Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 12(1): 14815, 2022 08 31.
Article in English | MEDLINE | ID: mdl-36045277

ABSTRACT

Luciferin biosynthetic origin and alternative biological functions during the evolution of beetles remain unknown. We have set up a bioluminescent sensing method for luciferin synthesis from cysteine and benzoquinone using E. coli and Pichia pastoris expressing the bright Amydetes vivianii firefly and P. termitilluminans click beetle luciferases. In the presence of D-cysteine and benzoquinone, intense bioluminescence is quickly produced, indicating the expected formation of D-luciferin. Starting with L-cysteine and benzoquinone, the bioluminescence is weaker and delayed, indicating that bacteria produce L-luciferin, and then racemize it to D-luciferin in the presence of endogenous esterases, CoA and luciferase. In bacteria the p-benzoquinone toxicity (IC50 ~ 25 µM) is considerably reduced in the presence of cysteine, maintaining cell viability at 3.6 mM p-benzoquinone concomitantly with the formation of luciferin. Transcriptional analysis showed the presence of gene products involved with the sclerotization/tanning in the photogenic tissues, suggesting a possible link between these pathways and bioluminescence. The lack of two enzymes involved with the last steps of these pathways, indicate the possible accumulation of toxic quinone intermediates in the lanterns. These results and the abundance of cysteine producing enzymes suggest that luciferin first appeared as a detoxification byproduct of cysteine reaction with accumulated toxic quinone intermediates during the evolution of sclerotization/tanning in Coleoptera.


Subject(s)
Coleoptera , Firefly Luciferin , Luciferases, Firefly , Quinones , Animals , Coleoptera/metabolism , Cysteine/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fireflies/genetics , Firefly Luciferin/metabolism , Luciferases/genetics , Luciferases/metabolism , Luciferases, Firefly/metabolism , Luciferins , Luminescent Measurements , Quinones/metabolism , Saccharomycetales/metabolism
2.
Biosensors (Basel) ; 12(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35735548

ABSTRACT

Firefly luciferases catalyze the efficient production of yellow-green light under normal physiological conditions, having been extensively used for bioanalytical purposes for over 5 decades. Under acidic conditions, high temperatures and the presence of heavy metals, they produce red light, a property that is called pH-sensitivity or pH-dependency. Despite the demand for physiological intracellular biosensors for pH and heavy metals, firefly luciferase pH and metal sensitivities were considered drawbacks in analytical assays. We first demonstrated that firefly luciferases and their pH and metal sensitivities can be harnessed to estimate intracellular pH variations and toxic metal concentrations through ratiometric analysis. Using Macrolampis sp2 firefly luciferase, the intracellular pH could be ratiometrically estimated in bacteria and then in mammalian cells. The luciferases of Macrolampis sp2 and Cratomorphus distinctus fireflies were also harnessed to ratiometrically estimate zinc, mercury and other toxic metal concentrations in the micromolar range. The temperature was also ratiometrically estimated using firefly luciferases. The identification and engineering of metal-binding sites have allowed the development of novel luciferases that are more specific to certain metals. The luciferase of the Amydetes viviani firefly was selected for its special sensitivity to cadmium and mercury, and for its stability at higher temperatures. These color-tuning luciferases can potentially be used with smartphones for hands-on field analysis of water contamination and biochemistry teaching assays. Thus, firefly luciferases are novel color-tuning sensors for intracellular pH and toxic metals. Furthermore, a single luciferase gene is potentially useful as a dual bioluminescent reporter to simultaneously report intracellular ATP and/or luciferase concentrations luminometrically, and pH or metal concentrations ratiometrically, providing a useful tool for real-time imaging of intracellular dynamics and stress.


Subject(s)
Mercury , Metals, Heavy , Animals , Fireflies/genetics , Hydrogen-Ion Concentration , Luciferases/chemistry , Luciferases/genetics , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Luminescent Measurements/methods , Mammals , Metals, Heavy/chemistry
3.
Photochem Photobiol Sci ; 21(9): 1559-1571, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35590087

ABSTRACT

Several firefly luciferases eliciting light emission in the yellow-green range of the spectrum and with distinct kinetic properties have been already cloned, sequenced, and characterized. Some of them are currently being applied as analytical reagents and reporter genes for bioimaging and biosensors, and more recently as potential color tuning indicators of intracellular pH and toxic metals. They were cloned from the subfamilies Lampyrinae (Photinini: Photinus pyralis, Macrolampis sp2; Cratomorphini: Cratomorphus distinctus), Photurinae (Photuris pennsylvanica), Luciolinae (Luciola cruciata, L. lateralis, L. mingrelica, L. italica, Hotaria parvula), and Amydetinae (Amydetes vivianii) occurring in different parts of the world. The largest number has been cloned from fireflies occurring in Brazilian biomes. Taking advantage of the large biodiversity of fireflies occurring in the Brazilian Atlantic rainforest, here we report the cloning and characterization of a novel luciferase cDNA from the Photurinae subfamily, Bicellonycha lividipennis, which is a very common firefly in marshlands in Brazil. As expected, multialignements and phylogenetic analysis show that this luciferase clusters with Photuris pennsylvanica adult isozyme, and with other adult lantern firefly luciferases, in reasonable agreement with traditional phylogenetic analysis. The luciferase elicits light emission in the yellow-green region, has kinetics properties similar to other adult lantern firefly luciferases, including pH- and metal sensitivities, but displays a lower sensitivity to nickel, which is suggested to be caused by the natural substitution of H310Y.


Subject(s)
Fireflies , Luciferases, Firefly , Animals , Brazil , Cloning, Molecular , Fireflies/genetics , Luciferases/chemistry , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Phylogeny
4.
Anal Bioanal Chem ; 408(30): 8881-8893, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27815607

ABSTRACT

Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.


Subject(s)
Biosensing Techniques/methods , Luciferases, Firefly/metabolism , Luminescent Measurements/methods , Mercury/analysis , Nickel/analysis , Zinc/analysis , Animals , Cations, Divalent , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Fireflies/enzymology , Fireflies/genetics , Fireflies/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Glutamic Acid/chemistry , Glutamic Acid/metabolism , Histidine/chemistry , Histidine/metabolism , Kinetics , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Luminescence , Mutagenesis, Site-Directed , Protein Engineering , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Biochemistry ; 55(34): 4764-76, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27391007

ABSTRACT

Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also providing a base to accept excited oxyluciferin phenol proton, and a countercation to shield the negative charge of E311 and to stabilize excited oxyluciferin phenolate, blue-shifting emission spectra in most beetle luciferases.


Subject(s)
Coleoptera/enzymology , Insect Proteins/chemistry , Luciferases/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Catalytic Domain/genetics , Coleoptera/genetics , Fireflies/enzymology , Fireflies/genetics , Firefly Luciferin/chemistry , Firefly Luciferin/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Kinetics , Luciferases/genetics , Luciferases/metabolism , Luciferases, Firefly/chemistry , Luciferases, Firefly/genetics , Luciferases, Firefly/metabolism , Luminescent Measurements , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
6.
Luminescence ; 29(5): 412-22, 2014 Aug.
Article in English | MEDLINE | ID: mdl-23868199

ABSTRACT

Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae.


Subject(s)
Fireflies/classification , Fireflies/genetics , Phylogeny , Animals , Brazil , DNA, Ribosomal/genetics , Fireflies/chemistry , Insect Proteins/genetics , Luciferases/genetics , Luminescence , Molecular Sequence Data
7.
Article in English | MEDLINE | ID: mdl-23299360

ABSTRACT

The biochemistry of firefly bioluminescence is well understood; however, the molecular physiology of the lanterns is still poorly studied, especially the biosynthesis and origin of beetle luciferin which are almost unknown. Using a cDNA library previously constructed from Macrolampis sp2 lanterns, we randomly selected and sequenced 572 cDNAs in order to have a first transcriptional profile of the most represented messages found in the lanterns and therefore to better understand their molecular physiology. As expected, high percentage of the gene products (~22%) displayed high similarity with Coleoptera genome products. About 7% represented mitochondrial genes, including several copies of cytochrome oxidase, which are also expected for this tissue. Luciferase genes were especially abundant, representing ca 2% of the products. Gene products involved with cysteine and sulfur metabolism such as the cystathionine ß-lyase and the S-adenosylmethionine synthetase were abundant. Noteworthy, an abundance of proteins involved with hormone metabolism was found, suggesting a possible link between bioluminescence and hormone metabolism.


Subject(s)
Animal Structures/chemistry , DNA, Complementary/genetics , Fireflies/genetics , Fireflies/metabolism , Transcriptome/genetics , Animals , Fireflies/chemistry , Fireflies/physiology , Firefly Luciferin , Gene Expression Profiling , Gene Library , Insect Proteins/analysis , Insect Proteins/genetics , Insect Proteins/metabolism , Luciferases/analysis , Luciferases/genetics , Luciferases/metabolism , Male , Pheromones , RNA, Messenger/analysis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL