Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.055
Filter
1.
BMC Vet Res ; 20(1): 340, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090695

ABSTRACT

BACKGROUND: Understanding the relationship between resident microbiota and disease in cultured fish represents an important and emerging area of study. Marine gill disorders in particular are considered an important challenge to Atlantic salmon (Salmo salar) aquaculture, however relatively little is known regarding the role resident gill microbiota might play in providing protection from or potentiating different gill diseases. Here, 16S rRNA sequencing was used to examine the gill microbiome alongside fish health screening in farmed Atlantic salmon. Results were used to explore the relationship between microbial communities and gill disease. RESULTS: Microbial community restructuring was observed throughout the sampling period and linked to varied drivers of change, including environmental conditions and severity of gill pathology. Taxa with significantly greater relative abundance on healthier gills included isolates within genus Shewanella, and taxa within family Procabacteriaceae. In contrast, altered abundance of Candidatus Branchiomonas and Rubritalea spp. were associated with damaged gills. Interestingly, more general changes in community richness and diversity were not associated with altered gill health, and thus not apparently deleterious to fish. Gross and histological gill scoring demonstrated seasonal shifts in gill pathology, with increased severity of gill damage in autumn. Specific infectious causes that contributed to observed pathology within the population included the gill disorder amoebic gill disease (AGD), however due to the uncontrolled nature of this study and likely mixed contribution of various causes of gill disease to observed pathology results do not strongly support an association between the microbial community and specific infectious or non-infectious drivers of gill pathology. CONCLUSIONS: Results suggest that the microbial community of farmed Atlantic salmon gills undergo continual restructuring in the marine environment, with mixed influences upon this change including environmental, host, and pathogenic factors. A significant association of specific taxa with different gill health states suggests these taxa might make meaningful indicators of gill health. Further research with more frequent sampling and deliberate manipulation of gills would provide important advancement of knowledge in this area. Overall, although much is still to be learnt regarding what constitutes a healthy or maladapted gill microbial community, the results of this study provide clear advancement of the field, providing new insight into the microbial community structure of gills during an annual production cycle of marine-stage farmed Atlantic salmon.


Subject(s)
Aquaculture , Fish Diseases , Gills , Microbiota , Salmo salar , Animals , Salmo salar/microbiology , Gills/microbiology , Gills/pathology , Fish Diseases/microbiology , Fish Diseases/pathology , RNA, Ribosomal, 16S/genetics , Seasons , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Amebiasis
2.
Front Immunol ; 15: 1410082, 2024.
Article in English | MEDLINE | ID: mdl-39156889

ABSTRACT

The immune system requires a high energy expenditure to resist pathogen invasion. Macrophages undergo metabolic reprogramming to meet these energy requirements and immunologic activity and polarize to M1-type macrophages. Understanding the metabolic pathway switching in large yellow croaker (Larimichthys crocea) macrophages in response to lipopolysaccharide (LPS) stimulation and whether this switching affects immunity is helpful in explaining the stronger immunity of hypoxia-tolerant L. crocea. In this study, transcript levels of glycolytic pathway genes (Glut1 and Pdk1), mRNA levels or enzyme activities of glycolytic enzymes [hexokinase (HK), phosphofructokinase (PFK), pyruvate kinase (PK), and lactate dehydrogenase A (LDHA)], aerobic respiratory enzymes [pyruvate dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and succinate dehydrogenase (SDH)], metabolites [lactic acid (LA) and adenosine triphosphate (ATP)], levels of bactericidal products [reactive oxygen species (ROS) and nitric oxide (NO)], and transcripts and level changes of inflammatory factors [IL1ß, TNFα, and interferon (IFN) γ] were detected in LPS-stimulated L. crocea head kidney macrophages. We showed that glycolysis was significantly induced, the tricarboxylic acid (TCA) cycle was inhibited, and metabolic reprogramming occurred, showing the Warburg effect when immune cells were activated. To determine the potential regulatory mechanism behind these changes, LcHIF-1α was detected and found to be significantly induced and transferred to the nucleus after LPS stimulation. LcHif-1α interference led to a significant reduction in glycolytic pathway gene transcript expression, enzyme activity, metabolites, bactericidal substances, and inflammatory factor levels; a significant increase in the aerobic respiration enzymes; and decreased migration, invasion, and phagocytosis. Further ultrastructural observation by electron microscopy showed that fewer microspheres contained phagocytes and that more cells were damaged after LcHif-1α interference. LcHif-1α overexpression L. crocea head kidney macrophages showed the opposite trend, and promoter activities of Ldha and Il1ß were significantly enhanced after LcHif-1α overexpression in HEK293T cells. Our data showed that LcHIF-1α acted as a metabolic switch in L. crocea macrophages and was important in polarization. Hypoxia-tolerant L. crocea head kidney showed a stronger Warburg effect and inhibited the TCA cycle, higher metabolites, and bactericidal substance levels. These results collectively revealed that LcHif-1α may promote the functional activities of head kidney macrophages in protecting hypoxia-tolerant L. crocea from Aeromonas hydrophila infection.


Subject(s)
Aeromonas hydrophila , Fish Diseases , Gram-Negative Bacterial Infections , Hypoxia-Inducible Factor 1, alpha Subunit , Macrophages , Perciformes , Animals , Perciformes/immunology , Perciformes/microbiology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Aeromonas hydrophila/physiology , Aeromonas hydrophila/immunology , Lipopolysaccharides/immunology , Glycolysis , Fish Proteins/genetics , Fish Proteins/metabolism , Macrophage Activation/immunology , Hypoxia/immunology , Hypoxia/metabolism , Head Kidney/immunology , Head Kidney/metabolism
3.
Vet Res ; 55(1): 102, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152462

ABSTRACT

In Chile, Piscirickettsia salmonis contains two genetically isolated genogroups, LF-89 and EM-90. However, the impact of a potential co-infection with these two variants on Salmonid Rickettsial Septicemia (SRS) in Atlantic salmon (Salmo salar) remains largely unexplored. In our study, we evaluated the effect of P. salmonis LF-89-like and EM-90-like co-infection on post-smolt Atlantic salmon after an intraperitoneal challenge to compare changes in disease dynamics and host immune response. Co-infected fish had a significantly lower survival rate (24.1%) at 21 days post-challenge (dpc), compared with EM-90-like single-infected fish (40.3%). In contrast, all the LF-89-like single-infected fish survived. In addition, co-infected fish presented a higher presence of clinical lesions than any of the single-infected fish. The gene expression of salmon immune-related biomarkers evaluated in the head kidney, spleen, and liver showed that the EM-90-like isolate and the co-infection induced the up-regulation of cytokines (e.g., il-1ß, ifnγ, il8, il10), antimicrobial peptides (hepdicin) and pattern recognition receptors (PRRs), such as TLR5s. Furthermore, in serum samples from EM-90-like and co-infected fish, an increase in the total IgM level was observed. Interestingly, specific IgM against P. salmonis showed greater detection of EM-90-like antigens in LF-89-like infected fish serum (cross-reaction). These data provide evidence that P. salmonis LF-89-like and EM-90-like interactions can modulate SRS disease dynamics in Atlantic salmon, causing a synergistic effect that increases the severity of the disease and the mortality rate of the fish. Overall, this study contributes to achieving a better understanding of P. salmonis population dynamics.


Subject(s)
Coinfection , Fish Diseases , Piscirickettsia , Piscirickettsiaceae Infections , Salmo salar , Animals , Piscirickettsia/physiology , Fish Diseases/microbiology , Fish Diseases/immunology , Piscirickettsiaceae Infections/veterinary , Piscirickettsiaceae Infections/microbiology , Coinfection/veterinary , Coinfection/microbiology , Coinfection/immunology , Chile , Sepsis/veterinary , Sepsis/microbiology , Sepsis/immunology
4.
Front Immunol ; 15: 1452609, 2024.
Article in English | MEDLINE | ID: mdl-39091499

ABSTRACT

Galectins (Gals) are a type of S-type lectin that are widespread and evolutionarily conserved among metazoans, and can act as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs). In this study, 10 Gals (ToGals) were identified in the Golden pompano (Trachinotus ovatus), and their conserved domains, motifs, and collinearity relationships were analyzed. The expression of ToGals was regulated following infection to Cryptocaryon irritans and Streptococcus agalactiae, indicating that ToGals participate in immune responses against microbial pathogens. Further analysis was conducted on one important member, Galectin-3, subcellular localization showing that ToGal-3like protein is expressed both in the nucleus and cytoplasm. Recombinant protein obtained through prokaryotic expression showed that rToGal-3like can agglutinate red blood cells of rabbit, carp and golden pompano and also agglutinate and kill Staphylococcus aureus, Bacillus subtilis, Vibrio vulnificus, S. agalactiae, Pseudomonas aeruginosa, and Aeromonas hydrophila. This study lays the foundation for further research on the immune roles of Gals in teleosts.


Subject(s)
Galectins , Phylogeny , Animals , Galectins/genetics , Galectins/immunology , Galectins/metabolism , Fish Proteins/genetics , Fish Proteins/immunology , Fish Proteins/metabolism , Multigene Family , Streptococcus agalactiae/immunology , Fish Diseases/immunology , Fish Diseases/microbiology , Fishes/immunology , Fishes/genetics , Perciformes/immunology , Perciformes/genetics , Gene Expression Profiling
5.
Sci Rep ; 14(1): 17791, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090156

ABSTRACT

The generic term "Gill disease" refers to a wide range of disorders that affect the gills and severely impact salmonid aquaculture systems worldwide. In rainbow trout freshwater aquaculture, various etiological agents causing gill diseases have been described, particularly Flavobacterium and Amoeba species, but research studies suggest a more complex and multifactorial aetiology. Here, a cohort of rainbow trout affected by gill disease is monitored both through standard laboratory techniques and 16S rRNA Next-Generation Sequencing (NGS) analysis during a natural disease outbreak and subsequent antibiotic treatment with Oxytetracycline. NGS results show a clear clustering of the samples between pre- and post-treatment based on the microbial community of the gills. Interestingly, the three main pathogenic bacteria species in rainbow trout (Yersinia ruckeri, Flavobacterium psychrophilum, and Flavobacterium branchiophilum) appear to be weak descriptors of the diversity between pre-treatment and post-treatment groups. In this study, the dynamics of the gill microbiome during the outbreak and subsequent treatment are far more complex than previously reported in the literature, and environmental factors seem of the utmost importance in determining gill disease. These findings present a potential novel perspective on the diagnosis and management of gill diseases, showing the limitations of conventional laboratory methodologies in elucidating the complexity of this disease in rainbow trout. To the authors' knowledge, this work is the first to describe the microbiome of rainbow trout gills during a natural outbreak and subsequent antibiotic treatment. The results of this study suggest that NGS can play a critical role in the analysis and comprehension of gill pathology. Using NGS in future research is highly recommended to gain deeper insights into such diseases correlating gill's microbiome with other possible cofactors and establish strong prevention guidelines.


Subject(s)
Aquaculture , Disease Outbreaks , Fish Diseases , Flavobacterium , Gills , Microbiota , Oncorhynchus mykiss , RNA, Ribosomal, 16S , Animals , Oncorhynchus mykiss/microbiology , Gills/microbiology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Flavobacterium/genetics , Flavobacterium/isolation & purification , Flavobacterium/pathogenicity , Disease Outbreaks/veterinary , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing , Yersinia ruckeri/genetics , Flavobacteriaceae Infections/veterinary , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/epidemiology , Oxytetracycline/therapeutic use , Oxytetracycline/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
Sci Rep ; 14(1): 18341, 2024 08 07.
Article in English | MEDLINE | ID: mdl-39112606

ABSTRACT

Newly synthesized vaccines prepared from formalin-killed bacteria Streptococcus pyogenes were investigated in the current study to evaluate the effectiveness of the newly synthesized vaccine as well as their safety by injected intraperitoneal. The study involved several steps 1st step is the preparation of the vaccine followed by the 2nd step: Evaluate the effectiveness and vaccine safety against pathogenic S. pyogenes through 4 different groups including control (Group I). Group II (Bacterial, infected group), Group III (Vaccine), and the Last group was the challenged group after the vaccination (Vacc + Bac). Different Immunological and biochemical parameters were measured in addition to hematological and histopathological examinations. For example, oxidative/antioxidants, inflammatory biomarkers, fragmentation and cell damage, and finally the histopathological study. The current study showed an increase in all oxidative, inflammatory, and cell damage (DNA fragmentation assays), additionally markedly elevation in histopathological cell damage in the infected group (Group II) compared with the control group. The vaccine and challenged after vaccination group (vaccine + Bacteria), showed great improvement in oxidative biomarkers (LPO) and an increase in antioxidants biomarkers (GSH, SOD, GST, DPPH, ABTS, GR and GPx), Also the inflammation and histopathological examination. The newly synthesized vaccine improved the resistance of Oreochromis niloticus and can be used as a preventive therapy agent for pathogenic bacteria S. pyogenes.


Subject(s)
Cichlids , Liver , Streptococcal Infections , Streptococcal Vaccines , Streptococcus pyogenes , Vaccination , Animals , Streptococcus pyogenes/immunology , Streptococcal Infections/prevention & control , Streptococcal Infections/immunology , Cichlids/immunology , Cichlids/microbiology , Liver/microbiology , Liver/pathology , Liver/metabolism , Vaccination/methods , Streptococcal Vaccines/immunology , Formaldehyde , Vaccines, Inactivated/immunology , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Antioxidants/pharmacology , Oxidative Stress/drug effects , Biomarkers
7.
Dis Aquat Organ ; 159: 29-35, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087617

ABSTRACT

The Clinical and Laboratory Standards Institute has published epidemiological cut-off values for susceptibility data generated at 22°°C and read after 44-48 h for florfenicol, oxolinic acid and oxytetracycline against Aeromonas salmonicida. The cut-off values for the minimum inhibitory concentration (MIC) and disc diffusion were derived from data obtained by 1 laboratory and 2 laboratories respectively. The present work reports the generation of susceptibility data from additional laboratories and the calculation of provisional cut-off values from aggregations of these data with previously published data. With respect to MIC data, the provisional cut-off values, derived from aggregations of the data from 4 laboratories, were ≤4 µg ml-1 for florfenicol, ≤0.0625 µg ml-1 for oxolinic acid and ≤1 µg ml-1 for oxytetracycline. For disc diffusion data, the provisional cut-off values derived from aggregations of the data from 5 laboratories were ≥30 mm for florfenicol, ≥32 mm for oxolinic acid and ≥25 mm for oxytetracycline. In addition, a cut-off value of ≥29 mm for ampicillin was derived from the aggregation of data from 4 laboratories.


