Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.815
Filter
1.
Reproduction ; 168(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39096934

ABSTRACT

In Brief: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. This study in mice identifies a therapeutic compound that, when administered to aged males, improves sperm quality, subsequent embryo development and post-natal offspring health. Abstract: Aging in men is associated with diminished sperm quality and a higher incidence of altered fetal development and miscarriage in resultant pregnancies. We used a mouse model of advanced paternal age to characterize embryonic development in older male mice and tested whether pre-conception treatment with the mitochondrial activator BGP-15 improves reproductive outcomes in old males. Like older men, reproductively old male mice had higher levels of sperm DNA damage and delayed pre-implantation development, associated with a reduced fetal weight and placental weight. Analysis of neonatal outcomes of in vivo-conceived offspring found that pups sired by old males were smaller, had delayed locomotor development, and increased mortality. BGP-15 treatment for 5 days prior to conception reduced sperm DNA oxidation levels and improved on-time embryo development after IVF and pup survival. BGP-15 treatment for 3 weeks prior to conception improved on-time pre-implantation embryo development and fetal viability and increased fetal size in pregnancies sired by old males. These results validate that ageing negatively affects male fertility and offspring physiology and indicates that pre-conception treatment with BGP-15 has the potential to improve sperm quality as well as early embryo development and post-natal health.


Subject(s)
Aging , Fertility , Spermatozoa , Animals , Male , Mice , Spermatozoa/drug effects , Female , Fertility/drug effects , Pregnancy , Embryonic Development/drug effects , Reproduction/drug effects , Mice, Inbred C57BL , DNA Damage , Semen Analysis , Fetal Development/drug effects
2.
Hum Genomics ; 18(1): 79, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010135

ABSTRACT

The analysis of genomic variations in offspring after implantation has been infrequently studied. In this study, we aim to investigate the extent of de novo mutations in humans from developing fetus to birth. Using high-depth whole-genome sequencing, 443 parent-offspring trios were studied to compare the results of de novo mutations (DNMs) between different groups. The focus was on fetuses and newborns, with DNA samples obtained from the families' blood and the aspirated embryonic tissues subjected to deep sequencing. It was observed that the average number of total DNMs in the newborns group was 56.26 (54.17-58.35), which appeared to be lower than that the multifetal reduction group, which was 76.05 (69.70-82.40) (F = 2.42, P = 0.12). However, after adjusting for parental age and maternal pre-pregnancy body mass index (BMI), significant differences were found between the two groups. The analysis was further divided into single nucleotide variants (SNVs) and insertion/deletion of a small number of bases (indels), and it was discovered that the average number of de novo SNVs associated with the multifetal reduction group and the newborn group was 49.89 (45.59-54.20) and 51.09 (49.22-52.96), respectively. No significant differences were noted between the groups (F = 1.01, P = 0.32). However, a significant difference was observed for de novo indels, with a higher average number found in the multifetal reduction group compared to the newborn group (F = 194.17, P < 0.001). The average number of de novo indels among the multifetal reduction group and the newborn group was 26.26 (23.27-29.05) and 5.17 (4.82-5.52), respectively. To conclude, it has been observed that the quantity of de novo indels in the newborns experiences a significant decrease when compared to that in the aspirated embryonic tissues (7-9 weeks). This phenomenon is evident across all genomic regions, highlighting the adverse effects of de novo indels on the fetus and emphasizing the significance of embryonic implantation and intrauterine growth in human genetic selection mechanisms.


Subject(s)
Fetus , Humans , Female , Pregnancy , Infant, Newborn , Male , Adult , Polymorphism, Single Nucleotide/genetics , Embryo Implantation/genetics , Genome, Human/genetics , INDEL Mutation/genetics , Genomics , Whole Genome Sequencing , High-Throughput Nucleotide Sequencing , Mutation/genetics , Fetal Development/genetics
3.
An Acad Bras Cienc ; 96(3): e20230604, 2024.
Article in English | MEDLINE | ID: mdl-39016352

ABSTRACT

This study aims to evaluate the phytochemical properties of Bauhinia holophylla (Bong.) Steud leaf extract, and their impact on maternal reproductive and fetal development in diabetic rats. For this, adult female Wistar rats (100 days of life) received streptozotocin (40 mg/Kg, intraperitoneal) for induction of diabetes, were mated and distributed into four groups: Nondiabetic; Nondiabetic given B. holophylla; Diabetic; and Diabetic given B. holophylla. The plant extract was given by gavage at increasing doses: 200, 400, and 800 mg/Kg. At day 21 of pregnancy, liver and blood samples were obtained for oxidative parameters and biochemical analysis, respectively. The uterus was removed for maternal-fetal outcomes. Phytochemical analysis showed a high content of phenolic components and biogenic amines. B. holophylla extract did not alter the glycemic levels but improved the lipid profile in diabetic animals. Besides that, the number of live fetuses and maternal weight gain were decreased in Diabetic group, and were not observed in animals treated. The group Diabetic treated presented a higher percentage of fetuses classified as adequate for gestational age compared to the Diabetic group. However, the treatment with plant extract caused embryo losses, fetal growth restriction, and teratogenicity in nondiabetic rats. Thus, the indiscriminate consumption requires carefulness.


Subject(s)
Bauhinia , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Plant Extracts , Rats, Wistar , Animals , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Bauhinia/chemistry , Pregnancy , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Rats , Phytochemicals/pharmacology , Phytochemicals/analysis , Fetal Development/drug effects , Streptozocin , Blood Glucose/drug effects , Blood Glucose/analysis , Plant Leaves/chemistry
4.
Reprod Biol Endocrinol ; 22(1): 80, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997724

ABSTRACT

BACKGROUND: In recent years, with benefits from the continuous improvement of clinical technology and the advantage of fertility preservation, the application of embryo cryopreservation has been growing rapidly worldwide. However, amidst this growth, concerns about its safety persist. Numerous studies have highlighted the elevated risk of perinatal complications linked to frozen embryo transfer (FET), such as large for gestational age (LGA) and hypertensive disorders during pregnancy. Thus, it is imperative to explore the potential risk of embryo cryopreservation and its related mechanisms. METHODS: Given the strict ethical constraints on clinical samples, we employed mouse models in this study. Three experimental groups were established: the naturally conceived (NC) group, the fresh embryo transfer (Fresh-ET) group, and the FET group. Blastocyst formation rates and implantation rates were calculated post-embryo cryopreservation. The impact of FET on fetal growth was evaluated upon fetal and placental weight. Placental RNA-seq was conducted, encompassing comprehensive analyses of various comparisons (Fresh-ET vs. NC, FET vs. NC, and FET vs. Fresh-ET). RESULTS: Reduced rates of blastocyst formation and implantation were observed post-embryo cryopreservation. Fresh-ET resulted in a significant decrease in fetal weight compared to NC group, whereas FET reversed this decline. RNA-seq analysis indicated that the majority of the expression changes in FET were inherited from Fresh-ET, and alterations solely attributed to embryo cryopreservation were moderate. Unexpectedly, certain genes that showed alterations in Fresh-ET tended to be restored in FET. Further analysis suggested that this regression may underlie the improvement of fetal growth restriction in FET. The expression of imprinted genes was disrupted in both FET and Fresh-ET groups. CONCLUSION: Based on our experimental data on mouse models, the impact of embryo cryopreservation is less pronounced than other in vitro manipulations in Fresh-ET. However, the impairment of the embryonic developmental potential and the gene alterations in placenta still suggested it to be a risky operation.


Subject(s)
Cryopreservation , Embryo Transfer , Placenta , Cryopreservation/methods , Female , Pregnancy , Animals , Mice , Embryo Transfer/methods , Placenta/metabolism , Embryo, Mammalian , Embryo Implantation/genetics , Fetal Development/genetics , Blastocyst/metabolism
5.
Environ Health Perspect ; 132(7): 77001, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968089

