Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.535
Filter
1.
Sci Rep ; 14(1): 17791, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090156

ABSTRACT

The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline. NGS results show a clear clustering of the samples between pre- and post-treatment based on the microbial community of the gills. Interestingly, the three main pathogenic bacteria species in rainbow trout (Yersinia ruckeri, Flavobacterium psychrophilum, and Flavobacterium branchiophilum) appear to be weak descriptors of the diversity between pre-treatment and post-treatment groups. In this study, the dynamics of the gill microbiome during the outbreak and subsequent treatment are far more complex than previously reported in the literature, and environmental factors seem of the utmost importance in determining gill disease. These findings present a potential novel perspective on the diagnosis and management of gill diseases, showing the limitations of conventional laboratory methodologies in elucidating the complexity of this disease in rainbow trout. To the authors' knowledge, this work is the first to describe the microbiome of rainbow trout gills during a natural outbreak and subsequent antibiotic treatment. The results of this study suggest that NGS can play a critical role in the analysis and comprehension of gill pathology. Using NGS in future research is highly recommended to gain deeper insights into such diseases correlating gill's microbiome with other possible cofactors and establish strong prevention guidelines.


Subject(s)
Aquaculture , Disease Outbreaks , Fish Diseases , Flavobacterium , Gills , Microbiota , Oncorhynchus mykiss , RNA, Ribosomal, 16S , Animals , Oncorhynchus mykiss/microbiology , Gills/microbiology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Flavobacterium/genetics , Flavobacterium/isolation & purification , Flavobacterium/pathogenicity , Disease Outbreaks/veterinary , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing , Yersinia ruckeri/genetics , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/epidemiology , Oxytetracycline/therapeutic use , Oxytetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
PeerJ ; 12: e17605, 2024.
Article in English | MEDLINE | ID: mdl-39011377

ABSTRACT

Viral outbreaks are a constant threat to aquaculture, limiting production for better global food security. A lack of diagnostic testing and monitoring in resource-limited areas hinders the capacity to respond rapidly to disease outbreaks and to prevent viral pathogens becoming endemic in fisheries productive waters. Recent developments in diagnostic testing for emerging viruses, however, offers a solution for rapid in situ monitoring of viral outbreaks. Genomic epidemiology has furthermore proven highly effective in detecting viral mutations involved in pathogenesis and assisting in resolving chains of transmission. Here, we demonstrate the application of an in-field epidemiological tool kit to track viral outbreaks in aquaculture on farms with reduced access to diagnostic labs, and with non-destructive sampling. Inspired by the "lab in a suitcase" approach used for genomic surveillance of human viral pathogens and wastewater monitoring of COVID19, we evaluated the feasibility of real-time genome sequencing surveillance of the fish pathogen, Infectious spleen and kidney necrosis virus (ISKNV) in Lake Volta. Viral fractions from water samples collected from cages holding Nile tilapia (Oreochromis niloticus) with suspected ongoing ISKNV infections were concentrated and used as a template for whole genome sequencing, using a previously developed tiled PCR method for ISKNV. Mutations in ISKNV in samples collected from the water surrounding the cages matched those collected from infected caged fish, illustrating that water samples can be used for detecting predominant ISKNV variants in an ongoing outbreak. This approach allows for the detection of ISKNV and tracking of the dynamics of variant frequencies, and may thus assist in guiding control measures for the rapid isolation and quarantine of infected farms and facilities.


Subject(s)
Aquaculture , Fish Diseases , Iridoviridae , Animals , Fish Diseases/virology , Fish Diseases/epidemiology , Fish Diseases/diagnosis , Iridoviridae/genetics , Iridoviridae/isolation & purification , Ghana/epidemiology , Lakes/virology , DNA Virus Infections/virology , DNA Virus Infections/epidemiology , DNA Virus Infections/veterinary , DNA Virus Infections/transmission , Genome, Viral/genetics , Tilapia/virology , Disease Outbreaks/veterinary , Disease Outbreaks/prevention & control , Whole Genome Sequencing/methods , Cichlids/virology
3.
J Parasitol ; 110(4): 250-262, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38972667

ABSTRACT

A total of 366 individuals of Lutjanus argentiventris (Peters, 1869) were collected over a 5-yr period (October 2018 to June 2022) from Acapulco Bay, Mexico. Parasite communities in Lutjanus argentiventris were quantified and analyzed to determine the main factors that generate changes in species richness and/or species composition over time. The digeneans and copepods were the best-represented parasite groups. The parasite communities were characterized by a high numerical dominance of ectoparasites, mainly isopod larvae. Species richness at the component community level (9-23 species) was similar to the reported richness in other Lutjanus spp. The parasite communities of Lutjanus argentiventris exhibited high variability in species composition, suggesting that each parasite species may respond differently to environmental changes. However, the species richness and diversity were fairly stable over time; therefore, a clear pattern of interannual variation was not observed. Variations in the community structure probably were due to factors such as host traits (e.g., feeding behavior and body size), and possible interannual differences in environmental factors amplified by the occurrence of the anomalous event of La Niña.


Subject(s)
Biodiversity , Copepoda , Fish Diseases , Perciformes , Animals , Mexico/epidemiology , Perciformes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Copepoda/classification , Copepoda/physiology , Isopoda/classification , Isopoda/physiology
4.
BMC Vet Res ; 20(1): 291, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965518

ABSTRACT

Eustrongylides excisus is a fish-borne zoonotic parasite known to infect various fish species, including Northern pike (Esox Lucius). This nematode, belonging to the family Dioctophymatidae, has a complex life cycle involving multiple hosts. This study aimed to investigate the occurrence of Eustrongylides nematodes in Northern pike (E. Lucius) collected from Mijran Dam (Ramsar, Iran). Between June and October 2023, an investigation was conducted on Northern pike from Mijran Dam in Ramsar, Iran, following reports of reddish parasites in their muscle tissues. Sixty fish were examined at the University of Tehran, revealing live parasites in the muscles, which were then analyzed microscopically and preserved for a multidisciplinary study. The skeletal muscle tissues of 85% (51/60) of fish specimens were infected by grossly visible larvae which were microscopically identified as Eustrongylides spp. In histopathological examination, the lesion was composed of encapsulated parasitic granulomatous myositis. Microscopically, the cystic parasitic granulomas compressed the adjacent muscle fibers, leading to their atrophy and Zenker's necrosis. Moreover, epithelioid macrophages, giant cells and mononuclear inflammatory cells were present around the larvae and between the muscle fibers. Finally, a molecular analysis by examining the ITS gene region, revealed that they belong to the species E. excisus. Eustrongylidiasis in northern Iran necessitates further research into the biology, epidemiology, and control of Eustrongylides nematodes, focusing on various hosts. This study is the first to comprehensively characterize E. excisus in Northern pike in Ramsar, Iran, raising concerns about possible zoonotic transmission.


Subject(s)
Esocidae , Fish Diseases , Animals , Iran/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Esocidae/parasitology , Dioctophymatoidea/isolation & purification , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , Zoonoses/parasitology , Enoplida Infections/veterinary , Enoplida Infections/parasitology , Enoplida Infections/epidemiology , Enoplida Infections/pathology
5.
Front Cell Infect Microbiol ; 14: 1420995, 2024.
Article in English | MEDLINE | ID: mdl-38962321

ABSTRACT

Introduction: Due to the high-density farming of Larimichthys crocea over the years, diseases caused by pathogens such as bacteria, viruses, and parasites frequently occur in Ningbo, posing a huge threat and challenge to the sustainable and healthy development of the L. crocea's bay farming industry. In order to understand the diseases occurrence in L. crocea farming in Ningbo area, an epidemiological investigation of L. crocea diseases was carried out through regular sampling in 2023. Methods: From April to October 2023, routine sampling of L. crocea was conducted monthly in various farming areas in Ningbo. Each time, live or dying L. crocea with obvious clinical symptoms were sampled, with a total number of 55 L. crocea collected. The samples were preserved in ice bags and transported to the laboratory for pathogen detection(including bacterial isolation and identification,virus identification, and parasites detection). Results: A total of fifty-five fish dying L. crocea with obvious clinical symptoms were collected in this study, of which 78.18% (43/55) were detected with symptoms caused by pathogenic infection, while 21.82% (12/55) did not have identified pathogens, which were presumed to be breeding abrasions, nutritional metabolic disorders, unconventional pathogens infection or other reasons. A total of twenty-five pathogenic bacteria strains were isolated, which mainly were Pseudomonas plecoglossicida and Vibrio harveyi, accounting for 52% (13/25) and 32% (8/25) of the pathogenic bacteria strains, respectively. Among them, both V. harveyi and Streptococcus. iniae co-infected one fish. Additionally, three other bacterial strains including Nocardia seriolae, Staphylococcus Saprophyticus, and Photobacterium damselae subsp.damselae were isolated. Microscopic examination mainly observed two parasites, Cryptocaryon irritans and Neobenedenia girellae. In virus detection, the red sea bream iridovirus (RSIV) was mainly detected in L. crocea. Statistical analysis showed that among the fish with detected pathogens, 55.81% (24/43) had bacterial infections, 37.21% (16/43) had parasitic infections, and 37.21% (16/43) had RSIV infections. Among them, five fish had mixed infections of bacteria and parasites, three had mixed infections of bacteria and viruses, three had mixed infections of parasites and viruses, and one L. crocea had mixed infections of viruses, bacteria, and parasites. Discussion: These findings indicate that these three major types of diseases are very common in the L. crocea farming area in Ningbo, implying the complexity of mixed infections of multiple diseases.


Subject(s)
Fish Diseases , Perciformes , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fish Diseases/microbiology , Perciformes/microbiology , Perciformes/parasitology , China/epidemiology , Aquaculture , Vibrio/isolation & purification , Vibrio/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
6.
BMC Vet Res ; 20(1): 332, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039589

ABSTRACT

This study investigated the prevalence, morphology, molecular identification, and histopathological effects of larval tapeworms (plerocercoids) infecting the skeletal muscles of the Indian halibut (Psettodes erumei) collected from the coastal waters of the Arabian Gulf. Numerous oval or round blastocysts, measuring 13-26 mm, were found embedded within the muscular tissues of the Indian halibut, rendering the fish unsuitable for human consumption. Morphological and molecular analyses identified the plerocercoids as Dasyrhynchus giganteus (family Dasyrhynchidae), with an overall prevalence of 15.4%. The seasonal prevalence was the highest in summer (14.6%), followed by spring (10.6%), winter (4.4%), and autumn (3.5%). Infection rates increased with fish size. Histopathological examination revealed fibrous connective tissue capsules surrounding the larvae, causing muscular atrophy and degenerative changes, with few inflammatory eosinophilic cells. Molecular and phylogenetic analysis of the 28S rDNA gene sequences confirmed the specimens as D. giganteus, clustered closely with other sequences of D. giganteus with 100% bootstrap values. This study provided valuable insights into the parasitic infection dynamics, seasonal variation, molecular identification, and histopathological effects, highlighting the importance of monitoring fish for food safety and public health implications.


Subject(s)
Cestoda , Cestode Infections , Fish Diseases , Phylogeny , Seasons , Animals , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Prevalence , Cestoda/genetics , Cestoda/classification , Cestode Infections/veterinary , Cestode Infections/epidemiology , Cestode Infections/pathology , Cestode Infections/parasitology , Flounder/parasitology , Muscle, Skeletal/parasitology , Muscle, Skeletal/pathology , RNA, Ribosomal, 28S/genetics
7.
An Acad Bras Cienc ; 96(suppl 1): e20231253, 2024.
Article in English | MEDLINE | ID: mdl-39082592

ABSTRACT

Fish parasites are an important part of aquatic biodiversity and knowing these species and their interactions with their hosts helps in monitoring the aquatic biota. The present study investigated the ectoparasite crustacean fauna of ten fish species from the upper Araguari River, in the state of Amapá, northern Brazil. A total of 508 fish were collected and analyzed from July to November 2014, of which 82.6% (109) were parasitized by one or more crustacean ectoparasite species. In the ten host fish species, a total of 308 ectoparasite specimens were collected, from 12 taxa, such as Argulus multicolor Stekhoven, 1937, Argulus spinulosus Silva, 1980, Argulus sp.1, Argulus sp.2, Argulus sp.3, Dipteropeltis sp., Dipteropeltis hirundo Calman, 1912, Dolops bidentata Bouvier, 1899, Dolops striata Bouvier, 1899 (Argulidae), Braga fluviatilis Richardson, 1911, Braga amapaensis Thatcher, 1996 (Cymothoidae) and Excorallana berbicensis Boone, 1918 (Corallanidae). Higher levels of prevalence and abundance were recorded for Hoplias aimara (Valenciennes, 1847) and Tometes trilobatus Valenciennes, 1850, respectively. These ectoparasites were found in the fins, integument, mouth, and anus of the host fish. Argulus sp.2 and D. bidentata were the most abundant parasites (65.1%), and had the highest species richness. This study registered 36 novel host-parasite interactions, and thus represents a new record for all host species here examined.


Subject(s)
Crustacea , Ectoparasitic Infestations , Fishes , Host-Parasite Interactions , Rivers , Animals , Brazil , Fishes/parasitology , Fishes/classification , Ectoparasitic Infestations/veterinary , Ectoparasitic Infestations/parasitology , Ectoparasitic Infestations/epidemiology , Crustacea/classification , Crustacea/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Biodiversity , Male
8.
Folia Parasitol (Praha) ; 712024 Jul 18.
Article in English | MEDLINE | ID: mdl-39078212

ABSTRACT

The present paper comprises a systematic survey of helminths (trematodes, an acanthocephalan and nematodes) found in nine species of freshwater fishes in Ecuador collected in March 1999 and those (a trematode and acanthocephalans) collected from an amphibian and two species of freshwater fishes in Venezuela in 1992, 1996 and 2001. The following 17 helminth species were recorded: Trematoda: Prosthenhystera ornamentosa sp. n., P. obesa (Diesing, 1850), Crassicutis intermedius (Szidat, 1954), C. cichlasomae Manter, 1936 and Glypthelmins eleutherodactyli sp. n. Acanthocephala: Quadrigyrus torquatus Van Cleave, 1920, Gracilisentis variabilis (Diesing, 1851) and Neoechinorhynchus (Neoechinorhynchus) ecuadoris sp. n. Nematoda: Cosmoxynema vianai Travassos, 1949, Travnema travnema Pereira, 1938, Touzeta ecuadoris Petter, 1987, Sprentascaris hypostomi Petter et Cassone, 1984, Sprentascaris sp., Contracaecum sp. Type 1 larvae, Contracaecum sp. Type 2 larvae, Procamallanus (Procamallanus) peraccuratus Pinto, Noronha et Rolas, 1976 and Procamallanus (Spirocamallanus) sp. juv. Nearly all of these parasites are reported from Ecuador or Venezuela for the first time and many of these findings represent new host records. The new species P. ornamentosa sp. n. was collected from the gall-bladder of an unidentified anostomid (Anostomidae, Characiformes) in Ecuador, G. eleutherodactyli sp. n. from the digestive tract of the frog Eleutherodactylus sp. (Eleutherodactylidae, Anura) in Venezuela and N. (N.) ecuadoris sp. n. from the intestine of Lebiasina sp. (Lebiasinidae, Characiformes) in Ecuador. Most parasites are briefly described and illustrated and problems concerning their morphology, taxonomy, hosts and geographical distribution are discussed.


Subject(s)
Amphibians , Fish Diseases , Fishes , Fresh Water , Helminthiasis, Animal , Helminths , Animals , Venezuela/epidemiology , Ecuador/epidemiology , Fishes/parasitology , Helminthiasis, Animal/epidemiology , Helminthiasis, Animal/parasitology , Amphibians/parasitology , Helminths/classification , Helminths/isolation & purification , Fish Diseases/parasitology , Fish Diseases/epidemiology
9.
Parasitol Res ; 123(7): 284, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046515

ABSTRACT

Fish parasitology contributes to our understanding of the potential risks posed by diverse groups of parasitic organisms on fish stocks in either wild and culture systems. This study was conducted in May 2023 and aimed at assessing the diversity of endohelminths in the invasive North African catfish Clarias gariepinus (Burchell, 1822) obtained from two freshwater lakes, Naivasha and Ol'Bolossat, in Kenya. Parasitological examination of 66 and 35 fish samples collected from the two lakes respectively was achieved using light and scanning electron microscopy methods. Results revealed endohelminth diversity broadly classified as four digeneans, two nematodes, and one cestode. Seven taxa of endohelminths were found in C. gariepinus samples, but only four of these taxa could be identified up to the species level. Six of the taxa (Diplostomum sp., Tylodelphys mashonense, Plagiorchioidea sp., Paracamallanus cyathopharynx, Contracaecum sp., and Tetracampos ciliotheca) were common in samples from the two lakes. Glossidium pedatum only occurred in samples from Lake Ol'Bolossat. Parasite prevalence ranged from 8.6 (T. mashonense) to 100% (Diplostomum sp., T. ciliotheca, and Contracaecum sp.) and mean intensity from 1.4 (T. mashonense) to 16.9 (Diplostomum sp.). The diversity and richness indices were comparatively higher in fish samples from Lake Ol'Bolossat and attributed to the occurrence of G. pedatum in the Ol'Bolossat. However, parasitic infestation of fish samples from the two lakes depicted close similarity, both in diversity and prevalence. These findings form an important baseline data for further follow-up studies, and they suggest the need for further molecular analyses to fully describe three of the taxa only identified up to the genus level.


Subject(s)
Catfishes , Fish Diseases , Lakes , Animals , Kenya/epidemiology , Lakes/parasitology , Catfishes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Helminths/classification , Helminths/isolation & purification , Microscopy , Biodiversity , Microscopy, Electron, Scanning , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology
10.
J Parasitol ; 110(3): 232-238, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38897605

ABSTRACT

Among-deme asynchrony has the potential to influence community richness and diversity by increasing the likelihood of regional persistence for a species. Parasites of Lepomis spp. collected from 4 localities at J. Strom Thurmond Lake, South Carolina over a 1-yr period were used to evaluate patterns of parasite population synchrony. Localities were separated by approximately 5 km to increase the likelihood that the parasites sampled represented different demes. Tylodelphys scheuringi and Crinicleidus longus, exhibited negative covariation between synchrony and among-locality distances. The degree of synchrony exhibited by Neoechinorhynchus cylindratis, Crepidostomum cornutum, and Clavunculus bifurcatus was associated with the degree of similarity in habitat structure between localities. Patterns of synchrony for Posthodiplostomum minimum and Spinitectus sp. were not associated with any of the habitat variables examined. The influence of habitat structure on parasite population synchrony, possibly through the refraction of large-scale environmental drivers, has the potential to produce asynchronous dynamics that are independent of the distance between demes, thereby promoting regional persistence by increasing the likelihood of rescue effects.


Subject(s)
Ecosystem , Fish Diseases , Lakes , Animals , South Carolina , Lakes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Population Dynamics
11.
Vet Med Sci ; 10(4): e1489, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38864314

ABSTRACT

BACKGROUND: Our investigation focused into Labeo rohita, commonly known as Rui, a freshwater aquatic species in Bangladesh. Despite their nutritional significance, these fish faced a pressing challenge: parasite infections threaten the economic stability of the aquaculture sector. OBJECTIVES: The present study aimed to investigate the parasite and histological changes in major organs of L. rohita, collected from Khulna region - Dumuria, Paikgacha and Rupsha. METHODS: About 180 (30/month) specimens were collected between the month of March and August 2023 to observe the parasitic status in L. rohita. RESULTS: Through microscopic examination, a total of 323 parasites were uncovered, spanning categories including Cestode, Nematode, Acanthocephala, Trematode and Digenia, predominantly residing in the intestines of L. rohita. The highest prevalence rate (70%) was recorded in both March and May 2023, with peak mean intensity observed in July (3.73). Notably, the highest mean abundance (2.37) exhibited in July and index of infestation (45.34) in June. Histological analysis confirmed parasitic infestations in the gastrointestinal region, with displaying histological changes within major organs such as the liver, kidney, gills, spleen and testicles due to parasitic infection. CONCLUSION: This study concluded that the indentified six categories of parasite and the affect of parasitic infestation in major organs of L. rohita within the study period. Urgent efforts to implement effective strategies for controlling the parasite infections in aquaculture to ensure the sustainable production of this invaluable fish species.


Subject(s)
Cyprinidae , Fish Diseases , Animals , Bangladesh/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Cyprinidae/parasitology , Prevalence , Parasitic Diseases, Animal/epidemiology , Parasitic Diseases, Animal/parasitology
12.
Infect Dis Poverty ; 13(1): 40, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822386

ABSTRACT

BACKGROUND: Opisthorchiid flukes, particularly Opisthorchis viverrini, Opisthorchis felineus, Clonorchis sinensis, and Metorchis spp. are the most common fish-borne zoonotic human liver flukes (hLFs). Liver fluke infections are more prevalent in resource-deprived and underprivileged areas. We herein estimated the prevalence of the metacercariae (MC) of major hLFs in common large freshwater fishes (lFWF) marketed for human consumption from some selected areas of Bangladesh along with detection of their molluscan vectors and reservoirs. METHODS: The current status of fish-borne zoonotic hLF infections in lFWF was investigated along with their molluscan vectors and mammalian reservoir hosts in Mymensingh and Kishoreganj in Bangladesh from July 2018-June 2022 using conventional and multiple molecular techniques, such as PCR, PCR-restriction fragment length polymorphism (RFLP), sequencing, and bioinformatic analyses. The infection rate of fishes was analyzed using the Z-test and the loads of MC were compared using the chi-squared (χ2) test. RESULTS: The MC of C. sinensis, Opisthorchis spp., and Metorchis spp. were detected in 11 species of common and popular lFWF. In lFWF, the estimated prevalence was 18.7% and the mean load was 137.4 ± 149.8 MC per 100 g of fish. The prevalence was the highest (P < 0.05) in spotted snakehead fishes (Channa punctata, 63.6%). The highest rate of infection (P < 0.05) was observed with the MC of C. sinensis (11.8%). Metacercariae were almost equally (P > 0.05) distributed between the head and body of fishes. The infection rate was slightly higher in cultured (19.6%) fishes. The MC of C. sinensis, O. felineus, O. viverrini, and Metorchis orientalis in fishes were confirmed using PCR, PCR-RFLP and bioinformatics. The cercariae of opisthorchiid (Pleurolophocercus cercariae) flukes were only recovered from Bithynia spp. (3.9%, 42 out of 1089). The ova of hLFs from dogs (4.3%, 5 out of 116) and cats (6.0%, 6 out of 100), and adult flukes (M. orientalis) from ducks (41.1% 113 out of 275) were detected. CONCLUSIONS: The MC of hLFs are highly prevalent in fresh water fishes in Bangladesh. Reservoir hosts, such as street dogs, cats, and ducks carried the patent infection, and residents of Bangladesh are at risk.


Subject(s)
Disease Reservoirs , Fish Diseases , Fishes , Fresh Water , Zoonoses , Animals , Bangladesh/epidemiology , Fishes/parasitology , Fresh Water/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Humans , Disease Reservoirs/parasitology , Disease Reservoirs/veterinary , Zoonoses/parasitology , Zoonoses/epidemiology , Zoonoses/transmission , Disease Vectors , Prevalence , Opisthorchis/genetics , Opisthorchis/isolation & purification , Metacercariae/genetics , Metacercariae/isolation & purification , Clonorchis sinensis/genetics , Clonorchis sinensis/isolation & purification , Mollusca/parasitology
13.
Vet Parasitol Reg Stud Reports ; 52: 101037, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880581

ABSTRACT

Species of the genus Hysterothylacium are aquatic roundworms (nematodes) belonging to the family Raphidascarididae. Some species in this family are known to be associated with zoonotic diseases in humans after they consume their parasitic larvae in raw or undercooked fish. The aim of this research was to report the prevalence, morphology, and molecular characteristics of Hysterothylacium species in Pagellus erythrinus. A total of Two hundred fish were purchased from the fish market in Damanhour, Beheira Province, between December 2021 and November 2022 and subjected to examination. For molecular characterization, the internal transcribed spacer (ITS) region of nuclear ribosomal DNA and the mitochondrial cytochrome oxidase subunit 2 (COX-2) gene were used. Hysterothylacium species were morphologically described and identified from the intestine of Pagellus erythrinus in Beheira Province, Egypt. The PCR amplified 1087 bp and 629 bp of the target sequences of the ITS region and COX-2 gene, respectively. Sequence analysis revealed the Hysterothylacium thalassini species. The identified species provided novel biological data for the Hysterothylacium nematode in Pagellus erythrinus. The prevalence of Hysterothylacium species recovered from the intestine was 55%. The highest prevalence of 72% has been reported in summer compared to the lowest prevalence of 38% in the winter. Females had a higher prevalence of 61.8% than males, with 44.2%. The first detection, prevalence, and molecular characterization of H. thalassini in Pagellus erythrinus from Beheira Province, Egypt, was presented in this study.


Subject(s)
Fish Diseases , Animals , Egypt/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Prevalence , Mediterranean Sea/epidemiology , Female , Male , Ascaridida Infections/veterinary , Ascaridida Infections/parasitology , Ascaridida Infections/epidemiology , Phylogeny , Ascaridoidea/isolation & purification , Ascaridoidea/genetics , Ascaridoidea/classification , Electron Transport Complex IV/analysis , Electron Transport Complex IV/genetics , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , DNA, Helminth/analysis
14.
Parasitol Res ; 123(6): 243, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874599

ABSTRACT

Diphyllobothriosis, a fish-borne zoonosis in South America, is mainly caused by the Pacific broad tapeworm Adenocephalus pacificus Nybelin, 1931, a parasite of considerable concern in fishery resources due to its impact on public health. A new diphyllobothrid, Diphyllobothrium sprakeri Hernández-Orts et al. Parasites Vectors 14:219, 2021, was recently described from sea lions from the Pacific Coast, but marine fish acting as intermediate hosts are unknown. The objective of this study was to confirm the presence of plerocercoid larvae of Diphyllobothriidae Lühe, 1910 (Cestoda: Diphyllobothriidea) in nine fish species of commercial importance in Peru. Of a total of 6999 fish (5861 Engraulis ringens, 853 Sciaena deliciosa, 6 Sciaena callaensis, 171 Scomber japonicus, 40 Trachurus murphyi, 40 Ariopsis seemanni, 18 Merluccius peruanus, 5 Sarda chiliensis, and 5 Coryphaena hippurus), 183 were infected with plerocercoid larvae, representing a total prevalence of 2.61% and a mean intensity of 3.2. Based on mtDNA cox1 sequences of 43 plerocercoids, a phylogenetic analysis revealed that 41 belong to A. pacificus and two to D. sprakeri. These findings are first molecular data for D. sprakeri larvae, and the infections of E. ringens and T. murphyi by plerocercoid larvae represent the first records of intermediate/paratenic hosts for this species. Hence, the findings of the current study enhance our understanding of the presence of diphyllobothriid species in commercial fish from the Southeastern Pacific Ocean and their potential impact on seafood safety for local human populations.


Subject(s)
Fish Diseases , Fishes , Larva , Animals , Peru/epidemiology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fishes/parasitology , Prevalence , Larva/classification , Larva/growth & development , Larva/genetics , Phylogeny , Cestode Infections/veterinary , Cestode Infections/parasitology , Cestode Infections/epidemiology , Cestoda/genetics , Cestoda/classification , Cestoda/isolation & purification , Diphyllobothrium/genetics , Diphyllobothrium/classification , Diphyllobothrium/isolation & purification , Diphyllobothriasis/epidemiology , Diphyllobothriasis/parasitology , Diphyllobothriasis/veterinary , DNA, Helminth/genetics
15.
Microbes Environ ; 39(2)2024.
Article in English | MEDLINE | ID: mdl-38897967

ABSTRACT

To investigate mycobacterial cases of farmed yellowtail fish in coastal areas of western Japan (Kagoshima, Kyushu), where aquaculture fisheries are active, Mycobacterium pseudoshottsii, the causative agent, was isolated from six neighboring fishing ports in 2012 and 2013. A phylogenetic ana-lysis revealed that the strains isolated from one fishing port were closely related to those isolated from other regions of Japan, suggesting the nationwide spread of a single strain. However, strains from Japan were phylogenetically distinct from those from the Mediterranean and the United States; therefore, worldwide transmission was not observed based on the limited data obtained on the strains exami-ned in this study. The present results demonstrate that a bacterial genomic ana-lysis of infected cases, a mole-cular epidemiology strategy for public health, provides useful data for estimating the prevalence and transmission pathways of M. pseudoshottsii in farmed fish. A bacterial genome ana-lysis of strains, such as that performed herein, may play an important role in monitoring the prevalence of this pathogen in fish farms and possible epidemics in the future as a result of international traffic, logistics, and trade in fisheries.


Subject(s)
Aquaculture , Fish Diseases , Genome, Bacterial , Mycobacterium Infections , Phylogeny , Japan/epidemiology , Animals , Fish Diseases/microbiology , Fish Diseases/epidemiology , Mycobacterium Infections/veterinary , Mycobacterium Infections/microbiology , Mycobacterium Infections/epidemiology , Genome, Bacterial/genetics , Mycobacterium/genetics , Mycobacterium/classification , Mycobacterium/isolation & purification , Fishes/microbiology , Fisheries , Genomics , Molecular Epidemiology , Prevalence
16.
Parasitol Int ; 102: 102911, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38897448

ABSTRACT

Parasitological studies of long-term inter-annual variations provide more precise and reliable information about the biological structure of fish parasite communities, and constitute a reference data base for future studies. A total of 1103 blue sea catfish Ariopsis guatemalensis from a tropical eutrophic coastal lagoon were examined for parasites over a 22-year period (from May 2000 to October 2022), to test the hypothesis that parasite communities of this host, should exhibit greater variations in their structure and species composition mainly over long-term periods. Three species of monoxenous (single-host life cycle), and nine of heteroxenous (multi-host life cycle) parasites were identified. The results indicated that parasite species composition of this catfish has remained stable over a 22-years period. However, the community structure has registered notable changes over periods of several years, mainly due to the replacement of the numerically dominant species. Temporal variations in the infection dynamics of component parasite species, were possibly caused by a combination of biotic and abiotic factors, influenced by the seasonal dry/rainy cycle, which can affect the availability of intermediate host populations, as well as the feeding and reproductive behavior of the host.


Subject(s)
Catfishes , Fish Diseases , Seasons , Animals , Catfishes/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Tropical Climate
17.
PLoS One ; 19(5): e0303475, 2024.
Article in English | MEDLINE | ID: mdl-38820366

ABSTRACT

INTRODUCTION: Koi herpesvirus disease (KHVD) is attributed to cyprinid herpesvirus-3 (CyHV-3) and predominantly affects common carp and ornamental koi carp (Cyprinus carpio). This viral infection leads to substantial morbidity and mortality among these fish species. This study aimed to confirm the presence of KHVD in the Kurdistan region of Iraq by employing clinical and optimized molecular assays on fish populations experiencing high mortality among common carp in carp farms. METHODOLOGY: The present research was conducted in the Kalar district, situated at the heart of Garmian province in Iraqi Kurdistan. four samples from common carp fish farms were received by our laboratory. These samples specifically displaying clinical signs associated with koi herpesvirus (KHV) infection, were subjected to clinical examinations, and PCR assay in addition to sequence analysis. RESULTS: The results of the current study revealed that the observed clinical signs, particularly gill necrosis, skin lesions, and sunken eyes, closely resembled the clinical signs of KHVD in common carp fish. In addition, PCR, nested PCR, and sequence analysis assay detected appropriate DNA fragments of the CyHV-3 major capsid protein gene confirming the first detection of KHVD in common carp fish in the Kurdistan region of Iraq. CONCLUSION: In this study, the results confirm the detection of KHVD in the Kurdistan region, Iraq, for the first time. This study revealed that CyHV-3 was responsible for KHVD-related signs and symptoms. Based on these results, it is strongly recommended that comprehensive studies be initiated to investigate the prevalence and distribution of CyHV-3.


Subject(s)
Carps , Fish Diseases , Herpesviridae Infections , Herpesviridae , Animals , Iraq/epidemiology , Carps/virology , Herpesviridae/genetics , Herpesviridae/isolation & purification , Herpesviridae Infections/veterinary , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Fish Diseases/virology , Fish Diseases/epidemiology , Polymerase Chain Reaction , DNA, Viral/genetics
18.
Parasitol Res ; 123(5): 208, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724709

ABSTRACT

In freshwater ecosystems, parasite infection patterns are influenced by factors including spatial-temporal variations, host diet, and habitat. Fish often change diets, affecting their parasite communities. This study focused on non-native host fish Geophagus sveni, aiming to characterize diet and endoparasitic helminth fauna patterns in the invaded area, investigating spatial and seasonal possible differences of endoparasite infections and correlating with host diet, in São José dos Dourados River and Tietê River areas. The host fish were collected in these areas during the dry and rainy season using gillnets. The endoparasites were collected and preserved in alcohol and identified using taxonomic methods, and stomach contents were examined for diet analysis. Parasitism descriptors were calculated and evaluated spatially and seasonally by ANOVA and the Kruskal-Wallis tests. PERMANOVA assessed G. sveni diet differences, and RDA correlated the endohelminth abundance with the host diet. Two endoparasites were recorded: metacercariae of Austrodiplostomum compactum (Trematoda) and larvae and adults of Raphidascaris (Sprentascaris) lanfrediae (Nematoda). Spatial differences were observed for the mean abundance and prevalence of R. (S.) lanfrediae and A. compactum prevalence. Seasonal variations of parasitic descriptors occurred for the nematode in the Tietê River area. The detritus and aquatic insects were the most consumed items by G. sveni. Detritus consumption positively correlates with nematode abundance. The findings indicate that factors such as artificial channels and rainfall, which can influence resource availability, may affect the fish's diet and potentially influence the structure of its endoparasite community. The study emphasizes the importance of understanding trophic chain-transmitted parasites and calls for further research in Neotropical environments.


Subject(s)
Diet , Fish Diseases , Helminthiasis, Animal , Rivers , Seasons , Animals , Rivers/parasitology , Fish Diseases/parasitology , Fish Diseases/epidemiology , Helminthiasis, Animal/parasitology , Helminthiasis, Animal/epidemiology , Trematoda/isolation & purification , Trematoda/classification , Brazil/epidemiology , Nematoda/isolation & purification , Nematoda/classification , Helminths/isolation & purification , Helminths/classification , Gastrointestinal Contents/parasitology
19.
Math Biosci ; 373: 109209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754625

ABSTRACT

Clonorchiasis is a zoonotic disease mainly caused by eating raw fish and shrimp, and there is no vaccine to prevent it. More than 30 million people are infected worldwide, of which China alone accounts for about half, and is one of the countries most seriously affected by Clonorchiasis. In this work, we formulate a novel Ordinary Differential Equation (ODE) model to discuss the biological attributes of fish within authentic ecosystems and the complex lifecycle of Clonorchis sinensis. This model includes larval fish, adult fish, infected fish, humans, and cercariae. We derive the basic reproduction number and perform a rigorous stability analysis of the proposed model. Numerically, we use data from 2016 to 2021 in Guangxi, China, to discuss outbreaks of Clonorchiasis and obtain the basic reproduction number R0=1.4764. The fitted curve appropriately reflects the overall trend and replicates a low peak in the case number of Clonorchiasis. By reducing the release rate of cercariae in 2018, the fitted values of Clonorchiasis cases dropped rapidly and almost disappeared. If we decrease the transmission rate from infected fish to humans, Clonorchiasis can be controlled. Our studies also suggest that strengthening publicity education and cleaning water quality can effectively control the transmission of Clonorchiasis in Guangxi, China.


Subject(s)
Clonorchiasis , Fishes , Animals , Humans , Clonorchiasis/transmission , Clonorchiasis/prevention & control , Clonorchiasis/epidemiology , Fishes/parasitology , China/epidemiology , Life Cycle Stages , Basic Reproduction Number/statistics & numerical data , Models, Theoretical , Models, Biological , Fish Diseases/parasitology , Fish Diseases/transmission , Fish Diseases/prevention & control , Fish Diseases/epidemiology , Zoonoses/transmission , Zoonoses/parasitology , Zoonoses/prevention & control , Zoonoses/epidemiology , Clonorchis sinensis , Mathematical Concepts
20.
Vet Parasitol ; 329: 110215, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38788313

ABSTRACT

Monogenean trematodes, particularly those belonging to the Diplectanidae family, are significant metazoan parasites with substantial implications for aquaculture expansion. This study, investigatied the occurrence, prevalence, and pathological impact of Diplectanum spp. in European seabass (Dicentrarchus labrax) across three distinct Egyptian fish farms. During 2021-2022, we sampled 1800 European seabass (Dicentrarchus labrax) from three Egyptian fish farms (600 fish per farm). Farms 1 and 2 used semi-intensive earthen pond systems, while Farm 3 utilized an intensive floating cage system. Employing Clinical, post-mortem, parasitological, and molecular examination technique. Pathological lesions were identified, including skin and gill discoloration, emaciation, and internal organ abnormalities. Seasonal prevalence exhibited significant variations between farms, with highest rates observed in spring and Farm 3 reached an overall peak prevalence of 84.67 %. Parasitological examination distinguished two Diplectanum species morphologically, while molecular techniques exhibited limited specificity. Histopathology unveiled damage to gill, liver, spleen, kidney, and intestine, attributed to Diplectanum haptors including inflammation and internal bleeding, potentially leading to secondary infections. Molecular identification via PCR targeting ITS and 28SrDNA genes, revealing similar band sizes for the two Diplectanum species, indicating limited intraspecific genetic diversity. The study emphasizes investigating parasitic infections' prevalence and impact in aquaculture, necessitating robust molecular techniques for species differentiation. This study underscores the importance of investigating the prevalence and impact of parasitic infections in aquaculture. It highlights the need for robust molecular techniques to differentiate species. By focusing on Diplectanum spp. infections in D. labrax, the study offers valuable insights into managing parasites in aquaculture effectively.


Subject(s)
Aquaculture , Bass , Fish Diseases , Trematoda , Trematode Infections , Animals , Fish Diseases/parasitology , Fish Diseases/epidemiology , Fish Diseases/pathology , Bass/parasitology , Trematode Infections/veterinary , Trematode Infections/epidemiology , Trematode Infections/parasitology , Prevalence , Trematoda/classification , Trematoda/genetics , Egypt/epidemiology , Gills/parasitology , Gills/pathology
SELECTION OF CITATIONS
SEARCH DETAIL