Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.746
Filter
1.
Biol Sex Differ ; 15(1): 70, 2024 Sep 07.
Article in English | MEDLINE | ID: mdl-39244546

ABSTRACT

BACKGROUND: Blotched snakehead (Channa maculata) displays significant sexual dimorphism, with males exhibiting faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. Nonetheless, the intricate processes governing the development of bipotential gonads into either testis or ovary in C. maculata remain inadequately elucidated. Therefore, it is necessary to determine the critical time window of sex differentiation in C. maculata, providing a theoretical basis for sex control in production practices. METHODS: The body length and weight of male and female C. maculata were measured at different developmental stages to reveal when sexual dimorphism in growth initially appears. Histological observations and spatiotemporal comparative transcriptome analyses were performed on ovaries and testes across various developmental stages to determine the crucial time windows for sex differentiation in each sex and the sex-related genes. Additionally, qPCR and MG2C were utilized to validate and locate sex-related genes, and levels of E2 and T were quantified to understand sex steroid synthesis. RESULTS: Sexual dimorphism in growth became evident starting from 90 dpf. Histological observations revealed that morphological sex differentiation in females and males occurred between 20 and 25 dpf or earlier and 30-35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in testes and ovaries after 30 dpf. The periods of 40-60 dpf and 60-90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in male sex differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and development. Numerous biological pathways linked to sex differentiation and gametogenesis were also identified. Additionally, E2 and T exhibited sexual dimorphism during sex differentiation and gonadal development. Based on these results, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a-Dmrt1-Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. CONCLUSIONS: This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, establishing a scientific foundation for sex control in this species.


Blotched snakehead (Channa maculata) exhibits significant sexual dimorphism, as males display faster growth rates and larger body sizes compared to females. The cultivation of the all-male population of snakeheads holds substantial economic and ecological value. However, the mechanisms underlying sex determination and differentiation in C. maculata remain insufficiently elucidated. In this study, sexual dimorphism in growth became evident starting from 90 dpf through the measurement of body length and weight of male and female C. maculata at different developmental stages. Histological observations indicated that morphological sex differentiation in females and males occurred at 20­25 dpf or earlier and 30­35 dpf or earlier, respectively, corresponding to the appearance of the ovarian cavity or efferent duct anlage. Transcriptome analyses revealed divergent gene expression patterns in male and female gonads after 30 dpf, suggesting that the period preceding 30 dpf might be the critical time window for sex control in C. maculata. The periods of 40­60 dpf and 60­90 dpf marked the initiation of molecular sex differentiation in females and males, respectively. Male-biased genes (Sox11a, Dmrt1, Amh, Amhr2, Gsdf, Ar, Cyp17a2) likely play crucial roles in testicular differentiation and spermatogenesis, while female-biased genes (Foxl2, Cyp19a1a, Bmp15, Figla, Er) could be pivotal in ovarian differentiation and oogenesis. Additionally, numerous biological pathways linked to sex differentiation and gametogenesis were identified. Moreover, sexual dimorphism was observed in the levels of E2 and T during gonadal differentiation and development. Based on these findings, it is hypothesized that in C. maculata, the potential male sex differentiation pathway, Sox11a­Dmrt1­Sox9b, activates downstream sex-related genes (Amh, Amhr2, Gsdf, Ar, Cyp17a2) for testicular development, while the antagonistic pathway, Foxl2/Cyp19a1a, activates downstream sex-related genes (Bmp15, Figla, Er) for ovarian development. This study provides a comprehensive overview of gonadal dynamic changes during sex differentiation and gametogenesis in C. maculata, thereby establishing a scientific foundation for sex control in this species.


Subject(s)
Gametogenesis , Sex Characteristics , Sex Differentiation , Animals , Female , Male , Gonads/growth & development , Gonads/anatomy & histology , Gene Expression Profiling , Fishes/growth & development , Fishes/anatomy & histology , Fishes/genetics , Transcriptome , Testis/growth & development , Testis/anatomy & histology , Ovary/growth & development , Ovary/anatomy & histology , Gene Expression Regulation, Developmental , Channa punctatus
2.
Biol Lett ; 20(9): 20240194, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39226920

ABSTRACT

Direct evidence of trophic interactions between extinct species is rarely available in the fossil record. Here, we describe fish-mammal associations from the middle Eocene of Messel (Germany), consisting of three specimens of holosteans (one Atractosteus messelensis (Lepisosteidae) and two Cyclurus kehreri (Amiidae)) each preserved with a bat specimen (Palaeochiropteryx tupaiodon) lying in close contact with its jaws. This suggests that these fishes probably died after failed swallowing attempts, with the bat wing membrane entangled in their jaws resulting in a fatal handicap. Based on data from modern gars and bowfins, A. messelensis and C. kehreri may have opportunistically attacked drowning and dying individuals or scavenged on floating/sinking carcasses. This hypothesis is also supported by the unusually high number of bat specimens preserved in the deposits of the Eocene Lake Messel, suggesting that this group of small mammals may have represented a substantial food source for generalist feeders. This is the earliest case of chiropterophagy and the first known evidence of bat consumption by lepisosteid and amiid fishes, emphasizing the high trophic variability and adaptability of these groups throughout their evolutionary histories. The newly described associations provide important information for reconstructing the Eocene Lake Messel palaeoecosystem and its trophic web.


Subject(s)
Chiroptera , Fishes , Fossils , Lakes , Animals , Fossils/anatomy & histology , Chiroptera/physiology , Fishes/physiology , Fishes/anatomy & histology , Germany , Food Chain , Extinction, Biological
3.
Vet Med Sci ; 10(5): e1563, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39110021

ABSTRACT

BACKGROUND: One of the special anatomical structures in sturgeons is the pericardioperitoneal canal (PPC), which has not been studied much. Considering that the presence and absence of this channel and its morphometry have not been investigated in this type of fish, this study was conducted. OBJECTIVE: The purpose of present study was to obtain a complete understanding about anatomical features and ultrasonography of PPC in the heart of immature beluga species in order to provide standard approaches for performing sonography and echocardiography on this sturgeon species. METHODS: Ten immature belugas (Huso huso) were used to perform ultrasonography with Sonosite MicroMaxx ultrasonography machine of ventral approach between two pectoral fins. After performing the steps of ultrasonographic study, gross anatomical studies were also performed, and the morphometric measurement of the canal was also performed. RESULTS: A small PPC was observed, which communicated between the pericardial cavity, and the peritoneal (coelomic) cavity. The cranial part of this channel, which was located immediately after the transverse septum, was on the midline of the body and was seen in midsagittal ultrasonograms. On average, the length of this canal was 3.23 ± 0.05 cm, and its diameter (cranial part) was 0.24 ± 0.04 cm. CONCLUSIONS: In the present study on immature beluga, it was observed that the canal is located behind the sinus venosus and is caudoventral to it, though behind the transverse septum. It has been mentioned that this PPC establishes a connection between the pericardial cavity and the peritoneal cavity, so this connection is between the peritoneal cavity and the space between the two layers of the pericardium and has no connection with the pericardial sac (the space where the heart is located). In this study, the anatomical structure and morphometry of the PPC in immature beluga were investigated, and some approaches were presented to observe the canal in ultrasonography.


Subject(s)
Fishes , Animals , Fishes/anatomy & histology , Ultrasonography/veterinary , Pericardium/diagnostic imaging , Pericardium/anatomy & histology
4.
Proc Biol Sci ; 291(2028): 20241293, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39137888

ABSTRACT

The separation of closely related terrestrial or freshwater species by vast marine barriers represents a biogeographical riddle. Such cases can provide evidence for vicariance, a process whereby ancient geological events like continental rifting divided ancestral geographical ranges. With an evolutionary history extending tens of millions of years, freshwater ecology, and distribution encompassing widely separated southern landmasses, osteoglossid bonytongue fishes are a textbook case of vicariance attributed to Mesozoic fragmentation of the Gondwanan supercontinent. Largely overlooked fossils complicate the clean narrative invoked for extant species by recording occurrences on additional continents and in marine settings. Here, we present a new total-evidence phylogenetic hypothesis for bonytongue fishes combined with quantitative models of range evolution and show that the last common ancestor of extant osteoglossids was likely marine, and that the group colonized freshwater settings at least four times when both extant and extinct lineages are considered. The correspondence between extant osteoglossid relationships and patterns of continental fragmentation therefore represents a striking example of biogeographical pseudocongruence. Contrary to arguments against vicariance hypotheses that rely only on temporal or phylogenetic evidence, these results provide direct palaeontological support for enhanced dispersal ability early in the history of a group with widely separated distributions in the modern day.


Subject(s)
Animal Distribution , Biological Evolution , Fishes , Fossils , Phylogeny , Animals , Fossils/anatomy & histology , Fishes/anatomy & histology
5.
Sci Rep ; 14(1): 19489, 2024 08 22.
Article in English | MEDLINE | ID: mdl-39174608

ABSTRACT

While recent technical breakthroughs have enabled advances in the description of reefs down to 150 m, the structure and depth zonation of deep-reef communities below 150 m remains largely unknown. Here, we present results from over 10 years of deep-reef fish surveys using human-occupied submersibles at four locations across the Caribbean Sea, constituting one of the only continuous reef-fish surveys from 10 to 480 m (1 site) and 40 to 300 m (3 sites). We identify four vertically stratified deep-reef fish communities between 40 and 300 m bordered by an altiphotic (0-10 m) and a deep-sea (300-480 m) community. We found a strong faunal break around 150 m that separates mesophotic and rariphotic zones and secondary breaks at ~ 70 to 90 m and ~ 180 to 200 m subdividing these zones into upper and lower communities. From 300 to 480 m in Roatán, we found a single fish community dominated by deep-sea families, indicating that the lower boundary of the reef-fish realm occurs at 300 m. No differences were found between communities ranging from 20 to 60 m, suggesting that fishes from the lower altiphotic and upper mesophotic form an ecological continuum. While some variability was observed across sites, the overall depth zonation and key species characterizing depth zones were consistent. Most deep-reef species observed were depth specialists restricted to a single depth zone, but many shallow-reef species extended down to mesophotic depths. Depth segregation among species of a genus was found across ten reef-fish genera and likely constitutes one of the mechanisms driving community distinctiveness and thereby fish diversity across depths.


Subject(s)
Coral Reefs , Fishes , Animals , Caribbean Region , Fishes/classification , Fishes/anatomy & histology , Biodiversity , Ecosystem
6.
PeerJ ; 12: e17772, 2024.
Article in English | MEDLINE | ID: mdl-39040932

ABSTRACT

Although numerous coral reef fish species utilize substrates with high structural complexities as habitats and refuge spaces, quantitative analysis of nocturnal fish substrate associations has not been sufficiently examined yet. The aims of the present study were to clarify the nocturnal substrate associations of 17 coral reef fish species (nine parrotfish, two surgeonfish, two grouper and four butterflyfish) in relation to substrate architectural characteristics. Substrate architectural characteristics were categorized into seven types: (1) eave-like space, (2) large inter-branch space, (3) overhang by protrusion of fine branching structure, (4) overhang by coarse structure, (5) uneven structure without large space or overhang, (6) flat and (7) macroalgae. Overall, fishes were primarily associated with three architectural characteristics (eave-like space, large inter-branch space and overhang by coarse structure). The main providers of these three architectural characteristics were tabular and corymbose Acropora, staghorn Acropora, and rock. Species-specific significant positive associations with particular architectural characteristics were found as follows. For the nine parrotfish species, Chlorurus microrhinos with large inter-branch space and overhang by coarse structure; Ch. spilurus with eave-like space and large inter-branch space; Hipposcarus longiceps with large inter-branch space; Scarus ghobban with overhang by coarse structure; five species (Scarus forsteni, S. niger, S. oviceps, S. rivulatus and S. schlegeli) with eave-like space. For the two surgeonfish species, Naso unicornis with overhang by coarse structure; N. lituratus with eave-like space. For the two grouper species, Plectropomus leopardus with eave-like space; Epinephelus ongus with overhang by coarse structure. For the four butterflyfish species, Chaetodon trifascialis with eave-like space and large inter-branch space; C. lunulatus and C. ephippium with large inter-branch space; C. auriga showed no significant associations with any architectural characteristics. Four species (Ch. microrhinos, H. longiceps, S. niger and N. unicornis) also showed clear variations in substrate associations among the different fish size classes. Since parrotfishes, surgeonfishes and groupers are main fisheries targets in coral reefs, conservation and restoration of coral species that provide eave-like space (tabular and corymbose Acropora) and large inter-branch space (staghorn Acropora) as well as hard substrates with coarse structure that provide overhang (rock) should be considered for effective fisheries management in coral reefs. For butterflyfishes, coral species that provide eave-like space (tabular Acropora) and large inter-branch space (staghorn Acropora) should also be conserved and restored for provision of sleeping sites.


Subject(s)
Coral Reefs , Fishes , Animals , Fishes/anatomy & histology , Ecosystem , Perciformes/anatomy & histology , Perciformes/physiology , Species Specificity , Behavior, Animal/physiology
7.
Biol Lett ; 20(7): 20240165, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39046285

ABSTRACT

Deep-sea fishes must overcome extremely large nearest-neighbour distances and darkness to find mates. Sexual dimorphism in the size of luminescent structures in many deep-sea taxa, including dragonfishes (family Stomiidae), indicates reproductive behaviours may be mediated by visual signalling. This presents a paradox: if male photophores are larger, females may find males at shorter distances than males find females. Solutions to this gap may include females closing this gap or by males gathering more photons with a larger eye. We examine the eye size of two species of dragonfishes (Malacosteus niger and Phostomias guernei) for sexual dimorphism and employ a model of detection distance to evaluate the potential for such dimorphism to bridge the detection gap. This model incorporates the flux of sexually dimorphic postorbital photophores and eye lens size to predict detection distances. In both species, we found a significant visual detection gap in which females find males before males find females and that male lens size is larger, marking the second known case of size dimorphism in the actinopterygian visual system. Our results indicate the larger eye affords males a significant improvement in detection distance. We conclude that this dimorphic phenotype may have evolved to close the detection gap.


Subject(s)
Eye , Sex Characteristics , Animals , Female , Male , Eye/anatomy & histology , Fishes/anatomy & histology , Organ Size , Sexual Behavior, Animal , Luminescence
8.
Anat Histol Embryol ; 53(4): e13070, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39031825

ABSTRACT

This paper presents the conclusions of a comparative analysis of six osteological features: the Structure of the vertebral column, the morphology of the predorsal bones, the vertebral column regionalization, the pterygiophore interdigitation with neural spines of dorsal fin, the pterygiophores interdigitation of with the haemal spines of the anal fin, and the intermuscular bones (IMB) and hypomerals (HM) of 12 clupeid species of the families Alosidae, Dorosomatidae, Dussumieridae and Ehiravidae. Conceivable taxonomically beneficial osteological features are nominated and utilized to discrete the clupeid species explored. Formulae for the structure of the vertebral column, the dorsal- and anal-fin pterygiophores' interdigitation with the neural and haemal spines of the vertebrae are established. These morphological descriptive traits disclose a morphotype that may be related to the mode of swimming of the species searched. The morphological study of the vertebral column of the species in question permits the division of this bony structure into six morphologically different regions. This regionalization is more intricate than the classical division in abdominal and caudal parts only.


Subject(s)
Spine , Animals , Iran , Spine/anatomy & histology , Fishes/anatomy & histology , Fishes/classification , Animal Fins/anatomy & histology , Bone and Bones/anatomy & histology
9.
Proc Natl Acad Sci U S A ; 121(32): e2322863121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074276

ABSTRACT

The nitrogen isotopes of the organic matter preserved in fossil fish otoliths (ear stones) are a promising tool for reconstructing past environmental changes. We analyzed the 15N/14N ratio (δ15N) of fossil otolith-bound organic matter in Late Cretaceous fish otoliths (of Eutawichthys maastrichtiensis, Eutawichthys zideki and Pterothrissus sp.) from three deposits along the US east coast, with two of Campanian (83.6 to 77.9 Ma) and one Maastrichtian (72.1 to 66 Ma) age. δ15N and N content were insensitive to cleaning protocol and the preservation state of otolith morphological features, and N content differences among taxa were consistent across deposits, pointing to a fossil-native origin for the organic matter. All three species showed an increase in otolith-bound organic matter δ15N of ~4‰ from Campanian to Maastrichtian. As to its cause, the similar change in distinct genera argues against changing trophic level, and modern field data argue against the different locations of the sedimentary deposits. Rather, the lower δ15N in the Campanian is best interpreted as an environmental signal at the regional scale or greater, and it may be a consequence of the warmer global climate. A similar decrease has been observed in foraminifera-bound δ15N during warm periods of the Cenozoic, reflecting decreased water column denitrification and thus contraction of the ocean's oxygen deficient zones (ODZs) under warm conditions. The same δ15N-climate correlation in Cretaceous otoliths raises the prospect of an ODZ-to-climate relationship that has been consistent over the last ~80 My, applying before and after the end-Cretaceous mass extinction and spanning changes in continental configuration.


Subject(s)
Fishes , Fossils , Nitrogen Isotopes , Otolithic Membrane , Animals , Otolithic Membrane/chemistry , Otolithic Membrane/anatomy & histology , Nitrogen Isotopes/analysis , Fishes/metabolism , Fishes/anatomy & histology
10.
PeerJ ; 12: e17791, 2024.
Article in English | MEDLINE | ID: mdl-39071121

ABSTRACT

Knowledge on species composition is the first step necessary for the proper conservation and management of biological resources and ecologically relevant species. High species diversity and a lack of diagnostic characters for some groups can impose difficulties for taxonomic identification through traditional methodologies, and ichthyoplankton (fish larvae and eggs) are a good example of such a scenario. With more than 35.000 valid species of fishes worldwide and overall similar anatomies in early developmental stages in closely related groups, fish larvae are often hard to be identified at the species or even more encompassing taxonomic levels. To overcome this situation, molecular techniques have been applied, with different markers tested over the years. Cytochrome c oxidase I (COI) is the most commonly used marker and now has the broadest public reference libraries, providing consistent results for species identification in different metazoan studies. Here we sequenced the mitochondrial COI-5P fragment of 89 fish larvae collected in the Campos Basin, coastal southeastern Brazil, and compared these sequences with references deposited in public databases to obtain taxonomic identifications. Most specimens identified are species of the Blenniiformes, with Parablennius and Labrisomus the most frequently identified genera. Parablennius included two species (P. marmoreus and P. pilicornis), while Labrisomus included three species (L. cricota, L. conditus and L. nuchipinnis). Anatomy of these molecularly identified specimens were then analyzed with the intention of finding anatomical characters that might be diagnostically informative amongst the early development stage (pre-flexion) larvae. Ventral pigmentation patterns are proposed as useful markers to identify Labrisomus species. However, additional specimens are needed to confirm if the character holds stability through the geographic distribution of the species.


Subject(s)
DNA Barcoding, Taxonomic , Electron Transport Complex IV , Fishes , Larva , Animals , DNA Barcoding, Taxonomic/methods , Larva/anatomy & histology , Larva/genetics , Larva/growth & development , Fishes/anatomy & histology , Fishes/genetics , Brazil , Electron Transport Complex IV/genetics , Phylogeny , Atlantic Ocean , Species Specificity
11.
J Morphol ; 285(8): e21753, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39049499

ABSTRACT

The Ophidiidae is a group of more than 300 species of fishes characterized by elongated, snake-like bodies and continuous dorsal, anal, and caudal fins. While describing a new species in the genus Monomitopus, we discovered a bilaterally paired fenestra on the dorsomedial surface of the neurocranium. We surveyed the distribution of this fenestra across species of Monomitopus and previously hypothesized allies in the genera Dannevigia, Dicrolene, Homostolus, Neobythites, and Selachophidium, finding variation in its presence and size. We also found a prominent bilaterally paired lateral fenestra and a posterior expansion of the exoccipital in the neurocrania of M. americanus and S. guentheri, with soft tissue connecting the back of the neurocranium to the first epineural and pectoral girdle in S. guentheri. In this study, we describe the distribution of and variation in these features. We integrate morphological characters and DNA data to generate a phylogeny of Monomitopus and allies to understand their relationships and trace the evolutionary history of these novel features. Our results call the monophyly of Monomitopus into question. The presence of the lateral neurocranial fenestra and posterior expansion of the exoccipital support the reclassification of M. americanus as a species of Selachophidium.


Subject(s)
Biological Evolution , Phylogeny , Skull , Animals , Skull/anatomy & histology , Fishes/anatomy & histology
12.
PeerJ ; 12: e17436, 2024.
Article in English | MEDLINE | ID: mdl-38832040

ABSTRACT

Postmortem body curvature introduces error in fish morphometric data. Compared to living fish, the causes of such body curvature in fossils may be due to additive taphonomic processes that have been widely studied. However, a protocol that helps to correct its effect upon morphometric data remains unexplored. Here, we test two different mathematical approaches (multivariate regression and the so-called 'unbending functions') available to tackle fish geometric morphometric data in two exceptionally preserved gonorynchiformes fossil fishes, Rubiesichthys gregalis and Gordichthys conquensis, from the Las Hoyas deposits (Early Cretaceous, Spain). Although both methods successfully correct body curvature (i.e., removing misleading geometric variation), our results show that traditional approaches applied in living fishes might not be appropriate to fossil ones, because of the additional anatomical alterations. Namely, the best result for 2D fossil fishes is achieved by correcting the arching of the specimens (mathematically "unbending" them). Ultimately, the effect of body curvature on morphometric data is largely taxon independent and morphological diversity mitigates its effect, but size is an important factor to take into account (because larger individuals tend to be less curved).


Subject(s)
Fishes , Fossils , Animals , Fishes/anatomy & histology , Spain
13.
J Morphol ; 285(6): e21740, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38858850

ABSTRACT

The neurocranial elevation generated by axial muscles is widespread among aquatic gnathostomes. The mechanism has two functions: first, it contributes to the orientation of the mouth gape, and second, it is involved in suction feeding. To provide such mobility, anatomical specialization of the anterior part of the vertebral column has evolved in many fish species. In modern chimaeras, the anterior part of the vertebral column develops into the synarcual. Possible biological roles of the occipital-synarcual joint have not been discussed before. Dissections of the head of two species of ratfishes (Chimaera monstrosa and Chimaera phantasma) confirmed the heterocoely of the articulation surface between the synarcual and the neurocranium, indicating the possibility of movements in the sagittal and frontal planes. Muscles capable of controlling the movements of the neurocranium were described. The m. epaxialis is capable of elevating the head, the m. coracomandibularis is capable of lowering it if the mandible is anchored by the adductor. Lateral flexion is performed by the m. lateroventralis, for which this function was proposed for the first time. The first description of the m. epaxialis profundus is given, its function is to be elucidated in the future. Manipulations with joint preparations revealed a pronounced amplitude of movement in the sagittal and frontal planes. Since chimaeras generate weak decrease in pressure in the oropharyngeal cavity when sucking in prey, we hypothesised the primary effect of neurocranial elevation, in addition to the evident lateral head mobility, is accurate prey targeting.


Subject(s)
Fishes , Animals , Fishes/physiology , Fishes/anatomy & histology , Skull/anatomy & histology , Skull/physiology , Adaptation, Physiological , Joints/physiology , Joints/anatomy & histology
14.
Curr Biol ; 34(13): 2831-2840.e2, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38866006

ABSTRACT

A complex brain is central to the success of backboned animals. However, direct evidence bearing on vertebrate brain evolution comes almost exclusively from extant species, leaving substantial knowledge gaps. Although rare, soft-tissue preservation in fossils can yield unique insights on patterns of neuroanatomical evolution. Paleontological evidence from an exceptionally preserved Pennsylvanian (∼318 Ma) actinopterygian, Coccocephalus, calls into question prior interpretations of ancestral actinopterygian brain conditions. However, the ordering and timing of major evolutionary innovations, such as an everted telencephalon, modified meningeal tissues, and hypothalamic inferior lobes, remain unclear. Here, we report two distinct actinopterygian morphotypes from the latest Carboniferous-earliest Permian (∼299 Ma) of Brazil that show extensive soft-tissue preservation of brains, cranial nerves, eyes, and potential cardiovascular tissues. These fossils corroborate inferences drawn from ✝Coccocephalus, while adding new information about neuroanatomical evolution. Skeletal features indicate that one of these Brazilian morphotypes is more closely related to living actinopterygians than the other, which is also reflected in soft-tissue features. Significantly, the more crownward morphotype shows a key neuroanatomical feature of extant actinopterygians-an everted telencephalon-that is absent in the other morphotype and ✝Coccocephalus. All preserved Paleozoic actinopterygian brains show broad similarities, including an invaginated cerebellum, hypothalamus inferior lobes, and a small forebrain. In each case, preserved brains are substantially smaller than the enclosing cranial chamber. The neuroanatomical similarities shared by this grade of Permo-Carboniferous actinopterygians reflect probable primitive conditions for actinopterygians, providing a revised model for interpreting brain evolution in a major branch of the vertebrate tree of life.


Subject(s)
Biological Evolution , Brain , Fishes , Fossils , Animals , Fossils/anatomy & histology , Brain/anatomy & histology , Fishes/anatomy & histology , Fishes/physiology , Brazil
15.
J Anat ; 245(3): 467-489, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38749764

ABSTRACT

Mawsonia constitutes one of the most conspicuous fossil coelacanth taxa, due to its unique anatomy and possible maximum body size. It typifies Mesozoic coelacanth morphology, before the putative disappearance of the group in the fossil record. In this work, the three-dimensional cranial anatomy and body size estimations of this genus are re-evaluated from a recently described specimen from Upper Jurassic deposits of Uruguay. The 3D restoration was performed directly on the material based on anatomical information provided by the living coelacanth Latimeria and previous two-dimensional restorations of the head of Mawsonia. The montage was then scanned with computed tomography and virtually adjusted to generate an interactive online resource for future anatomical, taxonomic and biomechanical research. In general terms, the model constitutes a tool to improve both the anatomical knowledge of this genus and its comparison with other coelacanths. It also facilitates the evaluation of possible evolutionary trends and the discussion of particular features with potential palaeobiological implications, such as the anterior position of the eye and the development of the pseudomaxillary fold. Regarding the body size, a previous model for body size estimation based on the gular plate was submitted to OLS, RMA, segmented linear and PGLS regressions (including the evaluation of regression statistics, variance analysis, t-tests and residual analysis). The results point to a power relationship between gular and total lengths showing a better support than a simple linear relationship. The new resulting equations were applied to the studied individual and are provided for future estimates. Although an isometric evolutionary growth cannot be rejected with the available evidence, additional models developed with other bones will be necessary to evaluate possible hidden evolutionary allometric trends in this group of fishes, thus avoiding overestimates.


Subject(s)
Body Size , Fishes , Fossils , Skull , Tomography, X-Ray Computed , Animals , Fishes/anatomy & histology , Skull/anatomy & histology , Skull/diagnostic imaging , Imaging, Three-Dimensional , Head/anatomy & histology , Head/diagnostic imaging , Biological Evolution
16.
PeerJ ; 12: e17353, 2024.
Article in English | MEDLINE | ID: mdl-38737736

ABSTRACT

A series of 12 contiguous caudal vertebrae of an ichthyodectiform fish from the Smoky Hill Chalk Member of the Niobrara Formation is described. The vertebral centra exhibit extensive overgrowth of pathological bone and there is additional pathological bone within the centra and intervertebral spaces, which together resulted in the coossification of most centra. The extent of the pathology is greatest on preural vertebrae 1-3 and decreases anteriorly, which suggests that the pathology began posteriorly and progressed anteriorly. In addition to the pathological overgrowth on bones, the specimen preserves features interpreted as calcified and/or ossified soft tissues associated with the neural and haemal canals. The pathologies are unlike previously described examples of bony pathologies in fish, and it is suggested that they resulted from combined bacterial and fungal infections. As the pathologies developed, they would have adversely impacted the fish's swimming and feeding abilities, and presumably eventually led to the fish's death.


Subject(s)
Fishes , Spine , Animals , Fishes/anatomy & histology , Kansas , Spine/pathology , Spine/anatomy & histology , Fossils , Fish Diseases/parasitology , Fish Diseases/pathology
17.
Sci Rep ; 14(1): 10624, 2024 05 09.
Article in English | MEDLINE | ID: mdl-38724555

ABSTRACT

To date, the presence of pulmonary organs in the fossil record is extremely rare. Among extant vertebrates, lungs are described in actinopterygian polypterids and in all sarcopterygians, including coelacanths and lungfish. However, vasculature of pulmonary arteries has never been accurately identified neither in fossil nor extant coelacanths due to the paucity of fossil preservation of pulmonary organs and limitations of invasive studies in extant specimens. Here we present the first description of the pulmonary vasculature in both fossil and extant actinistian, a non-tetrapod sarcopterygian clade, contributing to a more in-depth discussion on the morphology of these structures and on the possible homology between vertebrate air-filled organs (lungs of sarcopterygians, lungs of actinopterygians, and gas bladders of actinopterygians).


Subject(s)
Biological Evolution , Fishes , Fossils , Pulmonary Artery , Animals , Pulmonary Artery/anatomy & histology , Fishes/anatomy & histology , Vertebrates/anatomy & histology , Lung/blood supply , Phylogeny
18.
Bioinspir Biomim ; 19(4)2024 May 24.
Article in English | MEDLINE | ID: mdl-38722377

ABSTRACT

State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.


Subject(s)
Animal Fins , Biomimetic Materials , Animals , Animal Fins/physiology , Animal Fins/anatomy & histology , Biomechanical Phenomena , Biomimetics/methods , Fishes/physiology , Fishes/anatomy & histology
19.
Anat Histol Embryol ; 53(3): e13052, 2024 May.
Article in English | MEDLINE | ID: mdl-38735035

ABSTRACT

One crucial component of the optical system is the ciliary body (CB). This body secretes the aqueous humour, which is essential to maintain the internal eye pressure as well as the clearness of the lens and cornea. The histological study was designed to provide the morphological differences of CB and iris in the anterior eye chambers of the following vertebrate classes: fish (grass carp), amphibians (Arabian toad), reptiles (semiaquatic turtle, fan-footed gecko, ocellated skink, Egyptian spiny-tailed lizard, Arabian horned viper), birds (common pigeon, common quail, common kestrel), and mammals (BALB/c mouse, rabbit, golden hamster, desert hedgehog, lesser Egyptian jerboa, Egyptian fruit bat). The results showed distinct morphological appearances of the CB and iris in each species, ranging from fish to mammals. The present comparative study concluded that the morphological structure of the CB and iris is the adaptation of species to either their lifestyle or survival in specific habitats.


Subject(s)
Ciliary Body , Iris , Animals , Ciliary Body/anatomy & histology , Iris/anatomy & histology , Rabbits/anatomy & histology , Mice/anatomy & histology , Lizards/anatomy & histology , Vertebrates/anatomy & histology , Reptiles/anatomy & histology , Fishes/anatomy & histology , Birds/anatomy & histology , Anterior Chamber/anatomy & histology , Turtles/anatomy & histology , Carps/anatomy & histology , Mice, Inbred BALB C , Amphibians/anatomy & histology , Cricetinae , Quail/anatomy & histology , Hedgehogs/anatomy & histology , Columbidae/anatomy & histology , Mesocricetus/anatomy & histology
20.
PLoS One ; 19(5): e0303198, 2024.
Article in English | MEDLINE | ID: mdl-38701057

ABSTRACT

The study of morphological characteristics and growth information in fish scales is a crucial component of modern fishery biological research, while it has been less studied in fossil materials. This paper presents a detailed morphological description and growth analysis of a fossil ctenoid scale obtained from the Upper Cretaceous Campanian lacustrine deposits in northeastern China. The morphological features of this fossil scale are well-preserved and consistent with the structures found in ctenoid scales of extant fish species and display prominent ring ornamentation radiating outward from the central focus, with grooves intersecting the rings. A comparative analysis of the morphological characteristics between the fossil ctenoid scale and those well-studied extant fish Mugilidae allows us to explore the applicability of modern fishery biological research methods to the field of fossil scales. The scale length, scale width, the vertical distance from the focus to the apex of the scale, and the total number of radii have been measured. The age of the fish that possessed this ctenoid scale has been estimated by carefully counting the annuli, suggesting an age equal to or more than seven years. The distribution of growth rings on the scale potentially reflects the warm paleoclimatic condition and fish-friendly paleoenvironment prevalent during that period. This paper, moreover, serves as a notable application of fishery biological methods in the examination of fossil materials.


Subject(s)
Fossils , China , Animals , Fishes/anatomy & histology , Fishes/growth & development , Animal Scales/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL