conditioning paradigm consisting of acquisition, extinction, and return of fear tests: reinstatement, and extinction recall. US-expectancy ratings, skin conductance response (SCR), and fear potentiated startle (FPS) were collected. Participants were pseudorandomized and double-blinded to one of two groups: They received either a drink containing glucose or saccharine 20 min before (Study 1) or immediately after extinction (Study 2). The glucose group showed a significantly stronger decrease in differential FPS during extinction (Study 1) and extinction recall (Study 2). Additionally, the glucose group showed a significantly lower contextual anxiety at test of reinstatement (Study 2). Our findings provide first evidence that glucose supports the process of fear extinction, and in particular the consolidation of fear extinction memory, and thus has potential as a beneficial adjuvant to extinction-based treatments. Registered through the German Clinical Trials Registry (https://www.bfarm.de/EN/BfArM/Tasks/German-Clinical-Trials-Register/_node.html; Study 1: DRKS00010550; Study 2: DRKS00018933).


Subject(s)
Conditioning, Classical , Extinction, Psychological , Fear , Galvanic Skin Response , Glucose , Humans , Extinction, Psychological/drug effects , Fear/drug effects , Fear/psychology , Female , Male , Adult , Young Adult , Double-Blind Method , Conditioning, Classical/drug effects , Galvanic Skin Response/drug effects , Reflex, Startle/drug effects , Reflex, Startle/physiology , Adolescent , Mental Recall/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL