Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
1.
Poult Sci ; 103(7): 103818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38733755

ABSTRACT

Mule ducks tend to accumulate abundant fat in their livers via feeding, which leads to the formation of a fatty liver that is several times larger than a normal liver. However, the mechanism underlying fatty liver formation has not yet been elucidated. Fibroblast growth factor 1 (FGF1), a member of the FGF superfamily, is involved in cellular lipid metabolism and mitosis. This study aims to investigate the regulatory effect of FGF1 on lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells and elucidate the underlying molecular mechanism. Hepatocytes were induced by adding 1,500:750 µmol/L oleic and palmitic acid concentrations for 36 h, which were stimulated with FGF1 concentrations of 0, 10, 100, and 1000 ng/mL for 12 h. The results showed that FGF1 significantly reduced the hepatic lipid droplet deposition and triglyceride content induced by complex fatty acids; it also reduced oxidative stress; decreased reactive oxygen species fluorescence intensity and malondialdehyde content; upregulated the expression of antioxidant factors nuclear factor erythroid 2 related factor 2 (Nrf2), HO-1, and NQO-1; significantly enhanced liver cell activity; promoted cell cycle progression; inhibited cell apoptosis; upregulated cyclin-dependent kinase 1 (CDK1) and BCL-2 mRNA expression; and downregulated Bax and Caspase-3 expression. In addition, FGF1 promoted AMPK phosphorylation, activated the AMPK pathway, upregulated AMPK gene expression, and downregulated the expression of SREBP1 and ACC1 genes, thereby alleviating excessive fat accumulation in liver cells induced by complex fatty acids. In summary, FGF1 may alleviate lipid metabolism disorders induced by complex fatty acids in primary mule duck liver cells by activating the AMPK signaling pathway.


Subject(s)
Ducks , Fatty Liver , Fibroblast Growth Factor 1 , Poultry Diseases , Animals , Fatty Liver/veterinary , Fatty Liver/metabolism , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/genetics , Poultry Diseases/metabolism , Lipid Metabolism/drug effects , Hepatocytes/metabolism , Hepatocytes/drug effects , Avian Proteins/metabolism , Avian Proteins/genetics , Liver/metabolism , Liver/drug effects
2.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Article in English | MEDLINE | ID: mdl-38481813

ABSTRACT

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Subject(s)
Acute Kidney Injury , Fibroblast Growth Factor 1 , Humans , Mice , Animals , Fibroblast Growth Factor 1/genetics , Cyclin-Dependent Kinases/genetics , Kidney , Acute Kidney Injury/chemically induced , Genomic Instability
3.
Methods Mol Biol ; 2762: 151-181, 2024.
Article in English | MEDLINE | ID: mdl-38315365

ABSTRACT

Fibroblast growth factors (FGFs) are proteins with a vast array of biological activity, such as cell development and repair, glucose and bile acid metabolisms, and wound healing. Due to their critical and diverse physiological functions, FGFs are believed to possess potential as therapeutic agents for many diseases and conditions that warrant further investigations. Thus, a simple, cost-efficient method to purify these biologically active signaling proteins is desirable. Herein, we introduce such techniques to purify FGFs that possess either high heparin-binding affinity or low to no heparin-binding affinity. This method takes advantage of the high affinity toward heparin sulfate from paracrine FGF1 to isolate the targeted protein. It also accounts for FGF members that have low heparin affinity, such as the metabolic FGFs, by introducing poly-histidine tags in the recombinant protein in combination with the immobilized metal affinity chromatography. Subsequently, the purified FGF products are separated from the other small protein by high-speed centrifugation. Products are then subjected to other biophysical experiments like SDS-PAGE, mass spectrometry, circular dichroism, intrinsic fluorescence, isothermal titration calorimetry, differential scanning calorimetry, and biological cell activity assay to confirm that the target proteins are purified with intact native conformation and no significant change in the intrinsic characteristics and biological activities.


Subject(s)
Fibroblast Growth Factors , Mitogens , Fibroblast Growth Factors/metabolism , Cell Proliferation , Recombinant Proteins/metabolism , Heparin/chemistry , Fibroblast Growth Factor 1/genetics
4.
Aging (Albany NY) ; 16(1): 322-347, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38189813

ABSTRACT

BACKGROUND: MicroRNA-221-3p (miR-221-3p) facilitates the advancement of breast cancer (BC) through the induction of epithelial-mesenchymal transition (EMT). Our research aimed to utilize bioinformatics to discover possible EMT-related target genes (ETGs) of miR-221-3p and examine their roles in breast cancer. METHODS: We employed bioinformatics techniques to identify ten key ETGs of miR-221-3p. Subsequently, we conducted an extensive analysis of both miR-221-3p and the ten ETGs, including clinical significance and immune characteristics. RESULTS: The expression of miR-221-3p was notably higher in Basal-like BC compared to other subtypes and adjacent normal tissue. Our pathway analysis suggested that miR-221-3p might regulate EMT through the MAPK signaling pathway by targeting its ETGs. Among the ETGs, seven core genes (EGFR, IGF1, KDR, FGF2, KIT, FGFR1, and FGF1) exhibited downregulation in BC. Conversely, ERBB2, SDC1, and MMP14 showed upregulation in BC and displayed potential diagnostic value. The analysis of prognostication indicated that increased levels of SDC1 and MMP14 were correlated with an unfavorable prognosis, whereas elevated expression of KIT was associated with a more favorable prognosis. The infiltration of various immune cells and the expression of immune checkpoint genes (ICGs) exhibited positive correlations with most ETGs and miR-221-3p. SDC1 exhibited a greater tumor mutational burden (TMB) score, while ERBB2, KDR, FGF2, KIT, FGFR1, and FGF1 showed lower TMB scores. Furthermore, decreased ERBB2 and KDR expression levels were correlated with elevated microsatellite instability (MSI) scores. Elevated expression of ETGs was linked to decreased mRNA stemness indices (mRNAsi), whereas miR-221-3p displayed the opposite pattern. Most ETGs and miR-221-3p expression exhibited a negative correlation with IC50 values for drugs. Among the ETGs, amplification was the most significant genetic alteration, except for IGF1. CONCLUSION: In conclusion, miR-221-3p acts as a unique indicator for Basal-like BC. The examination revealed ten essential ETGs of miR-221-3p, some of which show potential as diagnostic and prognostic markers. The in-depth examination of these ten ETGs and miR-221-3p indicates their participation in the development of BC, emphasizing their promise as innovative targets for therapy in BC patients.


Subject(s)
Breast Neoplasms , MicroRNAs , Humans , Female , MicroRNAs/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Matrix Metalloproteinase 14/genetics , Cell Line, Tumor , Clinical Relevance , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 2/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Cell Proliferation/genetics , Cell Movement/genetics
5.
Int Immunopharmacol ; 127: 111372, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38118314

ABSTRACT

Mesangial proliferative glomerulonephritis (MsPGN) and its related rat model Thy-1 nephritis (Thy-1N) are associated with C5b-9 deposition and are characterized by proliferation of glomerular mesangial cell (GMC) and expansion of extracellular matrix (ECM) expansion, alongside overexpression of multiple growth factors. Although fibroblast growth factor 1 (FGF1), platelet-derived growth factor alpha (PDGFα), and transforming growth factor beta 1 (TGF-ß1) are well known for their proproliferative and profibrotic roles, the molecular mechanisms responsible for regulating the expression of these growth factors have not been thoroughly elucidated. In this study, we found that sublytic C5b-9 induction of sex-determining region Y-box 9 (SOX9) transactivated FGF1, PDGFα, and TGF-ß1 genes in GMCs, resulting in a significant increase in their mRNA and protein levels. Besides, sublytic C5b-9 induction of activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylated SOX9 at serine 181 and serine 64, which enhanced SOX9's ability to transactivate FGF1, PDGFα, and TGF-ß1 genes in GMCs. Furthermore, we demonstrated that inhibiting ERK1/2 activation or silencing either ERK1/2 or SOX9 gene led to reduced SOX9 phosphorylation, decreased generation of FGF1, PDGFα, and TGF-ß1, and ameliorated glomerular injury in rat Thy-1N. Overall, these findings suggest that expression of FGF1, PDGFα, and TGF-ß1 is promoted by ERK1/2-mediated phosphorylation of SOX9, which may provide a valuable insight into the pathogenesis of MsPGN and offer a potential target for the development of novel treatment strategies for MsPGN.


Subject(s)
Fibroblast Growth Factor 1 , Nephritis , Rats , Animals , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Phosphorylation , Rats, Sprague-Dawley , Complement Membrane Attack Complex/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , MAP Kinase Signaling System , Nephritis/metabolism , Serine/metabolism
6.
Cell Mol Life Sci ; 80(10): 311, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37783936

ABSTRACT

Fibroblast growth factor 1 (FGF1) acts by activating specific tyrosine kinase receptors on the cell surface. In addition to this classical mode of action, FGF1 also exhibits intracellular activity. Recently, we found that FGF1 translocated into the cell interior exhibits anti-apoptotic activity independent of receptor activation and downstream signaling. Here, we show that expression of FGF1 increases the survival of cells treated with various apoptosis inducers, but only when wild-type p53 is present. The p53-negative cells were not protected by either ectopically expressed or translocated FGF1. We also confirmed the requirement of p53 for the anti-apoptotic intracellular activity of FGF1 by silencing p53, resulting in loss of the protective effect of FGF1. In contrast, in p53-negative cells, intracellular FGF1 regained its anti-apoptotic properties after transfection with wild-type p53. We also found that FGF1 directly interacts with p53 in cells and that the binding region is located in the DBD domain of p53. We therefore postulate that intracellular FGF1 protects cells from apoptosis by directly interacting with p53.


Subject(s)
Fibroblast Growth Factor 1 , Tumor Suppressor Protein p53 , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction , Apoptosis
7.
Mod Pathol ; 36(12): 100336, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742927

ABSTRACT

Phosphaturic mesenchymal tumors (PMT) are uncommon neoplasms that cause hypophosphatemia/osteomalacia mainly by secreting fibroblast growth factor 23. We previously identified FN1::FGFR1/FGF1 fusions in nearly half of the PMTs and frequent KL (Klotho or α-Klotho) overexpression in only those with no known fusion. Here, we studied a larger cohort of PMTs for KL expression and alterations. By FN1 break-apart fluorescence in situ hybridization (FISH) and reappraisal of previous RNA sequencing data, 6 tumors previously considered "fusion-negative" (defined by negative results of FISH for FN1::FGFR1 fusion and FGF1 break-apart and/or of RNA sequencing) were reclassified as fusion-positive PMTs, including 1 containing a novel FN1::ZACN fusion. The final cohort of fusion-negative PMTs included 33 tumors from 32 patients, which occurred in the bone (n = 18), soft tissue (n = 10), sinonasal tract (n = 4), and brain (n = 1). In combination with previous work, RNA sequencing, RNA in situ hybridization, and immunohistochemistry showed largely concordant results and demonstrated KL/α-Klotho overexpression in 17 of the 28 fusion-negative and none of the 10 fusion-positive PMTs studied. Prompted by a patient in this cohort harboring germline KL upstream translocation with systemic α-Klotho overexpression and multifocal PMTs, FISH was performed and revealed KL rearrangement in 16 of the 33 fusion-negative PMTs (one also with amplification), including 14 of the 17 cases with KL/α-Klotho overexpression and none of the 11 KL/α-Klotho-low fusion-negative and 11 fusion-positive cases studied. Whole genomic sequencing confirmed translocation and inversion in 2 FISH-positive cases involving the KL upstream region, warranting further investigation into the mechanism whereby these rearrangements may lead to KL upregulation. Methylated DNA immunoprecipitation and sequencing suggested no major role of promoter methylation in KL regulation in PMT. Interestingly, KL-high/-rearranged cases seemed to form a clinicopathologically homogeneous group, showing a predilection for skeletal/sinonasal locations and typically matrix-poor, cellular solitary fibrous tumor-like morphology. Importantly, FGFR1 signaling pathways were upregulated in fusion-negative PMTs regardless of the KL status compared with non-PMT mesenchymal tumors by gene set enrichment analysis, perhaps justifying FGFR1 inhibition in treating this subset of PMTs.


Subject(s)
Mesenchymoma , Paranasal Sinuses , Soft Tissue Neoplasms , Humans , In Situ Hybridization, Fluorescence , Fibroblast Growth Factor 1/genetics , Soft Tissue Neoplasms/genetics , Mesenchymoma/genetics , Mesenchymoma/pathology , Translocation, Genetic , Paranasal Sinuses/pathology
8.
J Neurol Neurosurg Psychiatry ; 94(10): 816-824, 2023 10.
Article in English | MEDLINE | ID: mdl-37142397

ABSTRACT

BACKGROUND: Several genetic factors are associated with the pathogenesis of sporadic amyotrophic lateral sclerosis (ALS) and its phenotypes, such as disease progression. Here, in this study, we aimed to identify the genes that affect the survival of patients with sporadic ALS. METHODS: We enrolled 1076 Japanese patients with sporadic ALS with imputed genotype data of 7 908 526 variants. We used Cox proportional hazards regression analysis with an additive model adjusted for sex, age at onset and the first two principal components calculated from genotyped data to conduct a genome-wide association study. We further analysed messenger RNA (mRNA) and phenotype expression in motor neurons derived from induced pluripotent stem cells (iPSC-MNs) of patients with ALS. RESULTS: Three novel loci were significantly associated with the survival of patients with sporadic ALS-FGF1 at 5q31.3 (rs11738209, HR=2.36 (95% CI, 1.77 to 3.15), p=4.85×10-9), THSD7A at 7p21.3 (rs2354952, 1.38 (95% CI, 1.24 to 1.55), p=1.61×10-8) and LRP1 at 12q13.3 (rs60565245, 2.18 (95% CI, 1.66 to 2.86), p=2.35×10-8). FGF1 and THSD7A variants were associated with decreased mRNA expression of each gene in iPSC-MNs and reduced in vitro survival of iPSC-MNs obtained from patients with ALS. The iPSC-MN in vitro survival was reduced when the expression of FGF1 and THSD7A was partially disrupted. The rs60565245 was not associated with LRP1 mRNA expression. CONCLUSIONS: We identified three loci associated with the survival of patients with sporadic ALS, decreased mRNA expression of FGF1 and THSD7A and the viability of iPSC-MNs from patients. The iPSC-MN model reflects the association between patient prognosis and genotype and can contribute to target screening and validation for therapeutic intervention.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Humans , Amyotrophic Lateral Sclerosis/pathology , Induced Pluripotent Stem Cells/metabolism , Genome-Wide Association Study , East Asian People , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Motor Neurons/pathology
9.
Anim Biotechnol ; 34(4): 1196-1208, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34939903

ABSTRACT

Fibroblast growth factor 1(FGF1) has been proved to bind to specific signal molecules and activate intracellular signal transduction, leading to proliferation or differentiation of cells. However, the role of FGF1 in goat adipocytes is still unclear. Here, we investigated its role in lipogenesis of goats, which depends on the activation of FGFRs. In goat intramuscular and subcutaneous adipocytes, we observed that adipocytes accumulation was inhibited by interfering of FGF1, the expression of C/EBPα, C/EBPß, LPL, Pref-1, PPARγ, AP2, KLF4, KLF6, KLF10 and KLF17 were significantly down-regulated (p < 0.05). When the FGF1 was up-regulated, the opposite result was found, while the expression of C/EBPß, LPL, PPARγ, SREBP1, AP2, KLF4, KLF7, KLF15, KLF16 and KLF17 were increased significantly (p < 0.05) in goat intramuscular and subcutaneous adipocytes. The expression level of FGFR1 was significantly and decreased with the interference of FGF1, and increased with the overexpression of FGF1. But in goat subcutaneous adipocytes, only the expression of FGFR2 was consistent with the expression of FGF1. Interference methods confirmed that FGFR1 or FGFR2 and FGF1 have the similarly promoting function in adipocytes differentiation. With the co-transfection technology, we confirmed that FGF1 promoted the differentiation of intramuscular and subcutaneous adipocytes might via FGFR1 or FGFR2, respectively.


Subject(s)
Fibroblast Growth Factor 1 , Goats , Animals , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Goats/physiology , PPAR gamma/metabolism , Cell Differentiation/physiology , Adipocytes/physiology
10.
Proc Natl Acad Sci U S A ; 119(40): e2122382119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161959

ABSTRACT

Fibroblast growth factor 1 (FGF1) is an autocrine growth factor released from adipose tissue during over-nutrition or fasting to feeding transition. While local actions underlie the majority of FGF1's anti-diabetic functions, the molecular mechanisms downstream of adipose FGF receptor signaling are unclear. We investigated the effects of FGF1 on glucose uptake and its underlying mechanism in murine 3T3-L1 adipocytes and in ex vivo adipose explants from mice. FGF1 increased glucose uptake in 3T3-L1 adipocytes and epididymal WAT (eWAT) and inguinal WAT (iWAT). Conversely, glucose uptake was reduced in eWAT and iWAT of FGF1 knockout mice. We show that FGF1 acutely increased adipocyte glucose uptake via activation of the insulin-sensitive glucose transporter GLUT4, involving dynamic crosstalk between the MEK1/2 and Akt signaling proteins. Prolonged exposure to FGF1 stimulated adipocyte glucose uptake by MEK1/2-dependent transcription of the basal glucose transporter GLUT1. We have thus identified an alternative pathway to stimulate glucose uptake in adipocytes, independent from insulin, which could open new avenues for treating patients with type 2 diabetes.


Subject(s)
Adipocytes , Fibroblast Growth Factor 1 , Glucose , 3T3-L1 Cells , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Animals , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Glucose/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Insulin/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Fibroblast Growth Factor/metabolism
11.
Br J Cancer ; 127(7): 1239-1253, 2022 10.
Article in English | MEDLINE | ID: mdl-35864158

ABSTRACT

BACKGROUND: Distant metastasis and recurrence remain the main obstacle to nasopharyngeal carcinoma (NPC) treatment. However, the molecular mechanisms underlying NPC growth and metastasis are poorly understood. METHODS: LHX2 expression was examined in NPC cell lines and NPC tissues using quantitative reverse transcription-polymerase chain reaction, western blotting and Immunohistochemistry assay. NPC cells overexpressing or silencing LHX2 were used to perform CCK-8 assay, colony-formation assay, EdU assay, wound-healing and invasion assays in vitro. Xenograft tumour models and lung metastasis models were involved for the in vivo assays. The Gene Set Enrichment Analysis (GSEA), ELISA assay, western blot, chromatin immunoprecipitation (ChIP) assay and Luciferase reporter assay were applied for the downstream target mechanism investigation. RESULTS: LIM-homeodomain transcription factor 2 (LHX2) was upregulated in NPC tissues and cell lines. Elevated LHX2 was closely associated with poor survival in NPC patients. Ectopic LHX2 overexpression dramatically promoted the growth, migration and invasion of NPC cells both in vitro and in vivo. Mechanistically, LHX2 transcriptionally increased the fibroblast growth factor 1 (FGF1) expression, which in turn activated the phosphorylation of STAT3 (signal transducer and activator of transcription 3), ERK1/2 (extracellular regulated protein kinases 1/2) and AKT signalling pathways in an autocrine and paracrine manner, thereby promoting the growth and metastasis of NPC. Inhibition of FGF1 with siRNA or FGFR inhibitor blocked LHX2-induced nasopharyngeal carcinoma cell growth, migration and invasion. CONCLUSIONS: Our study identifies the LHX2-FGF1-FGFR axis plays a key role in NPC progression and provides a potential target for NPC therapy.


Subject(s)
MicroRNAs , Nasopharyngeal Neoplasms , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , MicroRNAs/genetics , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
12.
Br J Cancer ; 127(7): 1340-1351, 2022 10.
Article in English | MEDLINE | ID: mdl-35778553

ABSTRACT

BACKGROUND: Ovarian cancer patients frequently develop chemotherapy resistance, limiting treatment options. We have previously shown that individuality in fibroblast growth factor 1 (FGF1) expression influences survival and chemotherapy response. METHODS: We used MTT assays to assess chemosensitivity to cisplatin and carboplatin following shRNA-mediated knockdown or heterologous over-expression of FGF1 (quantified by qRT-PCR and immunoblot analysis), and in combination with the FGFR inhibitors AZD4547 and SU5402, the ATM inhibitor KU55933 and DNA-PK inhibitor NU7026. Immunofluorescence microscopy was used to quantify the FGF1-dependent timecourse of replication protein A (RPA) and γH2AX foci formation. RESULTS: Pharmacological inhibition of FGF signalling reversed drug resistance in immortalised cell lines and in primary cell lines from drug-resistant ovarian cancer patients, while FGF1 over-expression induced resistance. Ataxia telangiectasia mutated (ATM) phosphorylation, but not DNA adduct formation was FGF1 dependent, following cisplatin or carboplatin challenge. Combining platinum drugs with the ATM inhibitor KU55933, but not with the DNA-PK inhibitor NU7026 re-sensitised resistant cells. FGF1 expression influenced the timecourse of damage-induced RPA and γH2AX nuclear foci formation. CONCLUSION: Drug resistance arises from FGF1-mediated differential activation of high-fidelity homologous recombination DNA damage repair. FGFR and ATM inhibitors reverse platinum drug resistance, highlighting novel combination chemotherapy approaches for future clinical trial evaluation.


Subject(s)
Cisplatin , Ovarian Neoplasms , Ataxia Telangiectasia Mutated Proteins , Carboplatin/therapeutic use , Carcinoma, Ovarian Epithelial/drug therapy , Cell Line, Tumor , Cisplatin/therapeutic use , DNA Damage , DNA Repair , DNA-Activated Protein Kinase/metabolism , Drug Resistance , Female , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/therapeutic use , Fibroblast Growth Factors , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Platinum/therapeutic use , RNA, Small Interfering , Recombinational DNA Repair , Replication Protein A/genetics
13.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 256-262, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35818245

ABSTRACT

Breast cancer is a common malignant tumor in women. At present, the main treatment for breast cancer is radiotherapy. Due to the difference in radiosensitivity between individuals or tumor cells, the effect of radiotherapy is not good. Therefore, in radiotherapy, how to use various auxiliary means to reduce the radiation resistance of tumor, Therefore, it has become an important research topic to improve the radiosensitivity of the tumor. Fibroblast growth factor-1 (FGF1) plays an important role in tumor migration. Therefore, the study of miR-143-3p increasing the radiosensitivity of breast cancer cells through FGF1 is proposed in this paper. In this study, a control group experiment was set up to study. During the experiment, the relative expression of miR-143-3p was detected by fluorescent quantitative PCR of miRNA, and the cell irradiation experiment was created to analyze the radiosensitivity of breast cancer cells by comparing their survival fraction. The results of this study showed that when the radiation dose was 0, the survival scores of the three groups were all 1. The survival fraction of the experimental group decreased from 0.26 ± 0.045 to 0.068 ± 0.008 when the dose was added to 4Gy. The survival fraction of the experimental group was always greater than that of the two control groups. The results of this study show that miR-143-3p can increase the radiosensitivity of breast cancer cells through FGF1.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 1 , MicroRNAs , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/radiotherapy , Cell Line, Tumor , Cell Proliferation , Female , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics , Radiation Tolerance/genetics
14.
Biochim Biophys Acta Mol Basis Dis ; 1868(8): 166414, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35447340

ABSTRACT

Elderly adults are at higher risk for developing diabetic complications including diabetic nephropathy (DN), contributing to excess morbidity and mortality in elderly individuals. A non-mitogenic variant of fibroblast growth factor 1 (FGF1ΔHBS) was demonstrated to prevent DN in an early-stage (2-month-old) type 2 diabetes (T2D) mouse model. The present study aimed to investigate the potential therapeutic effects of FGF1ΔHBS against the progression of renal dysfunction in a late-stage T2D mouse model with established DN. Nine-month-old db/db mice were administered FGF1ΔHBS every other day for 3 months. db/db mice at 12-month-old without FGF1ΔHBS treatment exhibited high blood glucose level and elevated urine albumin-to-creatinine ratio. FGF1ΔHBS treatment effectively reversed hyperglycemia, delayed the development of renal dysfunction, and reduced kidney size and weight. Furthermore, FGF1ΔHBS treatment significantly prevented the progression of renal morphologic impairment. FGF1ΔHBS treatment demonstrated anti-inflammatory and anti-fibrotic effects, with significantly decreased protein levels of key pro-inflammatory cytokines and pro-fibrotic factors in kidney. Moreover, FGF1ΔHBS treatment greatly decreased apoptosis of renal tubular cells, accompanied by significant downregulation of the proapoptotic protein and upregulation of the antiapoptotic protein and peroxisome proliferator-activated receptor α (PPARα) expression in kidney. Mechanistically, FGF1ΔHBS treatment directly protected mouse proximal tubule cells against palmitate-induced apoptosis, which was abolished by PPARα inhibition. In conclusion, this study demonstrated that FGF1ΔHBS delays the progression of renal dysfunction likely through activating PPARα to prevent renal tubule cell death in late-stage T2D, exhibiting a promising translational potential in treating DN in elderly T2D individuals by ameliorating renal inflammation, fibrosis and apoptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Fibroblast Growth Factor 1 , Animals , Apoptosis , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Disease Models, Animal , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/therapeutic use , Fibrosis , Humans , Inflammation/drug therapy , Inflammation/metabolism , Mice , PPAR alpha/metabolism
15.
Hepatol Commun ; 6(7): 1574-1588, 2022 07.
Article in English | MEDLINE | ID: mdl-35271760

ABSTRACT

Fibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.


Subject(s)
Cholangitis, Sclerosing , MicroRNAs , ATP Binding Cassette Transporter, Subfamily B/metabolism , Animals , Cholangitis, Sclerosing/drug therapy , Disease Models, Animal , Fibroblast Growth Factor 1/genetics , Fibrosis , Humans , Inflammation , Liver Cirrhosis/drug therapy , Male , Mice , Mice, Knockout , MicroRNAs/genetics , ATP-Binding Cassette Sub-Family B Member 4
16.
Cells ; 11(3)2022 02 02.
Article in English | MEDLINE | ID: mdl-35159330

ABSTRACT

Fibroblast growth factor 1 (FGF1) is considered primarily as a ligand for FGF surface receptors (FGFRs) through which it activates a number of cellular responses. In addition to its canonical mode of action, FGF1 can act intracellularly, before secretion or after internalization and translocation from the cell exterior. The role of FGF1 inside the cell is to provide additional protection against apoptosis and promote cell survival. The FGF1 protein contains a specific N-terminal nuclear localization sequence (NLS) that is essential for its efficient transport to the nucleus. Here, we investigated the role of this sequence in the anti-apoptotic response of FGF1. To this end, we produced recombinant FGF1 variants with mutated or deleted NLS and added them to apoptosis-induced cells in which FGFR1 was inactive, either as a result of chemical inhibition or kinase-dead mutation. After internalization, all FGF1 variants were able to protect the differentiated cells from serum starvation-induced apoptosis. To verify the results obtained for NLS mutants, we knocked down LRRC59, a protein that mediates the nuclear transport of FGF1. Upon LRRC59 silencing, we still observed a decrease in caspase 3/7 activity in cells treated exogenously with wild-type FGF1. In the next step, FGF1 variants with mutated or deleted NLS were expressed in U2OS cells, in which apoptosis was then induced by various factors (e.g., starvation, etoposide, staurosporine, anisomycin and actinomycin D). Experiments were performed in the presence of specific FGFR inhibitors to eliminate FGFR-induced signaling, potentially activated by FGF1 proteins released from damaged cells. Again, we found that the presence of NLS in FGF1 is not required for its anti-apoptotic activity. All NLS variants tested were able to act as wild type FGF1, increasing the cell viability and mitochondrial membrane potential and reducing the caspase 3/7 activity and PARP cleavage in cells undergoing apoptosis, both transiently and stably transfected. Our results indicate that the nuclear localization of FGF1 is not required for its intracellular anti-apoptotic activity in differentiated cells and suggest that the mechanism of the stress response differs according to the level of cell differentiation.


Subject(s)
Apoptosis , Cell Nucleus , Fibroblast Growth Factor 1 , Active Transport, Cell Nucleus , Caspase 3/metabolism , Cell Differentiation/physiology , Cell Line, Tumor , Cell Nucleus/metabolism , Fibroblast Growth Factor 1/genetics , Humans
17.
Redox Biol ; 49: 102219, 2022 02.
Article in English | MEDLINE | ID: mdl-34990928

ABSTRACT

A cumulative and progressively developing cardiomyopathy induced by adriamycin (ADR)-based chemotherapy is a major obstacle for its clinical application. However, there is a lack of safe and effective method to protect against ADR-induced cardiotoxicity. Here, we found that mRNA and protein levels of FGF1 were decreased in ADR-treated mice, primary cardiomyocytes and H9c2 cells, suggesting the potential effect of FGF1 to protect against ADR-induced cardiotoxicity. Then, we showed that treatment with a FGF1 variant (FGF1ΔHBS) with reduced proliferative potency significantly prevented ADR-induced cardiac dysfunction as well as ADR-associated cardiac inflammation, fibrosis, and hypertrophy. The mechanistic study revealed that apoptosis and oxidative stress, the two vital pathological factors in ADR-induced cardiotoxicity, were largely alleviated by FGF1ΔHBS treatment. Furthermore, the inhibitory effects of FGF1ΔHBS on ADR-induced apoptosis and oxidative stress were regulated by decreasing p53 activity through upregulation of Sirt1-mediated p53 deacetylation and enhancement of murine double minute 2 (MDM2)-mediated p53 ubiquitination. Upregulation of p53 expression or cardiac specific-Sirt1 knockout (Sirt1-CKO) almost completely abolished FGF1ΔHBS-induced protective effects in cardiomyocytes. Based on these findings, we suggest that FGF1ΔHBS may be a potential therapeutic agent against ADR-induced cardiotoxicity.


Subject(s)
Cardiotoxicity , Doxorubicin , Animals , Apoptosis , Cardiotoxicity/pathology , Doxorubicin/adverse effects , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 1/pharmacology , Mice , Myocytes, Cardiac/metabolism , Oxidative Stress , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
18.
Cardiovasc Res ; 118(9): 2139-2151, 2022 07 20.
Article in English | MEDLINE | ID: mdl-34358309

ABSTRACT

AIMS: The heart undergoes pathological remodelling under increased stress and neuronal imbalance. MicroRNAs (miRNAs) are involved in post-transcriptional regulation of genes in cardiac physiology and pathology. However, the mechanisms underlying miRNA-mediated regulation of pathological cardiac remodelling remain to be studied. This study aimed to explore the function of endogenous microRNA-27b-3p (miR-27b-3p) in pathological cardiac remodelling. METHODS AND RESULTS: miR-27b-3p expression was elevated in the heart of a transverse aortic constriction (TAC)-induced cardiac hypertrophy mouse model. miR-27b-knockout mice showed significantly attenuated cardiac hypertrophy, fibrosis, and inflammation induced by two independent pathological cardiac hypertrophy models, TAC and Angiotensin II (Ang II) perfusion. Transcriptome sequencing analysis revealed that miR-27b deletion significantly down-regulated TAC-induced cardiac hypertrophy, fibrosis, and inflammatory genes. We identified fibroblast growth factor 1 (FGF1) as a miR-27b-3p target gene in the heart which was up-regulated in miR-27b-null mice. We found that both recombinant FGF1 (rFGF1) and inhibition of miR-27b-3p enhanced mitochondrial oxidative phosphorylation (OXPHOS) and inhibited cardiomyocyte hypertrophy. Importantly, rFGF1 administration inhibited cardiac hypertrophy and fibrosis in TAC- or Ang II-induced models and enhanced OXPHOS by activating PGC1α/ß. CONCLUSIONS: Our study demonstrated that miR-27b-3p induces pathological cardiac remodelling and suggests that inhibition of endogenous miR-27b-3p or administration of FGF1 might have the potential to suppress cardiac remodelling in a clinical setting.


Subject(s)
Cardiomegaly , Fibroblast Growth Factor 1 , MicroRNAs , Ventricular Remodeling , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Cardiomegaly/genetics , Cardiomegaly/metabolism , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Fibrosis , Mice , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling/genetics
19.
Curr Eye Res ; 47(2): 246-255, 2022 02.
Article in English | MEDLINE | ID: mdl-34486899

ABSTRACT

BACKGROUND: Circular_0122396 (circ_0122396) has been reported to be downregulated in age-related cataract (ARC); however, the underlying mechanism remains unknown. The study aimed to reveal the role of circ_0122396 in ARC progression and underneath mechanism. METHODS: Hydrogen peroxide (H2O2) was employed to induce lens epithelial cells (SRA01/04) injury. The RNA expression of circ_0122396, microRNA-15a-5p (miR-15a-5p) and fibroblast growth factor 1 (FGF1) was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blot. Cell viability, proliferation and apoptosis were investigated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-Ethynyl-29-deoxyuridine and flow cytometry analysis, respectively. Oxidative stress was evaluated by superoxide dismutase and catalase activity assay kits and lipid peroxidation malondialdehyde assay kit. Online databases and mechanism assays were used to predict and identify the relationship between miR-15a-5p and circ_0122396 or FGF1. RESULTS: Circ_0122396 and FGF1 expression were significantly downregulated, but miR-15a-5p expression was upregulated in ARC tissues or/and H2O2-treated SRA01/04 cells in comparison with control groups. H2O2 treatment repressed cell proliferation and induced cell apoptosis and oxidative stress, which was attenuated after circ_0122396 overexpression. MiR-15a-5p, a target mRNA of circ_0122396, was found to participate in H2O2-triggered cell damage by interacting with circ_0122396. Additionally, FGF1 silencing attenuated miR-15a-5p inhibitors-mediated action. Importantly, circ_0122396 regulated FGF1 expression by interaction with miR-15a-5p in H2O2-treated SRA01/04 cells. CONCLUSION: Circ_0122396 ameliorated H2O2-triggered cell injury by inducing FGF1 through sponging miR-15a-5p, providing a potential target for ARC therapy.


Subject(s)
MicroRNAs , RNA, Circular , Apoptosis/genetics , Epithelial Cells/metabolism , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Humans , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/toxicity , MicroRNAs/genetics , RNA, Circular/genetics
20.
Clin Hemorheol Microcirc ; 80(2): 167-183, 2022.
Article in English | MEDLINE | ID: mdl-34092624

ABSTRACT

Atherosclerosis is a major cause of cardiovascular disease, in which vascular smooth muscle cells (VSMCs) proliferation and migration play a vital role. Circular RNAs (circRNAs) have been reported to be correlated with the VSMCs function. Therefore, this study is designed to explore the role and mechanism of circRNA lipase maturation factor 1 (circLMF1) in Human aortic VSMCs (HASMCs). The microarray was used for detecting the expression of circLMF1 in proliferative and quiescent HASMCs. Levels of circLMF1, microRNA-125a-3p (miR-125a-3p), vascular endothelial growth factor A (VEGFA), and fibroblast growth factor 1 (FGF1) were determined by real-time quantitative polymerase chain reaction (RT-qPCR). Cell viability, cell cycle progression, and migration were assessed by Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays, respectively. Western blot assay determined proliferating cell nuclear antigen (PCNA), Cyclin D1, matrix metalloproteinase (MMP2), osteopontin (OPN), VEGFA, and FGF1 protein levels. The possible interactions between miR-125a-3p and circLMF1, and miR-125a-3p and VEGFA or FGF1 were predicted by circbank or targetscan, and then verified by a dual-luciferase reporter, RNA Immunoprecipitation (RIP), RNA pull-down assays. CircLMF1, VEGFA, and FGF1 were increased, and miR-125a-3p was decreased in platelet-derived growth factor-BB (PDGF-BB)-inducted HASMCs. Functionally, circLMF1 knockdown hindered cell viability, cell cycle progression, and migration in PDGF-BB-treated HASMCs. Mechanically, circLMF1 could regulate VEGFA or FGF1 expression through sponging miR-125a-3p. Our findings revealed that circLMF1 deficiency could inhibit cell viability, cell cycle progression, and migration of PDGF-BB stimulated atherosclerosis model partly through the miR-125a-3p/VEGFA or FGF1 axis, suggesting that targeting circLMF1 can be a feasible therapeutic strategy for atherosclerosis.


Subject(s)
MicroRNAs , Myocytes, Smooth Muscle , RNA, Circular , Becaplermin/pharmacology , Cell Movement/genetics , Cell Proliferation/genetics , Fibroblast Growth Factor 1/genetics , Fibroblast Growth Factor 1/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/cytology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...