ABSTRACT

BACKGROUND: Organophosphate esters (OPEs), used ubiquitously as flame retardants and plasticizers in consumer products, are suspected of having developmental toxicity. OBJECTIVES: Our study aimed to estimate associations between prenatal exposure to OPEs and fetal growth, including both ultrasound (head circumference, abdominal circumference, femur length, and estimated fetal weight) and delivery [birth weight z-score, small-for-gestational age (SGA), and large-for-gestational age (LGA)] measures of growth. METHODS: In the LIFECODES Fetal Growth Study (2008-2018), an enriched case-cohort of 900 babies born at the small and large ends of the growth spectrum, we quantified OPE biomarkers in three urine samples per pregnant participant and abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-averaged log-transformed OPE biomarkers and repeated ultrasound measures of fetal growth using linear mixed-effects models, and delivery measures of fetal growth using linear (birth weight) and logistic (SGA and LGA) regression models. RESULTS: Most OPE biomarkers were positively associated with at least one ultrasound measure of fetal growth, but associations with delivery measures were largely null. For example, an interquartile range (IQR; 1.31 ng/mL) increase in bis(2-chloroethyl) phosphate concentration was associated with larger z-scores in head circumference [mean difference (difference): 0.09; 95% confidence interval (CI): 0.01, 0.17], abdominal circumference (difference: 0.10; 95% CI: 0.02, 0.18), femur length (difference: 0.11; 95% CI: 0.03, 0.19), and estimated fetal weight (difference: 0.13; 95% CI: 0.04, 0.22) but not birth weight (difference: 0.04; 95% CI: -0.08, 0.17). At delivery, an IQR (1.00 ng/mL) increase in diphenyl phosphate (DPHP) concentration was associated with an SGA birth (odds ratio: 1.46; 95% CI: 1.10, 1.94). CONCLUSIONS: In a large prospective cohort, gestational OPE exposures were associated with larger fetal size during pregnancy, but associations at delivery were null. DPHP concentrations were associated with heightened risk of an SGA birth. These findings suggest that OPE exposure may affect fetal development. https://doi.org/10.1289/EHP14647.


Subject(s)
Fetal Development , Flame Retardants , Maternal Exposure , Plasticizers , Humans , Female , Fetal Development/drug effects , Plasticizers/toxicity , Pregnancy , Maternal Exposure/statistics & numerical data , Organophosphates , Adult , Birth Weight/drug effects , Infant, Newborn , Esters , Biomarkers/urine , Cohort Studies , Male
6.
Hum Genomics ; 18(1): 81, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030631

ABSTRACT

BACKGROUND: Maternal genetic risk of type 2 diabetes (T2D) has been associated with fetal growth, but the influence of genetic ancestry is not yet fully understood. We aimed to investigate the influence of genetic distance (GD) and genetic ancestry proportion (GAP) on the association of maternal genetic risk score of T2D (GRST2D) with fetal weight and birthweight. METHODS: Multi-ancestral pregnant women (n = 1,837) from the NICHD Fetal Growth Studies - Singletons cohort were included in the current analyses. Fetal weight (in grams, g) was estimated from ultrasound measurements of fetal biometry, and birthweight (g) was measured at delivery. GRST2D was calculated using T2D-associated variants identified in the latest trans-ancestral genome-wide association study and was categorized into quartiles. GD and GAP were estimated using genotype data of four reference populations. GD was categorized into closest, middle, and farthest tertiles, and GAP was categorized as highest, medium, and lowest. Linear regression analyses were performed to test the association of GRST2D with fetal weight and birthweight, adjusted for covariates, in each GD and GAP category. RESULTS: Among women with the closest GD from African and Amerindigenous ancestries, the fourth and third GRST2D quartile was significantly associated with 5.18 to 7.48 g (weeks 17-20) and 6.83 to 25.44 g (weeks 19-27) larger fetal weight compared to the first quartile, respectively. Among women with middle GD from European ancestry, the fourth GRST2D quartile was significantly associated with 5.73 to 21.21 g (weeks 18-26) larger fetal weight. Furthermore, among women with middle GD from European and African ancestries, the fourth and second GRST2D quartiles were significantly associated with 117.04 g (95% CI = 23.88-210.20, p = 0.014) and 95.05 g (95% CI = 4.73-185.36, p = 0.039) larger birthweight compared to the first quartile, respectively. The absence of significant association among women with the closest GD from East Asian ancestry was complemented by a positive significant association among women with the highest East Asian GAP. CONCLUSIONS: The association between maternal GRST2D and fetal growth began in early-second trimester and was influenced by GD and GAP. The results suggest the use of genetic GD and GAP could improve the generalizability of GRS.


Subject(s)
Birth Weight , Diabetes Mellitus, Type 2 , Fetal Development , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Female , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Pregnancy , Fetal Development/genetics , Birth Weight/genetics , Adult , Fetal Weight/genetics , Risk Factors , Polymorphism, Single Nucleotide/genetics , Genetic Risk Score
7.
Int J Mol Sci ; 25(14)2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39062945

ABSTRACT

Birth weight is a complex multifactorial trait relevant to health states and disease risks in later life. The placenta is essential for proper fetal growth and facilitates gas, nutrient, and waste exchange between the mother and developing fetus. How changes in placental DNA methylation affect fetal birth weight remains to be fully elucidated. In this study, we used whole-genome bisulfite sequencing and RNA sequencing to reveal a global map of DNA methylation and gene expression changes between the placentas of highest birth weight and lowest birth weight piglets in the same litters. The transcriptome analysis identified 1682 differential expressed genes and revealed key transcriptional properties in distinct placentas. We also identified key transcription factors that may drive the differences in DNA methylome patterns between placentas. The decrease in DNA methylation level in the promoter was associated with the transcriptional activation of genes associated with angiogenesis, extracellular matrix remodeling, and transmembrane transport. Our results revealed the regulatory role of DNA methylation in gene transcription activity leading to the differences in placental morphological structures and birth weights of piglets. These results could provide novel clues to clarify the underlying regulatory mechanisms of placental development and fetal growth.


Subject(s)
Birth Weight , DNA Methylation , Placenta , Animals , Female , Pregnancy , Placenta/metabolism , Birth Weight/genetics , Swine , Gene Expression Profiling , Fetal Development/genetics , Gene Expression Regulation, Developmental , Transcriptome
8.
Birth Defects Res ; 116(7): e2383, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984779

ABSTRACT

BACKGROUND: Chromatinopathies are a heterogeneous group of genetic disorders caused by pathogenic variants in genes coding for chromatin state balance proteins. Remarkably, many of these syndromes present unbalanced postnatal growth, both under- and over-, although little has been described in the literature. Fetal growth measurements are common practice in pregnancy management and values within normal ranges indicate proper intrauterine growth progression; on the contrary, abnormalities in intrauterine fetal growth open the discussion of possible pathogenesis affecting growth even in the postnatal period. METHODS: Among the numerous chromatinopathies, we have selected six of the most documented in the literature offering evidence about two fetal overgrowth (Sotos and Weaver syndrome) and four fetal undergrowth syndromes (Bohring Opitz, Cornelia de Lange, Floating-Harbor, and Meier Gorlin syndrome), describing their molecular characteristics, maternal biochemical results and early pregnancy findings, prenatal ultrasound findings, and postnatal characteristics. RESULTS/CONCLUSION: To date, the scarce data in the literature on prenatal findings are few and inconclusive, even though these parameters may contribute to a more rapid and accurate diagnosis, calling for a better and more detailed description of pregnancy findings.


Subject(s)
Chromatin , Humans , Female , Pregnancy , Chromatin/metabolism , Fetal Development/genetics , Prenatal Diagnosis/methods , Ultrasonography, Prenatal/methods
9.
FASEB J ; 38(13): e23799, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38979938

ABSTRACT

Maternal Zika virus (ZIKV) infection during pregnancy has been associated with severe intrauterine growth restriction (IUGR), placental damage, metabolism disturbances, and newborn neurological abnormalities. Here, we investigated the impact of maternal ZIKV infection on placental nutrient transporters and nutrient-sensitive pathways. Immunocompetent (C57BL/6) mice were injected with Low (103 PFU-ZIKVPE243) or High (5 × 107 PFU-ZIKVPE243) ZIKV titers at gestational day (GD) 12.5, and tissue was collected at GD18.5 (term). Fetal-placental growth was impaired in male fetuses, which exhibited higher placental expression of the ZIKV infective marker, eukaryotic translation initiation factor 2 (eIF2α), but lower levels of phospho-eIF2α. There were no differences in fetal-placental growth in female fetuses, which exhibited no significant alterations in placental ZIKV infective markers. Furthermore, ZIKV promoted increased expression of glucose transporter type 1 (Slc2a1/Glut1) and decreased levels of glucose-6-phosphate in female placentae, with no differences in amino acid transport potential. In contrast, ZIKV did not impact glucose transporters in male placentae but downregulated sodium-coupled neutral amino acid 2 (Snat2) transporter expression. We also observed sex-dependent differences in the hexosamine biosynthesis pathway (HBP) and O-GlcNAcylation in ZIKV-infected pregnancies, showing that ZIKV can disturb placental nutrient sensing. Our findings highlight molecular alterations in the placenta caused by maternal ZIKV infection, shedding light on nutrient transport, sensing, and availability. Our results also suggest that female and male placentae employ distinct coping mechanisms in response to ZIKV-induced metabolic changes, providing insights into therapeutic approaches for congenital Zika syndrome.


Subject(s)
Fetal Development , Mice, Inbred C57BL , Placenta , Signal Transduction , Zika Virus Infection , Zika Virus , Animals , Female , Zika Virus Infection/metabolism , Zika Virus Infection/virology , Pregnancy , Mice , Placenta/metabolism , Placenta/virology , Male , Fetal Development/physiology , Pregnancy Complications, Infectious/virology , Pregnancy Complications, Infectious/metabolism , Nutrients/metabolism , Glucose Transporter Type 1/metabolism
10.
Crit Rev Toxicol ; 54(7): 431-464, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39016688

ABSTRACT

During its temporary tenure, the placenta has extensive and specialized functions that are critical for pre- and post-natal development. The consequences of chemical exposure in utero can have profound effects on the structure and function of pregnancy-associated tissues and the life-long health of the birthing person and their offspring. However, the toxicological importance and critical functions of the placenta to embryonic and fetal development and maturation have been understudied. This narrative will review early placental development in humans and highlight some in vitro models currently in use that are or can be applied to better understand placental processes underlying developmental toxicity due to in utero environmental exposures.


Subject(s)
Placenta , Humans , Pregnancy , Female , Placenta/drug effects , Placentation/drug effects , Models, Biological , Fetal Development/drug effects
11.
J Physiol ; 602(15): 3815-3832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38975864

ABSTRACT

Fetal growth restriction (FGR) occurs in 8% of human pregnancies, and the growth restricted newborn is at a greater risk of developing heart disease in later adult life. In sheep, experimental restriction of placental growth (PR) from conception results in FGR, a decrease in cardiomyocyte endowment and an upregulation of pathological hypertrophic signalling in the fetal heart in late gestation. However, there is no change in the expression of markers of cellular proliferation nor in the level of cardiomyocyte apoptosis in the heart of the PR fetus in late gestation. This suggests that FGR arises early in gestation and programs a decrease in cardiomyocyte endowment in early, rather than late, gestation. Here, control and PR fetal sheep were humanely killed at 55 days' gestation (term, 150 days). Fetal body and heart weight were lower in PR compared with control fetuses and there was evidence of sparing of fetal brain growth. While there was no change in the proportion of cardiomyocytes that were proliferating in the early gestation PR heart, there was an increase in measures of apoptosis, and markers of autophagy and pathological hypertrophy in the PR fetal heart. These changes in early gestation highlight that FGR is associated with evidence of early cell death and compensatory hypertrophic responses of cardiomyocytes in the fetal heart. The data suggest that early placental restriction results in a decrease in the pool of proliferative cardiomyocytes in early gestation, which would limit cardiomyocyte endowment in the heart of the PR fetus in late gestation. KEY POINTS: Placental restriction leading to fetal growth restriction (FGR) and chronic fetal hypoxaemia in sheep results in a decrease in cardiomyocyte endowment in late gestation. FGR did not change cardiomyocyte proliferation during early gestation but did result in increased apoptosis and markers of autophagy in the fetal heart, which may result in the decreased endowment of cardiomyocytes observed in late gestation. FGR in early gestation also results in increased hypoxia inducible factor signalling in the fetal heart, which in turn may result in the altered expression of epigenetic regulators, increased expression of insulin-like growth factor 2 and cardiomyocyte hypertrophy during late gestation and after birth.


Subject(s)
Apoptosis , Fetal Growth Retardation , Myocytes, Cardiac , Animals , Pregnancy , Female , Sheep , Fetal Growth Retardation/physiopathology , Fetal Growth Retardation/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/physiology , Myocytes, Cardiac/pathology , Fetal Heart/metabolism , Placenta/metabolism , Fetal Development/physiology , Autophagy/physiology , Cell Proliferation , Heart/embryology
12.
Sci Total Environ ; 947: 174569, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38977092

ABSTRACT

BACKGROUND: Organophosphate esters (OPEs) exposure could affect offspring health. However, the underlying mechanisms are not well documented. OBJECTIVES: Based on a birth cohort study, we aimed to investigate the associations among gestational OPEs exposure, placental DNA methylation levels of peroxisome proliferator-activated receptor (PPAR) signaling pathway-related genes, and fetal growth. METHODS: We measured the concentrations of eight OPE metabolites in maternal urine samples and neonatal anthropometric measurements in 733 mother-child pairs. In 327 placental samples, we assessed the DNA methylation levels of 14 genes which were involved in the PPARs signaling pathway and expressed in placenta. Multiple linear regression models were used to examine the associations of OPEs exposure with placental DNA methylation, and of OPEs and placental DNA methylation with neonatal anthropometric measurements. Causal mediation analyses were conducted to examine the potential mediating role of placental DNA methylation in the pathway between OPEs exposure and fetal growth. RESULTS: We observed a general pattern of OPEs exposure being associated with hypermethylation of candidate genes, with statistically significant associations identified for several OPEs with RXRA, ACAA1, ACADL, ACADM, PLTP, and NR1H3 methylation. Further, gestational exposure to BCIPP, DPP, BBOEP, ∑NCl-OPEs, and ∑OPEs tended to be associated with lower anthropometric measurements, with more significant associations observed on arm circumference, and abdominal and back skinfold thickness. Notably, RXRA, ACAA1, ACOX1, CPT2, ACADM, and NR1H3 methylation tended to be associated with lower neonatal anthropometric measurements, especially for abdominal and back skinfold thickness. Moreover, mediation analyses showed that 19.42 % of the total effect of DPP on the back skinfold thickness was mediated by changes in RXRA methylation, and there was a significant indirect effect of RXRA methylation. CONCLUSIONS: Gestational OPEs exposure could disrupt the placental DNA methylation levels of PPAR signaling pathway-related genes, which might contribute to the effect of OPEs on fetal growth.


Subject(s)
DNA Methylation , Maternal Exposure , Organophosphates , Peroxisome Proliferator-Activated Receptors , Placenta , Signal Transduction , Female , Pregnancy , Humans , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Placenta/metabolism , Esters , Adult , Fetal Development/drug effects , Cohort Studies , Infant, Newborn , Environmental Pollutants
13.
PLoS One ; 19(7): e0306868, 2024.
Article in English | MEDLINE | ID: mdl-39083456

ABSTRACT

The endocannabinoid system (ECS) plays a major role in the maintenance of bodily homeostasis and adaptive response to external insults. It has been shown to regulate crucial physiological processes and behaviors, spanning nervous functions, anxiety, cognition, and pain sensation. Due to this broad activity, the ECS has been explored as a potential therapeutic target in the treatment of select diseases. However, until there is a more comprehensive understanding of how ECS activation by exogenous and endogenous ligands manifests across disparate tissues and cells, discretion should be exercised. Previous work has investigated how endogenous cannabinoid signaling impacts skeletal muscle development and differentiation. However, the effects of activation of the ECS by delta-9-tetrahydrocannabinol (THC, the most psychoactive component of cannabis) on skeletal muscle development, particularly in utero, remain unclear. To address this research gap, we used a highly translational non-human primate model to examine the potential impact of chronic prenatal THC exposure on fetal and infant musculoskeletal development. RNA was isolated from the skeletal muscle and analyzed for differential gene expression using a Nanostring nCounter neuroinflammatory panel comprised of 770 genes. Histomorphological evaluation of muscle morphology and composition was also performed. Our findings suggest that while prenatal THC exposure had narrow overall effects on fetal and infant muscle development, the greatest impacts were observed within pathways related to inflammation and cytokine signaling, which suggest the potential for tissue damage and atrophy. This pilot study establishes feasibility to evaluate neuroinflammation due to prenatal THC exposure and provides rationale for follow-on studies that explore the longer-term implications and functional consequences encountered by offspring as they continue to mature.


Subject(s)
Dronabinol , Muscle, Skeletal , Prenatal Exposure Delayed Effects , Dronabinol/pharmacology , Animals , Female , Pregnancy , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/growth & development , Prenatal Exposure Delayed Effects/chemically induced , Musculoskeletal Development/drug effects , Macaca mulatta , Fetal Development/drug effects , Male
14.
Zhonghua Liu Xing Bing Xue Za Zhi ; 45(6): 794-801, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38889978

ABSTRACT

Objective: To investigate the association of exposure to PM2.5 and its constituents during pregnancy and fetal growth and to further identify critical windows of exposure for fetal growth. Methods: We included 4 089 mother-child pairs from the Jiangsu Birth Cohort Study between January 2016 and October 2019. Data of general characteristics, clinical information, daily average PM2.5 exposure, and its constituents during pregnancy were collected. Fetal growth parameters, including head circumference (HC), abdominal circumference (AC), and femur length (FL), were measured by ultrasound after 20 weeks of gestation, and then estimated fetal weight (EFW) was calculated. Generalized linear mixed models were adopted to examine the associations of prenatal exposure to PM2.5 and its constituents with fetal growth. Distributed lag nonlinear models were used to identify critical exposure windows for each outcome. Results: A 10 µg/m3 increase in PM2.5 exposure during pregnancy was associated with a decrease of 0.025 (ß=-0.025, 95%CI: -0.048- -0.001) in HC Z-score, 0.026 (ß=-0.026, 95%CI: -0.049- -0.003) in AC Z-score, and 0.028 (ß=-0.028, 95%CI:-0.052--0.004) in EFW Z-score, along with an increased risk of 8.5% (RR=1.085, 95%CI: 1.010-1.165) and 13.5% (RR=1.135, 95%CI: 1.016-1.268) for undergrowth of HC and EFW, respectively. Regarding PM2.5 constituents, prenatal exposure to black carbon, organic matter, nitrate, sulfate (SO42-) and ammonium consistently correlated with decreased HC Z-score. SO42- exposure was also associated with decreased FL Z-scores. In addition, we found that gestational weeks 2-5 were critical windows for HC, weeks 4-13 and 19-40 for AC, weeks 4-13 and 23-37 for FL, and weeks 4-12 and 20-40 for EFW. Conclusions: Our findings demonstrated that exposure to PM2.5 and its constituents during pregnancy could adversely affect fetal growth and the critical windows for different fetal growth parameters are not completely consistent.


Subject(s)
Fetal Development , Maternal Exposure , Particulate Matter , Humans , Pregnancy , Female , Particulate Matter/adverse effects , Particulate Matter/analysis , Fetal Development/drug effects , Maternal Exposure/adverse effects , Prospective Studies , Air Pollutants/adverse effects , Air Pollutants/analysis , Birth Cohort , Fetal Weight/drug effects , Prenatal Exposure Delayed Effects , Cohort Studies
16.
Int J Mol Sci ; 25(11)2024 May 29.
Article in English | MEDLINE | ID: mdl-38892139

ABSTRACT

Maternal obesity and over/undernutrition can have a long-lasting impact on offspring health during critical periods in the first 1000 days of life. Children born to mothers with obesity have reduced immune responses to stimuli which increase susceptibility to infections. Recently, maternal western-style diets (WSDs), high in fat and simple sugars, have been associated with skewing neonatal immune cell development, and recent evidence suggests that dysregulation of innate immunity in early life has long-term consequences on metabolic diseases and behavioral disorders in later life. Several factors contribute to abnormal innate immune tolerance or trained immunity, including changes in gut microbiota, metabolites, and epigenetic modifications. Critical knowledge gaps remain regarding the mechanisms whereby these factors impact fetal and postnatal immune cell development, especially in precursor stem cells in bone marrow and fetal liver. Components of the maternal microbiota that are transferred from mothers consuming a WSD to their offspring are understudied and identifying cause and effect on neonatal innate and adaptive immune development needs to be refined. Tools including single-cell RNA-sequencing, epigenetic analysis, and spatial location of specific immune cells in liver and bone marrow are critical for understanding immune system programming. Considering the vital role immune function plays in offspring health, it will be important to understand how maternal diets can control developmental programming of innate and adaptive immunity.


Subject(s)
Diet, Western , Fetal Development , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Diet, Western/adverse effects , Animals , Fetal Development/immunology , Prenatal Exposure Delayed Effects/immunology , Immune System/immunology , Immune System/metabolism , Epigenesis, Genetic , Gastrointestinal Microbiome/immunology , Immunity, Innate , Maternal Nutritional Physiological Phenomena , Fetus/immunology
17.
J Environ Sci (China) ; 145: 75-87, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844325