Subject(s)
Aeromonas salmonicida , Anti-Bacterial Agents , Microbial Sensitivity Tests , Aeromonas salmonicida/drug effects , Anti-Bacterial Agents/pharmacology , Animals , Fish Diseases/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Drug Resistance, Bacterial , Thiamphenicol/analogs & derivatives , Thiamphenicol/pharmacology
8.
Front Cell Infect Microbiol ; 14: 1394008, 2024.
Article in English | MEDLINE | ID: mdl-39099884

ABSTRACT

Edwardsiella ictaluri is a Gram-negative, facultative intracellular bacterium that causes enteric septicemia in catfish (ESC). The RNA chaperone Hfq (host factor for phage Qß replication) facilitates gene regulation via small RNAs (sRNAs) in various pathogenic bacteria. Despite its significance in other bacterial species, the role of hfq in E. ictaluri remains unexplored. This study aimed to elucidate the role of hfq in E. ictaluri by creating an hfq mutant (EiΔhfq) through in-frame gene deletion and characterization. Our findings revealed that the Hfq protein is highly conserved within the genus Edwardsiella. The deletion of hfq resulted in a significantly reduced growth rate during the late exponential phase. Additionally, EiΔhfq displayed a diminished capacity for biofilm formation and exhibited increased motility. Under acidic and oxidative stress conditions, EiΔhfq demonstrated impaired growth, and we observed elevated hfq expression when subjected to in vitro and in vivo stress conditions. EiΔhfq exhibited reduced survival within catfish peritoneal macrophages, although it had no discernible effect on the adherence and invasion of epithelial cells. The infection model revealed that hfq is needed for bacterial persistence in catfish, and its absence caused significant virulence attenuation in catfish. Finally, the EiΔhfq vaccination completely protected catfish against subsequent EiWT infection. In summary, these results underscore the pivotal role of hfq in E. ictaluri, affecting its growth, motility, biofilm formation, stress response, and virulence in macrophages and within catfish host.


Subject(s)
Biofilms , Catfishes , Edwardsiella ictaluri , Enterobacteriaceae Infections , Host Factor 1 Protein , Edwardsiella ictaluri/genetics , Edwardsiella ictaluri/pathogenicity , Animals , Host Factor 1 Protein/metabolism , Host Factor 1 Protein/genetics , Biofilms/growth & development , Enterobacteriaceae Infections/microbiology , Catfishes/microbiology , Fish Diseases/microbiology , Virulence , Macrophages/microbiology , Gene Deletion , Gene Expression Regulation, Bacterial , Oxidative Stress , Epithelial Cells/microbiology , Bacterial Adhesion/genetics
9.
Dis Aquat Organ ; 159: 79-89, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39145474

ABSTRACT

Piscine francisellosis is one of the most important bacterial diseases affecting various fish species worldwide. Francisella orientalis, F. noatunensis, and F. salimarina (F. marina) have been reported as etiological agents of disease in fish. A Francisella sp. was isolated from several diseased red drum Sciaenops ocellatus experiencing morbidity in Florida, USA, in 2008. In this study, molecular and phenotypic characterization of the recovered isolate was conducted. Phenotypically, the isolate showed a biochemical reaction profile distinct from that of F. orientalis and F. salimarina. Although the 16S rRNA sequence of this isolate shared 99.61% identity to the type strain of F. philomiragia O#319LT, whole genome analysis (average nucleotide identity <95%; digital DNA-DNA hybridization <70%) and a multilocus sequence analysis of 8 concatenated housekeeping genes in comparison with other Francisella spp. indicated that this isolate was a novel Francisella species, more closely related to F. orientalis. Immersion, intracoelomic injection, and co-habitation challenges using a Nile tilapia Oreochromis niloticus fingerling model of infection were done to investigate virulence in a piscine model. Variably pigmented granulomas and pigmented macrophage aggregates were observed in the kidneys and spleens of the challenged fish, but no mortality was recorded during the 15 d challenge period, suggesting that this novel Francisella sp. might be an opportunistic pathogen of fish. Based on the phenotypic and genotypic differences from other Francisella spp. observed in this study, we propose the name Francisella sciaenopsi sp. nov. for this novel isolate.


Subject(s)
Fish Diseases , Francisella , Gram-Negative Bacterial Infections , Phylogeny , Animals , Francisella/genetics , Francisella/classification , Francisella/isolation & purification , Fish Diseases/microbiology , Florida , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Cichlids , RNA, Ribosomal, 16S/genetics
10.
Microbiologyopen ; 13(4): e1432, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39166362

ABSTRACT

The long-read sequencing platform MinION, developed by Oxford Nanopore Technologies, enables the sequencing of bacterial genomes in resource-limited settings, such as field conditions or low- and middle-income countries. For this purpose, protocols for extracting high-molecular-weight DNA using nonhazardous, inexpensive reagents and equipment are needed, and some methods have been developed for gram-negative bacteria. However, we found that without modification, these protocols are unsuitable for gram-positive Streptococcus spp., a major threat to fish farming and food security in low- and middle-income countries. Multiple approaches were evaluated, and the most effective was an extraction method using lysozyme, sodium dodecyl sulfate, and proteinase K for lysis of bacterial cells and magnetic beads for DNA recovery. We optimized the method to consistently achieve sufficient yields of pure high-molecular-weight DNA with minimal reagents and time and developed a version of the protocol which can be performed without a centrifuge or electrical power. The suitability of the method was verified by MinION sequencing and assembly of 12 genomes of epidemiologically diverse fish-pathogenic Streptococcus iniae and Streptococcus agalactiae isolates. The combination of effective high-molecular-weight DNA extraction and MinION sequencing enabled the discovery of a naturally occurring 15 kb low-copy number mobilizable plasmid in S. iniae, which we name pSI1. We expect that our resource-limited settings-adapted protocol for high-molecular-weight DNA extraction could be implemented successfully for similarly recalcitrant-to-lysis gram-positive bacteria, and it represents a method of choice for MinION-based disease diagnostics in low- and middle-income countries.


Subject(s)
DNA, Bacterial , Nanopore Sequencing , Streptococcus , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/classification , DNA, Bacterial/genetics , Nanopore Sequencing/methods , Animals , Genome, Bacterial/genetics , Molecular Weight , Sequence Analysis, DNA/methods , Fishes/microbiology , Fish Diseases/microbiology , Streptococcal Infections/microbiology , Resource-Limited Settings
11.
Front Cell Infect Microbiol ; 14: 1425624, 2024.
Article in English | MEDLINE | ID: mdl-39145307

ABSTRACT

Type IV pili (T4P) are versatile proteinaceous protrusions that mediate diverse bacterial processes, including adhesion, motility, and biofilm formation. Aeromonas hydrophila, a Gram-negative facultative anaerobe, causes disease in a wide range of hosts. Previously, we reported the presence of a unique Type IV class C pilus, known as tight adherence (Tad), in virulent Aeromonas hydrophila (vAh). In the present study, we sought to functionalize the role of Tad pili in the pathogenicity of A. hydrophila ML09-119. Through a comprehensive comparative genomics analysis of 170 A. hydrophila genomes, the conserved presence of the Tad operon in vAh isolates was confirmed, suggesting its potential contribution to pathogenicity. Herein, the entire Tad operon was knocked out from A. hydrophila ML09-119 to elucidate its specific role in A. hydrophila virulence. The absence of the Tad operon did not affect growth kinetics but significantly reduced virulence in catfish fingerlings, highlighting the essential role of the Tad operon during infection. Biofilm formation of A. hydrophila ML09-119 was significantly decreased in the Tad operon deletant. Absence of the Tad operon had no effect on sensitivity to other environmental stressors, including hydrogen peroxide, osmolarity, alkalinity, and temperature; however, it was more sensitive to low pH conditions. Scanning electron microscopy revealed that the Tad mutant had a rougher surface structure during log phase growth than the wildtype strain, indicating the absence of Tad impacts the outer surface of vAh during cell division, of which the biological consequences are unknown. These findings highlight the role of Tad in vAh pathogenesis and biofilm formation, signifying the importance of T4P in bacterial infections.


Subject(s)
Aeromonas hydrophila , Biofilms , Fimbriae, Bacterial , Fish Diseases , Gram-Negative Bacterial Infections , Operon , Aeromonas hydrophila/genetics , Aeromonas hydrophila/pathogenicity , Aeromonas hydrophila/physiology , Biofilms/growth & development , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Virulence/genetics , Animals , Gram-Negative Bacterial Infections/microbiology , Fish Diseases/microbiology , Bacterial Adhesion/genetics , Catfishes/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Knockout Techniques
12.
PLoS One ; 19(7): e0301674, 2024.
Article in English | MEDLINE | ID: mdl-39042608

ABSTRACT

Lactococcus garvieae has recently been identified and listed as one of the causative agents of hyperacute hemorrhagic sepsis in fish. In intensive recirculating aquaculture systems where there are high fish densities and minimal water changes, not only will it be conducive to the growth of bacteria, but Cryptocaryon irritans as a marine protozoan fish parasite is also prone to appear. This study reports the disease status of Trachinotus ovatus in an aquaculture area in Yangjiang City, Guangdong Province. Through the diagnosis of clinical symptoms of the diseased fish, identification of specific primers, 16s rRNA sequences phylogenetic tree analysis, physiological and biochemical identification, and observation of histopathological sections, the result of the experiment is that the mass death of T. ovatus is caused by a mixture of L. garvieae and C. irritants infections. Subsequently, regression infection experiments were performed to verify Koch's law. It was confirmed that the pathogen had strong virulence to T. ovatus. This is the first time that the co-infection of L. garvieae and C. irritans to T. ovatus was found in South China. The research results of this experiment have certain enlightenment significance for the epidemic trend of fish diseases in relevant sea areas.


Subject(s)
Fish Diseases , Lactococcus , Phylogeny , Animals , Lactococcus/genetics , Lactococcus/isolation & purification , Lactococcus/classification , Fish Diseases/microbiology , Fish Diseases/parasitology , China , Ciliophora/genetics , Ciliophora/classification , Ciliophora/isolation & purification , Aquaculture , RNA, Ribosomal, 16S/genetics , Coinfection/microbiology , Coinfection/parasitology , Ciliophora Infections/parasitology , Ciliophora Infections/veterinary , Fishes/parasitology , Fishes/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary
13.
Front Cell Infect Microbiol ; 14: 1354736, 2024.
Article in English | MEDLINE | ID: mdl-39045133

ABSTRACT

The present study evaluated the capacity of three Bacillus species to improve health status and growth performance of Nile Tilapia fed with high levels of soybean meal and challenged with Aeromonas hydrophila. In vitro experiments showed that ß-hemolysin and metalloprotease enzymes were produced by A. hydrophila throughout the exponential growth phase. In vivo experiments showed that 107 colony-forming units (CFUs)/ml of this pathogen killed 50% of control group fishes in 13 days. To evaluate the influence of Bacillus strains on health status and growth performance in Nile Tilapia, 180 fishes (33.44 + 0.05 g) were distributed in 12 tanks of 200 L each, and animals were fed twice per day until satiety. 1) Control group without Bacillus, 2) Bacillus sp1, 3) Bacillus sp2, and 4) Bacillus sp3 groups were formulated containing 106 CFU/g. After 40 days of feeding, the fishes were intraperitoneally injected with 1 ml of A. hydrophila at 2 × 107 CFU/ml, and mortality was recorded. The results showed that cumulative mortality rate was significantly (p< 0.05) lower in the Bacillus sp1 (25%), sp2 (5%), and sp3 (15%) groups, than the control group (50%). Weight gain was also significantly better (p< 0.05) in the Bacillus sp1 (36%), sp2 (67%), and sp3 (55%) groups with respect to the control group (30%). In conclusion, functional diet formulated with high levels of soybean meal and supplemented with Bacillus sp2 could be an alternative to protect Nile tilapia cultures from A. hydrophila infections and improve fish growth performance.


Subject(s)
Aeromonas hydrophila , Bacillus , Cichlids , Fish Diseases , Gram-Negative Bacterial Infections , Animals , Fish Diseases/microbiology , Fish Diseases/prevention & control , Cichlids/growth & development , Cichlids/microbiology , Aeromonas hydrophila/pathogenicity , Aeromonas hydrophila/growth & development , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Animal Feed , Probiotics/administration & dosage , Glycine max/microbiology , Aquaculture
14.
Sci Data ; 11(1): 819, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048589

ABSTRACT

Vibrio spp. are major pathogens responsible for mortality and disease in various marine aquaculture organisms. Effective disease control and genetic breeding strategies rely heavily on understanding host vibriosis resistance mechanisms. The Chinese tongue sole (Cynoglossus semilaevis) is economically vital but suffers from substantial mortalities due to vibriosis. Through continuous selective breeding, we have successfully obtained vibriosis-resistant families of this species. In this study, we conducted RNA-seq analysis on three organs, including liver, spleen and intestine from selected resistant and susceptible tongue soles. Additionally, we integrated these data with our previously published RNA-seq datasets of skin and gill, enabling the construction of organ-specific transcriptional profiles and a comprehensive gene co-expression network elucidating the differences in vibriosis resistance. Furthermore, we identified 12 modules with organ-specific functional implications. Overall, our findings provide a valuable resource for investigating the molecular basis of vibriosis resistance in fish, offering insights into target genes and pathways essential for molecular selection and genetic manipulation to enhance vibriosis resistance in fish breeding programs.


Subject(s)
Disease Resistance , Fish Diseases , Flatfishes , Transcriptome , Vibrio Infections , Vibrio , Animals , Vibrio Infections/veterinary , Vibrio Infections/genetics , Fish Diseases/microbiology , Fish Diseases/genetics , Flatfishes/genetics , Flatfishes/microbiology , Disease Resistance/genetics , Gene Regulatory Networks , Liver/metabolism , Spleen
15.
Front Immunol ; 15: 1415744, 2024.
Article in English | MEDLINE | ID: mdl-39026675

ABSTRACT

Pseudomonas plecoglossicida, a gram-negative bacterium, is the main pathogen of visceral white-point disease in marine fish, responsible for substantial economic losses in the aquaculture industry. The FliL protein, involved in torque production of the bacterial flagella motor, is essential for the pathogenicity of a variety of bacteria. In the current study, the fliL gene deletion strain (ΔfliL), fliL gene complement strain (C-ΔfliL), and wild-type strain (NZBD9) were compared to explore the influence of the fliL gene on P. plecoglossicida pathogenicity and its role in host immune response. Results showed that fliL gene deletion increased the survival rate (50%) and reduced white spot disease progression in the hybrid groupers. Moreover, compared to the NZBD9 strain, the ΔfliL strain was consistently associated with lower bacterial loads in the grouper spleen, head kidney, liver, and intestine, coupled with reduced tissue damage. Transcriptomic analysis identified 2 238 differentially expressed genes (DEGs) in the spleens of fish infected with the ΔfliL strain compared to the NZBD9 strain. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, the DEGs were significantly enriched in seven immune system-associated pathways and three signaling molecule and interaction pathways. Upon infection with the ΔfliL strain, the toll-like receptor (TLR) signaling pathway was activated in the hybrid groupers, leading to the activation of transcription factors (NF-κB and AP1) and cytokines. The expression levels of proinflammatory cytokine-related genes IL-1ß, IL-12B, and IL-6 and chemokine-related genes CXCL9, CXCL10, and CCL4 were significantly up-regulated. In conclusion, the fliL gene markedly influenced the pathogenicity of P. plecoglossicida infection in the hybrid groupers. Notably, deletion of fliL gene in P. plecoglossicida induced a robust immune response in the groupers, promoting defense against and elimination of pathogens via an inflammatory response involving multiple cytokines.


Subject(s)
Fish Diseases , Pseudomonas Infections , Pseudomonas , Animals , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics , Pseudomonas/pathogenicity , Pseudomonas Infections/immunology , Pseudomonas Infections/veterinary , Pseudomonas Infections/microbiology , Bass/immunology , Bass/microbiology , Bass/genetics , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Host-Pathogen Interactions/immunology , Host-Pathogen Interactions/genetics , Transcriptome , Gene Expression Profiling , Fish Proteins/genetics , Fish Proteins/immunology
16.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063205

ABSTRACT

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Subject(s)
Fish Diseases , Flatfishes , HSP40 Heat-Shock Proteins , HSP70 Heat-Shock Proteins , Phylogeny , Animals , Flatfishes/immunology , Flatfishes/genetics , Flatfishes/microbiology , Flatfishes/metabolism , HSP40 Heat-Shock Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/genetics , Fish Diseases/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/genetics , Molecular Docking Simulation , Aeromonas salmonicida/immunology , Molecular Chaperones/metabolism , Molecular Chaperones/genetics
17.
Front Cell Infect Microbiol ; 14: 1420995, 2024.
Article in English | MEDLINE | ID: mdl-38962321

ABSTRACT

Introduction: Due to the high-density farming of Larimichthys crocea over the years, diseases caused by pathogens such as bacteria, viruses, and parasites frequently occur in Ningbo, posing a huge threat and challenge to the sustainable and healthy development of the L. crocea's bay farming industry. In order to understand the diseases occurrence in L. crocea farming in Ningbo area, an epidemiological investigation of L. crocea diseases was carried out through regular sampling in 2023. Methods: From April to October 2023, routine sampling of L. crocea was conducted monthly in various farming areas in Ningbo. Each time, live or dying L. crocea with obvious clinical symptoms were sampled, with a total number of 55 L. crocea collected. The samples were preserved in ice bags and transported to the laboratory for pathogen detection(including bacterial isolation and identification,virus identification, and parasites detection). Results: A total of fifty-five fish dying L. crocea with obvious clinical symptoms were collected in this study, of which 78.18% (43/55) were detected with symptoms caused by pathogenic infection, while 21.82% (12/55) did not have identified pathogens, which were presumed to be breeding abrasions, nutritional metabolic disorders, unconventional pathogens infection or other reasons. A total of twenty-five pathogenic bacteria strains were isolated, which mainly were Pseudomonas plecoglossicida and Vibrio harveyi, accounting for 52% (13/25) and 32% (8/25) of the pathogenic bacteria strains, respectively. Among them, both V. harveyi and Streptococcus. iniae co-infected one fish. Additionally, three other bacterial strains including Nocardia seriolae, Staphylococcus Saprophyticus, and Photobacterium damselae subsp.damselae were isolated. Microscopic examination mainly observed two parasites, Cryptocaryon irritans and Neobenedenia girellae. In virus detection, the red sea bream iridovirus (RSIV) was mainly detected in L. crocea. Statistical analysis showed that among the fish with detected pathogens, 55.81% (24/43) had bacterial infections, 37.21% (16/43) had parasitic infections, and 37.21% (16/43) had RSIV infections. Among them, five fish had mixed infections of bacteria and parasites, three had mixed infections of bacteria and viruses, three had mixed infections of parasites and viruses, and one L. crocea had mixed infections of viruses, bacteria, and parasites. Discussion: These findings indicate that these three major types of diseases are very common in the L. crocea farming area in Ningbo, implying the complexity of mixed infections of multiple diseases.


Subject(s)
Fish Diseases , Perciformes , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Fish Diseases/microbiology , Perciformes/microbiology , Perciformes/parasitology , China/epidemiology , Aquaculture , Vibrio/isolation & purification , Vibrio/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
18.
Microbiome ; 12(1): 128, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020382

ABSTRACT

BACKGROUND: Spring viremia of carp virus (SVCV) infects a wide range of fish species and causes high mortality rates in aquaculture. This viral infection is characterized by seasonal outbreaks that are temperature-dependent. However, the specific mechanism behind temperature-dependent SVCV infectivity and pathogenicity remains unclear. Given the high sensitivity of the composition of intestinal microbiota to temperature changes, it would be interesting to investigate if the intestinal microbiota of fish could play a role in modulating the infectivity of SVCV at different temperatures. RESULTS: Our study found that significantly higher infectivity and pathogenicity of SVCV infection in zebrafish occurred at relatively lower temperature. Comparative analysis of the intestinal microbiota in zebrafish exposed to high- and low-temperature conditions revealed that temperature influenced the abundance and diversity of the intestinal microbiota in zebrafish. A significantly higher abundance of Parabacteroides distasonis and its metabolite secondary bile acid (deoxycholic acid, DCA) was detected in the intestine of zebrafish exposed to high temperature. Both colonization of Parabacteroides distasonis and feeding of DCA to zebrafish at low temperature significantly reduced the mortality caused by SVCV. An in vitro assay demonstrated that DCA could inhibit the assembly and release of SVCV. Notably, DCA also showed an inhibitory effect on the infectious hematopoietic necrosis virus, another Rhabdoviridae member known to be more infectious at low temperature. CONCLUSIONS: This study provides evidence that temperature can be an important factor to influence the composition of intestinal microbiota in zebrafish, consequently impacting the infectivity and pathogenicity of SVCV. The findings highlight the enrichment of Parabacteroides distasonis and its derivative, DCA, in the intestines of zebrafish raised at high temperature, and they possess an important role in preventing the infection of SVCV and other Rhabdoviridae members in host fish. Video Abstract.


Subject(s)
Bacteroidetes , Fish Diseases , Gastrointestinal Microbiome , Rhabdoviridae Infections , Rhabdoviridae , Temperature , Zebrafish , Animals , Fish Diseases/microbiology , Fish Diseases/virology , Rhabdoviridae Infections/virology , Rhabdoviridae/physiology , Rhabdoviridae/pathogenicity , Bacteroidetes/pathogenicity , Water , Infectious hematopoietic necrosis virus/pathogenicity
19.
Sci Rep ; 14(1): 16802, 2024 07 22.
Article in English | MEDLINE | ID: mdl-39039114

ABSTRACT

Recirculating aquaculture systems (RAS) have become more attractive due to reduced water consumption and effluent discharge. However, intensification of production increases the risk of introducing pathogens at farming sites. The emergence of uncultivable pathogens and RAS pathobiome diversity shifts the traditional disease paradigm from "one pathogen, one disease" to complex multiple-pathogen disease cases. Piscine orthoreovirus genotype 3 (PRV-3) is an excellent example, as it is capable of inducing anemia and heart pathology resembling heart and skeletal muscle inflammation under experimental conditions, and is associated with increased mortality in association with other pathogens in the field. The aim of this study was to develop a method for detection of multiple pathogens and putative pathogens, as co-infections are common in aquaculture. To do this, in the pilot study, we mapped the pathobiome of RAS-farmed rainbow trout (Oncorhynchus mykiss) (commercial RAS, farm A) using both standard diagnostic methods and metabarcording (16S rRNA) to investigate the gill microbiome. During this study, we observed infections with multiple pathogens, and detected two putative gill pathogens Candidatus Branchiomonas cysticola and Candidatus Piscichlamydia salmonis, both of which have been linked with complex gill disease in Atlantic salmon (Salmo salar). Based on the pilot study, we developed and tested a high throughput qPCR (HT-qPCR) chip targeting 22 viral and bacterial pathogens and putative pathogens, followed by a surveillance of a fish cohort in a commercial RAS farm during production (farm B). Co-infection with PRV-3 and Ca. B. cysticola combined with stress inducing management practices may explain the severe disease outbreak observed (37% mortality). The time course study sets the base for a future screening scheme for disease prediction and addresses limitations of the method when testing environmental DNA/RNA.


Subject(s)
Aquaculture , Coinfection , Fish Diseases , Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/virology , Oncorhynchus mykiss/microbiology , Aquaculture/methods , Coinfection/microbiology , Coinfection/veterinary , Coinfection/virology , Fish Diseases/virology , Fish Diseases/microbiology , Real-Time Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Gills/virology , Gills/microbiology , Microbiota/genetics
20.
Mar Biotechnol (NY) ; 26(4): 790-809, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39042324

ABSTRACT

Aeromonas veronii is one of the predominant pathogenic species that can imperil the survival of farmed fish. However, the interactive networks of immune regulation and metabolic response in A. veronii-infected fish are still unclear. In this investigation, we aimed to explore immunometabolic interplay in white crucian carp (WCC) after the A. veronii challenge. Elevated levels of immune-related genes were observed in various tissues after A. veronii infection, along with the sharp alteration of disease-related enzymatic activities. Besides, decreased levels of antioxidant status were observed in the liver, but most metabolic gene expressions increased dramatically. Multiomics analyses revealed that metabolic products of amino acids, such as formiminoglutamic acid (FIGLU), L-glutamate (L-Glu), and 4-hydroxyhippuric acid, were considered the crucial liver biomarkers in A. veronii-infected WCC. In addition, A. veronii infection may dysregulate endoplasmic reticulum (ER) function to affect the metabolic process of lipids, carbohydrates, and amino acids in the liver of WCC. These results may have a comprehensive implication for understanding immunometabolic response in WCC upon A. veronii infection.


Subject(s)
Aeromonas veronii , Carps , Fish Diseases , Gram-Negative Bacterial Infections , Liver , Animals , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Carps/microbiology , Carps/immunology , Carps/metabolism , Carps/genetics , Liver/metabolism , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/metabolism , Amino Acids/metabolism , Transcriptome , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL