Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
2.
J Hypertens ; 42(8): 1427-1439, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38690935

ABSTRACT

OBJECTIVE: Proliferation and migration of vascular smooth muscle cells (VSMCs) contribute to vascular remodeling. Asprosin, a newly discovered protein hormone, is involved in metabolic diseases. Little is known about the roles of asprosin in cardiovascular diseases. This study focused on the role and mechanism of asprosin on VSMC proliferation and migration, and vascular remodeling in a rat model of hypertension. METHODS AND RESULTS: VSMCs were obtained from the aortic media of 8-week-old male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Asprosin was upregulated in the VSMCs of SHR. For in vitro studies, asprosin promoted VSMC proliferation and migration of WKY and SHR, and increased Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, NOX1/2/4 protein expressions and superoxide production. Knockdown of asprosin inhibited the proliferation, migration, NOX activity, NOX1/2 expressions and superoxide production in the VSMCs of SHR. The roles of asprosin in promoting VSMC proliferation and migration were not affected by hydrogen peroxide scavenger, but attenuated by superoxide scavenger, selective NOX1 or NOX2 inhibitor. Toll-like receptor 4 (TLR4) was upregulated in SHR, TLR4 knockdown inhibited asprosin overexpression-induced proliferation, migration and oxidative stress in VSMCs of WKY and SHR. Asprosin was upregulated in arteries of SHR, and knockdown of asprosin in vivo not only attenuated oxidative stress and vascular remodeling in aorta and mesentery artery, but also caused a subsequent persistent antihypertensive effect in SHR. CONCLUSIONS: Asprosin promotes VSMC proliferation and migration via NOX-mediated superoxide production. Inhibition of endogenous asprosin expression attenuates VSMC proliferation and migration, and vascular remodeling of SHR.


Subject(s)
Cell Movement , Cell Proliferation , Hypertension , Muscle, Smooth, Vascular , Rats, Inbred SHR , Rats, Inbred WKY , Signal Transduction , Superoxides , Vascular Remodeling , Animals , Male , Superoxides/metabolism , Rats , Hypertension/metabolism , Hypertension/physiopathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , NADPH Oxidases/metabolism , Peptide Hormones/metabolism , Fibrillin-1/metabolism , Toll-Like Receptor 4/metabolism
3.
Sci Rep ; 14(1): 11313, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760452

ABSTRACT

Physical activity promotes various metabolic benefits by balancing pro and anti-inflammatory adipokines. Recent studies suggest that asprosin might be involved in progression of metabolic syndrome (MetS), however, the underlying mechanisms have not been understood yet. This study aimed to evaluate the effects of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and further detraining on MetS indices, insulin resistance, serum and the liver levels of asprosin, and AMP-activated protein kinase (AMPK) pathway in menopause-induced MetS model of rats. A total of 64 Wistar rats were used in this study and divided into eight groups: Sham1, OVX1 (ovariectomized), Sham2, OVX2, OVX + HIIT, OVX + MICT, OVX + HIIT + Det (detraining), and OVX + MICT + Det. Animals performed the protocols, and then serum concentrations of asprosin, TNF-α, insulin, fasting blood glucose, and lipid profiles (TC, LDL, TG, and HDL) were assessed. Additionally, the liver expression of asprosin, AMPK, and P-AMPK was measured by western blotting. Both HIIT and MICT caused a significant decrease in weight, waist circumference, BMI (P = 0.001), and serum levels of glucose, insulin, asprosin (P = 0.001), triglyceride, total cholesterol, low-density lipoprotein (LDL), and TNF-α (P = 0.001), but an increase in the liver AMPK, P-AMPK, and P-AMPK/AMPK (P = 0.001), compared with OVX2 noexercised group. MICT was superior to HIIT in reducing serum asprosin, TNF-a, TG, LDL (P = 0.001), insulin, fasting blood glucose, HOMA-IR, and QUEKI index (P = 0.001), but an increase in the liver AMPK, and p-AMPK (P = 0.001). Although after two months of de-training almost all indices returned to the pre exercise values (P < 0.05). The findings suggest that MICT effectively alleviates MetS induced by menopause, at least partly through the activation of liver signaling of P-AMPK and the reduction of asprosin and TNF-α. These results have practical implications for the development of exercise interventions targeting MetS in menopausal individuals, emphasizing the potential benefits of MICT in mitigating MetS-related complications.


Subject(s)
AMP-Activated Protein Kinases , Disease Models, Animal , Fibrillin-1 , Metabolic Syndrome , Physical Conditioning, Animal , Rats, Wistar , Signal Transduction , Animals , Fibrillin-1/metabolism , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Rats , Female , AMP-Activated Protein Kinases/metabolism , High-Intensity Interval Training/methods , Liver/metabolism , Insulin Resistance , Blood Glucose/metabolism , Insulin/blood , Insulin/metabolism , Peptide Fragments/blood , Peptide Fragments/metabolism
4.
Nat Commun ; 15(1): 4015, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740766

ABSTRACT

Microfibril-associated glycoprotein 4 (MFAP4) is a 36-kDa extracellular matrix glycoprotein with critical roles in organ fibrosis, chronic obstructive pulmonary disease, and cardiovascular disorders, including aortic aneurysms. MFAP4 multimerises and interacts with elastogenic proteins, including fibrillin-1 and tropoelastin, and with cells via integrins. Structural details of MFAP4 and its potential interfaces for these interactions are unknown. Here, we present a cryo-electron microscopy structure of human MFAP4. In the presence of calcium, MFAP4 assembles as an octamer, where two sets of homodimers constitute the top and bottom halves of each octamer. Each homodimer is linked together by an intermolecular disulphide bond. A C34S missense mutation prevents disulphide-bond formation between monomers but does not prevent octamer assembly. The atomic model, built into the 3.55 Å cryo-EM map, suggests that salt-bridge interactions mediate homodimer assembly, while non-polar residues form the interface between octamer halves. In the absence of calcium, an MFAP4 octamer dissociates into two tetramers. Binding studies with fibrillin-1, tropoelastin, LTBP4, and small fibulins show that MFAP4 has multiple surfaces for protein-protein interactions, most of which depend upon MFAP4 octamer assembly. The C34S mutation does not affect these protein interactions or cell interactions. MFAP4 assemblies with fibrillin-1 abrogate MFAP4 interactions with cells.


Subject(s)
Cryoelectron Microscopy , Extracellular Matrix Proteins , Fibrillin-1 , Tropoelastin , Humans , Fibrillin-1/metabolism , Fibrillin-1/genetics , Fibrillin-1/chemistry , Tropoelastin/metabolism , Tropoelastin/chemistry , Tropoelastin/genetics , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Protein Multimerization , Protein Binding , Models, Molecular , Calcium/metabolism , Mutation, Missense , Microfibrils/metabolism , Microfibrils/chemistry , Microfibrils/ultrastructure , HEK293 Cells , Carrier Proteins , Glycoproteins , Adipokines
5.
Arterioscler Thromb Vasc Biol ; 44(7): 1540-1554, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38660802

ABSTRACT

BACKGROUND: Myxomatous valve disease (MVD) is the most common cause of mitral regurgitation, leading to impaired cardiac function and heart failure. MVD in a mouse model of Marfan syndrome includes valve leaflet thickening and progressive valve degeneration. However, the underlying mechanisms by which the disease progresses remain undefined. METHODS: Mice with Fibrillin 1 gene variant Fbn1C1039G/+ recapitulate histopathologic features of Marfan syndrome, and Wnt (Wingless-related integration site) signaling activity was detected in TCF/Lef-lacZ (T-cell factor/lymphoid enhancer factor-ß-galactosidase) reporter mice. Single-cell RNA sequencing was performed from mitral valves of wild-type and Fbn1C1039G/+ mice at 1 month of age. Inhibition of Wnt signaling was achieved by conditional induction of the secreted Wnt inhibitor Dkk1 (Dickkopf-1) expression in periostin-expressing valve interstitial cells of Periostin-Cre; tetO-Dkk1; R26rtTA; TCF/Lef-lacZ; Fbn1C1039G/+ mice. Dietary doxycycline was administered for 1 month beginning with MVD initiation (1-month-old) or MVD progression (2-month-old). Histological evaluation and immunofluorescence for ECM (extracellular matrix) and immune cells were performed. RESULTS: Wnt signaling is activated early in mitral valve disease progression, before immune cell infiltration in Fbn1C1039G/+ mice. Single-cell transcriptomics revealed similar mitral valve cell heterogeneity between wild-type and Fbn1C1039G/+ mice at 1 month of age. Wnt pathway genes were predominantly expressed in valve interstitial cells and valve endothelial cells of Fbn1C1039G/+ mice. Inhibition of Wnt signaling in Fbn1C1039G/+ mice at 1 month of age prevented the initiation of MVD as indicated by improved ECM remodeling and reduced valve leaflet thickness with decreased infiltrating macrophages. However, later, Wnt inhibition starting at 2 months did not prevent the progression of MVD. CONCLUSIONS: Wnt signaling is involved in the initiation of mitral valve abnormalities and inflammation but is not responsible for later-stage valve disease progression once it has been initiated. Thus, Wnt signaling contributes to MVD progression in a time-dependent manner and provides a promising therapeutic target for the early treatment of congenital MVD in Marfan syndrome.


Subject(s)
Disease Models, Animal , Disease Progression , Fibrillin-1 , Mitral Valve , Wnt Signaling Pathway , Animals , Fibrillin-1/genetics , Fibrillin-1/metabolism , Mitral Valve/metabolism , Mitral Valve/pathology , Mitral Valve/drug effects , Mice , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Mice, Transgenic , Marfan Syndrome/genetics , Marfan Syndrome/complications , Marfan Syndrome/metabolism , Marfan Syndrome/pathology , Mitral Valve Insufficiency/pathology , Mitral Valve Insufficiency/metabolism , Mitral Valve Insufficiency/prevention & control , Mitral Valve Insufficiency/genetics , Mice, Inbred C57BL , Inflammation/metabolism , Inflammation/pathology , Inflammation/prevention & control , Inflammation/genetics , Male , Female , Cell Adhesion Molecules , Adipokines
6.
Int J Biol Macromol ; 268(Pt 2): 131868, 2024 May.
Article in English | MEDLINE | ID: mdl-38677690

ABSTRACT

Phenotype transformation of vascular smooth muscle cells (VSMCs) plays an important role in the development of atherosclerosis. Asprosin is a newly discovered adipokine, which is critical in regulating metabolism. However, the relationship between asprosin and phenotype transformation of VSMCs in atherosclerosis remains unclear. The aim of this study is to investigate whether asprosin affects the progression of atherosclerosis by inducing phenotype transformation of VSMCs. We established an atherosclerosis model in ApoE-/- mice and administered asprosin recombinant protein and asprosin antibody to mice. Knocking down asprosin was also as an intervention. Interestingly, we found a correlation between asprosin levels and atherosclerosis. Asprosin promoted plaque formation and phenotype transformation of VSMCs. While, AspKD or asprosin antibody reduced the plaque lesion and suppressed vascular stiffness in ApoE-/- mice. Mechanistically, asprosin induced phenotype transformation of MOVAs by binding to GPR54, leading to Gαq/11 recruitment and activation of the PLC-PKC-ERK1/2-STAT3 signaling pathway. Si GPR54 or GPR54 antagonist partially inhibited the action of asprosin in MOVAs. Mutant GPR54-(267, 307) residue cancelled the binding of asprosin and GPR54. In summary, this study confirmed asprosin activated GPR54/Gαq/11-dependent ERK1/2-STAT3 signaling pathway, thereby promoting VSMCs phenotype transformation and aggravating atherosclerosis, thus providing a new target for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Phenotype , Animals , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Fibrillin-1/metabolism , Fibrillin-1/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Male , Signal Transduction , Disease Models, Animal , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Humans , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Mice, Knockout
7.
J Dermatol ; 51(6): 816-826, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38470170

ABSTRACT

Ultraviolet (UV)-induced skin photoaging is caused by qualitative and quantitative degradation of dermal extracellular matrix components such as collagen and elastic fibers. Elastic fibers are important for maintaining cutaneous elasticity, despite their small amount in the skin. Previously, microfibril-associated protein 4 (MFAP-4), which is downregulated in photoaging dermis, has been found to be essential for elastic fiber formation by interaction with both fibrillin-1 and elastin, which are core components of elastic fiber. In addition, enhanced cutaneous MFAP-4 expression in a human skin-xenografted murine photoaging model protects against UV-induced photodamage accompanied by the prevention of elastic fiber degradation and aggravated elasticity. We therefore hypothesized that the upregulation of MFAP-4 in dermal fibroblasts may more efficiently accelerate elastic fiber formation. We screened botanical extracts for MFAP-4 expression-promoting activity in normal human dermal fibroblasts (NHDFs). We found that rosemary extract markedly promotes early microfibril formation and mature elastic fiber formation along with a significant upregulation of not only MFAP-4 but also fibrillin-1 and elastin in NHDFs. Furthermore, rosmarinic acid, which is abundant in rosemary extract, accelerated elastic fiber formation via upregulation of transforming growth factor ß-1. This was achieved by the induction of cAMP response element-binding protein phosphorylation, demonstrating that rosmarinic acid represents one of the active ingredients in rosemary extract. Based on the findings in this study, we conclude that rosemary extract and rosmarinic acid represent promising materials that exert a preventive or ameliorative effect on skin photoaging by accelerating elastic fiber formation.


Subject(s)
Cinnamates , Depsides , Elastic Tissue , Elastin , Fibrillin-1 , Fibroblasts , Plant Extracts , Rosmarinic Acid , Skin Aging , Humans , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Depsides/pharmacology , Fibrillin-1/metabolism , Cinnamates/pharmacology , Plant Extracts/pharmacology , Elastin/metabolism , Elastic Tissue/drug effects , Elastic Tissue/metabolism , Skin Aging/drug effects , Skin Aging/radiation effects , Cells, Cultured , Rosmarinus/chemistry , Up-Regulation/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Skin/drug effects , Skin/radiation effects , Skin/cytology , Skin/pathology , Skin/metabolism , Dermis/cytology , Dermis/drug effects , Dermis/metabolism , Ultraviolet Rays/adverse effects , Extracellular Matrix Proteins/metabolism , Adipokines
8.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38473909

ABSTRACT

Mutations of the FBN1 gene lead to Marfan syndrome (MFS), which is an autosomal dominant connective tissue disorder featured by thoracic aortic aneurysm risk. There is currently no effective treatment for MFS. Here, we studied the role of mitochondrial dysfunction in the phenotypic transformation of human smooth muscle cells (SMCs) and whether a mitochondrial boosting strategy can be a potential treatment. We knocked down FBN1 in SMCs to create an MFS cell model and used rotenone to induce mitochondrial dysfunction. Furthermore, we incubated the shFBN1 SMCs with Coenzyme Q10 (CoQ10) to assess whether restoring mitochondrial function can reverse the phenotypic transformation. The results showed that shFBN1 SMCs had decreased TFAM (mitochondrial transcription factor A), mtDNA levels and mitochondrial mass, lost their contractile capacity and had increased synthetic phenotype markers. Inhibiting the mitochondrial function of SMCs can decrease the expression of contractile markers and increase the expression of synthetic genes. Imposing mitochondrial stress causes a double-hit effect on the TFAM level, oxidative phosphorylation and phenotypic transformation of FBN1-knockdown SMCs while restoring mitochondrial metabolism with CoQ10 can rapidly reverse the synthetic phenotype. Our results suggest that mitochondria function is a potential therapeutic target for the phenotypic transformation of SMCs in MFS.


Subject(s)
Marfan Syndrome , Mitochondrial Diseases , Ubiquinone/analogs & derivatives , Humans , Marfan Syndrome/genetics , Phenotype , Myocytes, Smooth Muscle/metabolism , Mitochondrial Diseases/metabolism , Fibrillin-1/metabolism , Adipokines/metabolism
9.
Environ Sci Pollut Res Int ; 31(13): 19674-19686, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38363509

ABSTRACT

Evidence around the relationship between air pollution and the development of diabetes mellitus (DM) remains limited and inconsistent. To investigate the potential mediation effect of asprosin on the association between fine particulate matter (PM2.5), tropospheric ozone (O3) and blood glucose homeostasis. A case-control study was conducted on a total of 320 individuals aged over 60 years, including both diabetic and non-diabetic individuals, from six communities in Taiyuan, China, from July to September 2021. Generalized linear models (GLMs) suggested that short-term exposure to PM2.5 was associated with elevated fasting blood glucose (FBG), insulin resistance index (HOMA-IR), as well as reduced pancreatic ß-cell function index (HOMA-ß), and short-term exposure to O3 was associated with increased FBG and decreased HOMA-ß in the total population and elderly diabetic patients. Mediation analysis showed that asprosin played a mediating role in the relationship of PM2.5 and O3 with FBG, with mediating ratios of 10.2% and 18.4%, respectively. Our study provides emerging evidence supporting that asprosin mediates the short-term effects of exposure to PM2.5 and O3 on elevated FBG levels in an elderly population. Additionally, the elderly who are diabetic, over 70 years, and BMI over 24 kg/m2 are more vulnerable to air pollutants and need additional protection to reduce their exposure to air pollution.


Subject(s)
Air Pollutants , Air Pollution , Diabetes Mellitus , Fibrillin-1 , Aged , Humans , Middle Aged , Air Pollutants/adverse effects , Air Pollution/adverse effects , Blood Glucose/metabolism , Case-Control Studies , China/epidemiology , Diabetes Mellitus/metabolism , Environmental Exposure/analysis , Particulate Matter/analysis , Fibrillin-1/metabolism , Adipokines/metabolism
10.
Sci Rep ; 14(1): 3517, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347040

ABSTRACT

Aqueous humor (AH) and blood levels of transforming growth factor ß (TGFß) are elevated in idiopathic primary open angle glaucoma (POAG) representing a disease biomarker of unclear status and function. Tsk mice display a POAG phenotype and harbor a mutation of fibrillin-1, an important regulator of TGFß bioavailability. AH TGFß2 was higher in Tsk than wild-type (WT) mice (by 34%; p = 0.002; ELISA); similarly, AH TGFß2 was higher in human POAG than controls (2.7-fold; p = 0.00005). As in POAG, TGFß1 was elevated in Tsk serum (p = 0.01). Fibrillin-1 was detected in AH from POAG subjects and Tsk mice where both had similar levels relative to controls (p = 0.45). 350 kDa immunoblot bands representing WT full-length fibrillin-1 were present in human and mouse AH. A 418 kDa band representing mutant full-length fibrillin-1 was present only in Tsk mice. Lower molecular weight fibrillin-1 antibody-reactive bands were present in similar patterns in humans and mice. Certain bands (130 and 32 kDa) were elevated only in human POAG and Tsk mice (p ≤ 0.04 relative to controls) indicating discrete isoforms relevant to disease. In addition to sharing a phenotype, Tsk mice and human POAG subjects had common TGFß and fibrillin-1 features in AH and also blood that are pertinent to understanding glaucoma pathogenesis.


Subject(s)
Aqueous Humor , Glaucoma, Open-Angle , Animals , Humans , Mice , Aqueous Humor/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Phenotype , Transforming Growth Factor beta/metabolism
11.
Matrix Biol ; 126: 14-24, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38224822

ABSTRACT

Pathogenic variants in the FBN1 gene, which encodes the extracellular matrix protein fibrillin-1, cause Marfan syndrome (MFS), which affects multiple organ systems, including the cardiovascular system. Myocardial dysfunction has been observed in a subset of patients with MFS and in several MFS mouse models. However, there is limited understanding of the intrinsic consequences of FBN1 variants on cardiomyocytes (CMs). To elucidate the CM-specific contribution in Marfan's cardiomyopathy, cardiosphere cultures of CMs and cardiac fibroblasts (CFs) are used. CMs and CFs were derived by human induced pluripotent stem cell (iPSC) differentiation from MFS iPSCs with a pathogenic variant in FBN1 (c.3725G>A; p.Cys1242Tyr) and the corresponding CRISPR-corrected iPSC line (Cor). Cardiospheres containing MFS CMs show decreased FBN1, COL1A2 and GJA1 expression. MFS CMs cultured in cardiospheres have fewer binucleated CMs in comparison with Cor CMs. 13% of MFS CMs in cardiospheres are binucleated and 15% and 16% in cardiospheres that contain co-cultures with respectively MFS CFs and Cor CFs, compared to Cor CMs, that revealed up to 23% binucleation when co-cultured with CFs. The sarcomere length of CMs, as a marker of development, is significantly increased in MFS CMs interacting with Cor CF or MFS CF, as compared to monocultured MFS CMs. Nuclear blebbing was significantly more frequent in MFS CFs, which correlated with increased stiffness of the nuclear area compared to Cor CFs. Our cardiosphere model for Marfan-related cardiomyopathy identified a contribution of CFs in Marfan-related cardiomyopathy and suggests that abnormal early development of CMs may play a role in the disease mechanism.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Marfan Syndrome , Animals , Mice , Humans , Myocytes, Cardiac/metabolism , Coculture Techniques , Marfan Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Fibroblasts/metabolism , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Mutation
12.
Mol Biotechnol ; 66(5): 1266-1278, 2024 May.
Article in English | MEDLINE | ID: mdl-38206528

ABSTRACT

The objective of this study was to investigate the mechanism of curcumin in diabetic foot ulcer (DFU) wound healing. A DFU rat model was established, and fibroblasts were cultured in a high-glucose (HG) environment to create a cell model. Various techniques, including Western blot, RT‒qPCR, flow cytometry, Transwell, cell scratch test and H&E staining, were employed to measure the levels of relevant genes and proteins, as well as to assess cell proliferation, apoptosis, migration, and pathological changes. The results showed that miR-152-3p was overexpressed in DFU patients, while FBN1 was underexpressed. Curcumin was found to inhibit fibroblast apoptosis, promote proliferation, migration, and angiogenesis in DFU rats, and accelerate wound healing in DFU rats. In addition, overexpression of miR-152-3p weakened the therapeutic effect of curcumin, while overexpression of FBN1 reversed the effects of the miR-152-3p mimic. Further investigations into the underlying mechanisms revealed that curcumin expedited wound healing in DFU rats by restoring the FBN1/TGF-ß pathway through the inhibition of miR-152-3p. In conclusion, curcumin can suppress the activity of miR-152-3p, which, in turn, leads to the rejuvenation of the FBN1/TGF-ß pathway and accelerates DFU wound healing.


Subject(s)
Curcumin , Diabetic Foot , MicroRNAs , Signal Transduction , Wound Healing , Animals , Female , Humans , Male , Rats , Adipokines , Apoptosis/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Curcumin/pharmacology , Diabetic Foot/metabolism , Diabetic Foot/genetics , Diabetic Foot/drug therapy , Diabetic Foot/pathology , Disease Models, Animal , Fibrillin-1/genetics , Fibrillin-1/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/genetics , Wound Healing/drug effects , Wound Healing/genetics
13.
Matrix Biol ; 126: 1-13, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185344

ABSTRACT

OBJECTIVE: Mouse models of Marfan syndrome (MFS) with Fibrillin 1 (Fbn1) variant C1041G exhibit cardiovascular abnormalities, including myxomatous valve disease (MVD) and aortic aneurism, with structural extracellular matrix (ECM) dysregulation. In this study, we examine the structure-function-mechanics relations of the mitral valve related to specific transitions in ECM composition and organization in progressive MVD in MFS mice from Postnatal day (P)7 to 1 year-of-age. APPROACH AND RESULTS: Mechanistic links between mechanical forces and biological changes in MVD progression were examined in Fbn1C1041G/+ MFS mice. By echocardiography, mitral valve dysfunction is prevalent at 2 months with a decrease in cardiac function at 6 months, followed by a preserved cardiac function at 12 months. Mitral valve (MV) regurgitation occurs in a subset of mice at 2-6 months, while progressive dilatation of the aorta occurs from 2 to 12 months. Mitral valve tissue mechanical assessments using a uniaxial Permeabilizable Fiber System demonstrate decreased stiffness of MFS MVs at all stages. Histological and microscopic analysis of ECM content, structure, and fiber orientation demonstrate that alterations in ECM mechanics, composition, and organization precede functional abnormalities in Fbn1C1041G/+MFS MVs. At 2 months, ECM abnormalities are detected with an increase in proteoglycans and decreased stiffness of the mitral valve. By 6-12 months, collagen fiber remodeling is increased with abnormal fiber organization in MFS mitral valve leaflets. At the same time, matrifibrocyte gene expression characteristic of collagen-rich connective tissue is increased, as detected by RNA in situ hybridization and qPCR. Together, these studies demonstrate early prevalence of proteoglycans at 2 months followed by upregulation of collagen structure and organization with age in MVs of MFS mice. CONCLUSIONS: Altogether, our data indicate dynamic regulation of mitral valve structure, tissue mechanics, and function that reflect changes in ECM composition, organization, and gene expression in progressive MVD. Notably, increased collagen fiber organization and orientation, potentially dependent on increased matrifibrocyte cell activity, is apparent with altered mitral valve mechanics and function in aging MFS mice.


Subject(s)
Marfan Syndrome , Mice , Animals , Marfan Syndrome/genetics , Marfan Syndrome/pathology , Mitral Valve/metabolism , Mitral Valve/pathology , Extracellular Matrix/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Collagen/metabolism , Proteoglycans/metabolism
14.
J Cell Mol Med ; 27(21): 3235-3246, 2023 11.
Article in English | MEDLINE | ID: mdl-37635348

ABSTRACT

Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-ß1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-ß-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.


Subject(s)
Microfibrils , Transforming Growth Factor beta , Animals , Mice , Carbon Tetrachloride/toxicity , Fibrillin-1/genetics , Fibrillin-1/metabolism , Hepatic Stellate Cells/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Microfibrils/metabolism , Microfibrils/pathology , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/metabolism
15.
Cell Signal ; 110: 110834, 2023 10.
Article in English | MEDLINE | ID: mdl-37532137

ABSTRACT

FBN1 mutation promotes the degeneration of microfibril structures and extracellular matrix (ECM) integrity in the tunica media of the aorta in Marfan syndrome. However, whether FBN1 modulates cervical artery dissection (CAD) development and the potential molecular mechanisms of abnormal FBN1 in CAD remains elusive. In this study, FBN1 deficiency participated in the development of CAD and influenced the proliferation, apoptosis, and migration of vascular smooth muscle cells. FBN1 knockout induced alternations in mRNA levels of the transcriptome, protein expression of the proteome, and abundance of N-glycosylation of the N-glycoproteome. Comprehensive analysis of multiple omics showed up-regulation in mRNA levels of ECM proteins; yet, both the ECM protein levels and relative abundance of N-glycosylation were decreased. Moreover, we performed in vivo experiments to confirm the altered glycosylation of proteins in vascular smooth muscle cells. In conclusion, FBN1 deletion in vascular smooth muscle cells can result in altered N-glycosylation of ECM protein, which were critical for the stability of ECM and the process of CAD. This may open the way for a novel therapeutic strategy to treat people with CAD.


Subject(s)
Extracellular Matrix Proteins , Fibrillin-1 , Muscle, Smooth, Vascular , Animals , Rats , Aorta/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Glycosylation , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , RNA, Messenger/metabolism
16.
Arterioscler Thromb Vasc Biol ; 43(8): e339-e357, 2023 08.
Article in English | MEDLINE | ID: mdl-37288573

ABSTRACT

BACKGROUND: Thoracic aortic aneurysms (TAAs) are abnormal aortic dilatations and a major cardiovascular complication of Marfan syndrome. We previously demonstrated a critical role for vascular smooth muscle (VSM) SirT1 (sirtuin-1), a lysine deacetylase, against maladaptive aortic remodeling associated with chronic oxidative stress and aberrant activation of MMPs (matrix metalloproteinases). METHODS: In this study, we investigated whether redox dysregulation of SirT1 contributed to the pathogenesis of TAA using fibrillin-1 hypomorphic mice (Fbn1mgR/mgR), an established model of Marfan syndrome prone to aortic dissection/rupture. RESULTS: Oxidative stress markers 3-nitrotyrosine and 4-hydroxynonenal were significantly elevated in aortas of patients with Marfan syndrome. Moreover, reversible oxidative post-translational modifications (rOPTM) of protein cysteines, particularly S-glutathionylation, were dramatically increased in aortas of Fbn1mgR/mgR mice, before induction of severe oxidative stress markers. Fbn1mgR/mgR aortas and VSM cells exhibited an increase in rOPTM of SirT1, coinciding with the upregulation of acetylated proteins, an index of decreased SirT1 activity, and increased MMP2/9 activity. Mechanistically, we demonstrated that TGFß (transforming growth factor beta), which was increased in Fbn1mgR/mgR aortas, stimulated rOPTM of SirT1, decreasing its deacetylase activity in VSM cells. VSM cell-specific deletion of SirT1 in Fbn1mgR/mgR mice (SMKO-Fbn1mgR/mgR) caused a dramatic increase in aortic MMP2 expression and worsened TAA progression, leading to aortic rupture in 50% of SMKO-Fbn1mgR/mgR mice, compared with 25% of Fbn1mgR/mgR mice. rOPTM of SirT1, rOPTM-mediated inhibition of SirT1 activity, and increased MMP2/9 activity were all exacerbated by the deletion of Glrx (glutaredoxin-1), a specific deglutathionylation enzyme, while being corrected by overexpression of Glrx or of an oxidation-resistant SirT1 mutant in VSM cells. CONCLUSIONS: Our novel findings strongly suggest a causal role of S-glutathionylation of SirT1 in the pathogenesis of TAA. Prevention or reversal of SirT1 rOPTM may be a novel therapeutic strategy to prevent TAA and TAA dissection/ruptures in individuals with Marfan syndrome, for which, thus far, no targeted therapy has been developed.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Rupture , Marfan Syndrome , Mice , Animals , Marfan Syndrome/complications , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Matrix Metalloproteinase 2/metabolism , Fibrillins/metabolism , Muscle, Smooth, Vascular/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Microfilament Proteins/metabolism , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/prevention & control , Fibrillin-1/genetics , Fibrillin-1/metabolism , Aortic Rupture/prevention & control , Transforming Growth Factor beta/metabolism , Oxidation-Reduction , Disease Models, Animal , Glutaredoxins/metabolism , Glutaredoxins/therapeutic use
17.
Mol Biol (Mosk) ; 57(3): 503-504, 2023.
Article in Russian | MEDLINE | ID: mdl-37326054

ABSTRACT

Cisplatin (DDP) is widely used in the chemotherapy of cervical cancer (CC), the fourth most common female malignancy worldwide. However, some patients progress to chemotherapy resistance, which leads to chemotherapy failure, tumor recurrence, and poor prognosis. Therefore, strategies to identify the regulatory mechanisms underlying CC development and increase tumor sensitivity to DDP will help improve patient survival. This research was designed to ascertain the mechanism of EBF1-dependent regulation of FBN1 which promotes chemosensitivity of CC cells. The expression of EBF1 and FBN1 was measured in CC tissues resistant or sensitive to chemotherapy and in DDP-sensitive or -resistant cells (SiHa and SiHa-DDP cells). SiHa-DDP cells were transduced with lentiviruses encoding EBF1 or FBN1 to evaluate the influence of these two proteins on cell viability, expression of MDR1 and MRP1, and cell aggressiveness. Moreover, the interaction between EBF1 and FBN1 was predicted and demonstrated. Finally, to further verify the EBF1/FB1-dependent mechanism of DDP sensitivity regulation in CC cells a xenograft mouse model of CC was established using SiHa-DDP cells transduced with lentiviruses carrying EBF1 gene and shRNA directed to FBN1 EBF1 and FBN1 showed decreased expression in CC tissues and cells, particularly in those resistant to chemotherapy. Transduction of SiHa-DDP cells with lentiviruses encoding EBF1 or FBN1 lead to decreased viability, IC50, proliferation capacity, colony formation ability, aggressiveness, and increased cell apoptosis. We have shown that EBF1 activates FBN1 transcription by binding to FBN1 promoter region. Additionally, it was revealed that FBN1 silencing reversed the promoting effect of EBF1 overexpression on chemosensitivity of CC cells in vivo. EBF1 facilitated chemosensitivity in CC cells by activating FBN1 transcription.


Subject(s)
Antineoplastic Agents , MicroRNAs , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Cisplatin/pharmacology , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , RNA, Small Interfering/genetics , Cell Proliferation , Apoptosis/genetics , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Trans-Activators/genetics , Fibrillin-1/genetics , Fibrillin-1/metabolism , Fibrillin-1/therapeutic use
18.
Aging Cell ; 22(9): e13912, 2023 09.
Article in English | MEDLINE | ID: mdl-37365714

ABSTRACT

Age-related osteoporosis is associated with increased oxidative stress and cellular senescence. Pyrroloquinoline quinone (PQQ) is a water-soluble vitamin-like compound that has strong antioxidant capacity; however, the effect and underlying mechanism of PQQ on aging-related osteoporosis remain unclear. The purpose of this study was to investigate whether dietary PQQ supplementation can prevent osteoporosis caused by natural aging, and the potential mechanism underlying PQQ antioxidant activity. Here, we found that when 6-month-old or 12-month-old wild-type mice were supplemented with PQQ for 12 months or 6 months, respectively, PQQ could prevent age-related osteoporosis in mice by inhibiting osteoclastic bone resorption and stimulating osteoblastic bone formation. Mechanistically, pharmmapper screening and molecular docking studies revealed that PQQ appears to bind to MCM3 and reduces its ubiquitination-mediated degradation; stabilized MCM3 then competes with Nrf2 for binding to Keap1, thus activating Nrf2-antioxidant response element (ARE) signaling. PQQ-induced Nrf2 activation inhibited bone resorption through increasing stress response capacity and transcriptionally upregulating fibrillin-1 (Fbn1), thus reducing Rankl production in osteoblast-lineage cells and decreasing osteoclast activation; as well, bone formation was stimulated by inhibiting osteoblastic DNA damage and osteocyte senescence. Furthermore, Nrf2 knockout significantly blunted the inhibitory effects of PQQ on oxidative stress, on increased osteoclast activity and on the development of aging-related osteoporosis. This study reveals the underlying mechanism of PQQ's strong antioxidant capacity and provides evidence for PQQ as a potential agent for clinical prevention and treatment of natural aging-induced osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Antioxidants/metabolism , PQQ Cofactor/pharmacology , PQQ Cofactor/metabolism , PQQ Cofactor/therapeutic use , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Up-Regulation , Fibrillin-1/metabolism , Molecular Docking Simulation , Oxidative Stress , Aging , Osteoporosis/drug therapy , Osteoporosis/metabolism , Bone Resorption/drug therapy
19.
Domest Anim Endocrinol ; 84-85: 106791, 2023.
Article in English | MEDLINE | ID: mdl-37167929

ABSTRACT

Recent studies have reported hormonal regulation of expression of fibrillin 1 (FBN1), the gene that encodes asprosin, in bovine theca cells, however, hormonal regulation of gene expression of FBN1 and the asprosin receptor, olfactory receptor 4M1 (OR4M1), has not been evaluated in granulosa cells (GC). This study was designed to characterize FBN1 and OR4M1 gene expression in GC during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of FBN1 and OR4M1 mRNA expression in GC. GC FBN1 mRNA abundance was greater (P < 0.05) in medium (5.1-8 mm) estrogen inactive (EI) follicles than in large (>8.1 mm) or small (1-5 mm) EI follicles. In comparison, GC OR4M1 mRNA abundance was greater (P < 0.05) in small EI follicles than in large or medium EI follicles. Abundance of OR4M1 mRNA in GC of follicles collected on days 3 to 4 (early growth phase) and on days 5 to 6 (late growth phase) was similar, whereas FBN1 mRNA abundance was greater (P < 0.05) on days 5 to 6 vs days 3 to 4. Hormonal regulators for FBN1 mRNA abundance in cultured small-follicle GC were identified: TGFß1 causing a 2.45-fold increase, WNT3A causing a 1.45-fold increase, and IGF1 causing a 65% decrease. Steroids, leptin, insulin, growth hormone, follicle stimulating hormone, fibroblast growth factor 9 and epidermal growth factor had no effect on FBN1 mRNA abundance. Abundance of OR4M1 mRNA in GC was regulated by progesterone with 3.55-fold increase, but other hormones did not affect GC OR4M1 mRNA abundance. Findings indicate that both FBN1 and OR4M1 gene expression are hormonally and developmentally regulated in bovine follicles, and thus may affect asprosin production and its subsequent role in ovarian follicular function in cattle.


Subject(s)
Receptors, Odorant , Female , Cattle , Animals , Receptors, Odorant/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Gene Expression Regulation , Granulosa Cells/metabolism , Theca Cells/metabolism , Estrogens , Follicle Stimulating Hormone/metabolism , Estradiol/metabolism
20.
Proc Natl Acad Sci U S A ; 120(23): e2221742120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252964

ABSTRACT

Fibrillin-1 is an extracellular matrix protein that assembles into microfibrils which provide critical functions in large blood vessels and other tissues. Mutations in the fibrillin-1 gene are associated with cardiovascular, ocular, and skeletal abnormalities in Marfan syndrome. Here, we reveal that fibrillin-1 is critical for angiogenesis which is compromised by a typical Marfan mutation. In the mouse retina vascularization model, fibrillin-1 is present in the extracellular matrix at the angiogenic front where it colocalizes with microfibril-associated glycoprotein-1, MAGP1. In Fbn1C1041G/+ mice, a model of Marfan syndrome, MAGP1 deposition is reduced, endothelial sprouting is decreased, and tip cell identity is impaired. Cell culture experiments confirmed that fibrillin-1 deficiency alters vascular endothelial growth factor-A/Notch and Smad signaling which regulate the acquisition of endothelial tip cell/stalk cell phenotypes, and we showed that modulation of MAGP1 expression impacts these pathways. Supplying the growing vasculature of Fbn1C1041G/+ mice with a recombinant C-terminal fragment of fibrillin-1 corrects all defects. Mass spectrometry analyses showed that the fibrillin-1 fragment alters the expression of various proteins including ADAMTS1, a tip cell metalloprotease and matrix-modifying enzyme. Our data establish that fibrillin-1 is a dynamic signaling platform in the regulation of cell specification and matrix remodeling at the angiogenic front and that mutant fibrillin-1-induced defects can be rescued pharmacologically using a C-terminal fragment of the protein. These findings, identify fibrillin-1, MAGP1, and ADAMTS1 in the regulation of endothelial sprouting, and contribute to our understanding of how angiogenesis is regulated. This knowledge may have critical implications for people with Marfan syndrome.


Subject(s)
Fibrillin-1 , Marfan Syndrome , Animals , Mice , Extracellular Matrix/metabolism , Fibrillin-1/genetics , Fibrillin-1/metabolism , Marfan Syndrome/genetics , Marfan Syndrome/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...