ABSTRACT

Prednisone is a synthetic glucocorticoid that is commonly used in both human and veterinary medication. Now, it is also recognized as an emerging environmental contaminant. Pregnant women may be exposed to prednisone actively or passively through multiple pathways and cause developmental toxicity to the fetus. However, the impact of prenatal prednisone exposure (PPE) on fetal kidney development remains unclear. In this study, pregnant mice were administered prednisone intragastrically during full-term pregnancy with different doses (0.25, 0.5, or 1 mg/(kg·day)), or at the dose of 1 mg/(kg·day) in different gestational days (GD) (GD0-9, GD10-18, or GD0-18). The pregnant mice were euthanized on GD18. HE staining revealed fetal kidney dysplasia, with an enlarged glomerular Bowman's capsule space and a reduced capillary network in the PPE groups. The expression of the podocyte and the mesangial cell marker genes was significantly reduced in the PPE groups. However, overall gene expression in renal tubules and collecting ducts were markedly increased. All of the above effects were more pronounced in high-dose, full-term pregnancy, and female fetuses. Studies on the mechanism of the female fetal kidney have revealed that PPE reduced the expression of Six2, increased the expression of Hnf1ß, Hnf4α, and Wnt9b, and inhibited the expression of glial cell line-derived neurotrophic factor (GDNF) and Notch signaling pathways. In conclusion, this study demonstrated that there is a sex difference in the developmental toxicity of PPE to the fetal kidney, and the time effect is manifested as full-term pregnancy > early pregnancy > mid-late pregnancy.


Subject(s)
Kidney , Prednisone , Female , Animals , Pregnancy , Mice , Kidney/drug effects , Kidney/embryology , Prednisone/toxicity , Fetal Development/drug effects , Male , Prenatal Exposure Delayed Effects/chemically induced , Maternal Exposure/adverse effects
18.
Nutrients ; 16(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38892490

ABSTRACT

During the last decades, endocrine-disrupting chemicals (EDCs) have attracted the attention of the scientific community, as a result of a deepened understanding of their effects on human health. These compounds, which can reach populations through the food chain and a number of daily life products, are known to modify the activity of the endocrine system. Regarding vulnerable groups like pregnant mothers, the potential damage they can cause increases their importance, since it is the health of two lives that is at risk. EDCs can affect the gestation process, altering fetal development, and eventually inducing the appearance of many disorders in their childhood and/or adulthood. Because of this, several of these substances have been studied to clarify the influence of their prenatal exposure on the cognitive and psychomotor development of the newborn, together with the appearance of non-communicable diseases and other disorders. The most novel research on the subject has been gathered in this narrative review, with the aim of clarifying the current knowledge on the subject. EDCs have shown, through different studies involving both animal and human investigation, a detrimental effect on the development of children exposed to the during pregnancy, sometimes with sex-specific outcomes. However, some other studies have failed to find these associations, which highlights the need for deeper and more rigorous research, that will provide an even more solid foundation for the establishment of policies against the extended use of these chemicals.


Subject(s)
Endocrine Disruptors , Prenatal Exposure Delayed Effects , Humans , Endocrine Disruptors/adverse effects , Endocrine Disruptors/toxicity , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Female , Animals , Child Development/drug effects , Male , Maternal Exposure/adverse effects , Fetal Development/drug effects , Infant, Newborn
19.
Behav Brain Sci ; 47: e139, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934431

ABSTRACT

What Babies Know outlines a compelling case for why infancy research is fundamental for conceptualizing what it is to be human. There is another period in human development that is relatively inaccessible, yet is more important. In order to truly understand the nature of core knowledge, perception, and cognition, we must start not with the infant, but with the fetus.


Subject(s)
Fetus , Knowledge , Humans , Cognition/physiology , Child Development/physiology , Infant , Fetal Development/physiology
20.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830769

ABSTRACT

The human umbilical cord (hUC) is the lifeline that connects the fetus to the mother. Hypercoiling of the hUC is associated with pre- and perinatal morbidity and mortality. We investigated the origin of hUC hypercoiling using state-of-the-art imaging and omics approaches. Macroscopic inspection of the hUC revealed the helices to originate from the arteries rather than other components of the hUC. Digital reconstruction of the hUC arteries showed the dynamic alignment of two layers of muscle fibers in the tunica media aligning in opposing directions. We observed that genetically identical twins can be discordant for hUC coiling, excluding genetic, many environmental, and parental origins of hUC coiling. Comparing the transcriptomic and DNA methylation profile of the hUC arteries of four twin pairs with discordant cord coiling, we detected 28 differentially expressed genes, but no differentially methylated CpGs. These genes play a role in vascular development, cell-cell interaction, and axis formation and may account for the increased number of hUC helices. When combined, our results provide a novel framework to understand the origin of hUC helices in fetal development.


Subject(s)
DNA Methylation , Twins, Monozygotic , Umbilical Cord , Humans , Twins, Monozygotic/genetics , DNA Methylation/genetics , Female , Pregnancy , Transcriptome/genetics , Fetal Development/genetics , Fetal Development/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL