Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.432
Filter
1.
Ecotoxicol Environ Saf ; 281: 116674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964056

ABSTRACT

The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.


Subject(s)
Hippocampus , MAP Kinase Signaling System , Reactive Oxygen Species , Xanthophylls , Animals , Xanthophylls/pharmacology , Mice , Reactive Oxygen Species/metabolism , Hippocampus/drug effects , MAP Kinase Signaling System/drug effects , Male , Behavior, Animal/drug effects , Oxidative Stress/drug effects , Flame Retardants/toxicity , Antioxidants/pharmacology , Phthalic Acids/toxicity , Apoptosis/drug effects , Neurons/drug effects , Maze Learning/drug effects
2.
Article in Chinese | MEDLINE | ID: mdl-38964913

ABSTRACT

Brominated flame retardants (BFRs) are a kind of brominated compounds widely used in electronic and electrical appliances, textiles, construction materials and other industrial products to improve the flame retardant property. Because of its strong chemical stability, environmental persistence, long-distance transmission, biological accumulation, the exposure of humans and organisms in the ecosystem is increasing, and its potential biological effects are of great concern. Now BFRs can be detected in breast milk, serum, placenta and cord blood. Studies have shown that exposure to BFRs during pregnancy can lead to adverse birth outcomes such as low birth weight, malformation, gestational age changes and impairment of neurobehavioral development. This article summarizes the pollution and population exposure of three traditional BFRs, polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol A (TBBPA), as well as the impact and mechanism of prenatal exposure on offspring birth outcomes and growth and development. It explores the harm of prenatal exposure to BFRs to offspring and proposes preventive measures for occupational populations for reference.


Subject(s)
Flame Retardants , Halogenated Diphenyl Ethers , Hydrocarbons, Brominated , Maternal Exposure , Polybrominated Biphenyls , Prenatal Exposure Delayed Effects , Flame Retardants/toxicity , Pregnancy , Humans , Female , Hydrocarbons, Brominated/toxicity , Halogenated Diphenyl Ethers/toxicity , Maternal Exposure/adverse effects , Polybrominated Biphenyls/toxicity
3.
J Environ Sci (China) ; 145: 97-106, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38844327

ABSTRACT

Sediment is the ultimate sink of environmental pollutants. A total of 128 surface sediment samples were collected from 8 rivers and 3 reservoirs in Maoming City, Guangdong Province. This study assessed the content and distribution of brominated flame retardants in sediments. The acute toxicity effects of tetrabromobisphenol A (TBBPA) and hexabromocyclododecane (HBCDs) in sediments were evaluated using Caenorhabditis elegans as model organisms. The concentration of TBBPA in sediments ranged from not detected (ND) to 12.59 µg/kg and was mainly distributed in the central area, which was affected by the emission of TBBPA from residential and factory. The concentration of HBCDs ranged from ND to 6.31 µg/kg, and the diastereoisomer distribution was consistent, showing a trend close to the South China Sea. The composition pattern of HBCDs in the surface sediments from rivers were 41.73%-62.33%, 7.89%-25.54%, and 18.76%-40.65% for α-, ß-, and γ-HBCD, respectively, and in the sediments from reservoirs were 26.15%-45.52%, 7.44%-19.23%, and 47.04%-61.89% for α-, ß-, and γ-HBCD, respectively. When the sum of concentrations of TBBPA and HBCD in sediments were above high levels, reactive oxygen species in nematodes significantly increased, resulting in an oxidative stress response. Intestinal permeability was also enhanced, causing intestinal damage. In addition, in terms of this study, TBBPA had a greater impact on biotoxicity compared to HBCDs, and more attention should be paid to the toxic effects of the river ecosystem organisms in Maoming City, Guangdong Province. This study can complement the pollution database in the study area and provide basic data for pollution control.


Subject(s)
Caenorhabditis elegans , Environmental Monitoring , Flame Retardants , Geologic Sediments , Hydrocarbons, Brominated , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Flame Retardants/analysis , China , Caenorhabditis elegans/drug effects , Geologic Sediments/chemistry , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Hydrocarbons, Brominated/analysis , Hydrocarbons, Brominated/toxicity , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/analysis
4.
Ecotoxicol Environ Saf ; 280: 116557, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38850695

ABSTRACT

Decabromodiphenyl ether (BDE-209) is an organic compound that is widely used in rubber, textile, electronics, plastics and other industries. It has been found that BDE-209 has a destructive effect on the reproductive system of mammals. However, the effect of BDE-209 exposure on oocyte quality and whether there is a viable salvage strategy have not been reported. Here, we report that murine oocytes exposed to BDE-209 produce a series of meiostic defects, including increased fragmentation rates and decreased PBE. Furthermore, exposure of oocytes to BDE-209 hinders mitochondrial function and disrupts mitochondrial integrity. Our observations show that supplementation with NMN successfully alleviated the meiosis impairment caused by BDE-209 and averted oocyte apoptosis by suppressing ROS generation. In conclusion, our findings suggest that NMN supplementation may be able to alleviate the oocyte quality impairment induced by BDE-209 exposure, providing a potential strategy for protecting oocytes from environmental pollutant exposure.


Subject(s)
Halogenated Diphenyl Ethers , Oocytes , Reactive Oxygen Species , Animals , Halogenated Diphenyl Ethers/toxicity , Oocytes/drug effects , Mice , Reactive Oxygen Species/metabolism , Female , Apoptosis/drug effects , Mitochondria/drug effects , Environmental Pollutants/toxicity , Meiosis/drug effects , Flame Retardants/toxicity
5.
Ecotoxicol Environ Saf ; 280: 116559, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865937

ABSTRACT

2-Ethylhexyl diphenyl phosphate (EHDPP) is a representative organophosphorus flame retardant (OPFR) that has garnered attention due to its widespread use and potential adverse effects. EHDPP exhibits cytotoxicity, genotoxicity, developmental toxicity, and endocrine disruption. However, the toxicity of EHDPP in mammalian oocytes and the underlying mechanisms remain poorly understood. Melatonin is a natural free radical scavenger that has demonstrated cytoprotective properties. In this study, we investigated the effect of EHDPP on mouse oocytes in vitro culture system and evaluated the rescue effect of melatonin on oocytes exposed to EHDPP. Our results indicated that EHDPP disrupted oocyte maturation, resulting in the majority of oocytes arrested at the metaphase I (MI) stage, accompanied by cytoskeletal damage and elevated levels of reactive oxygen species (ROS). Nevertheless, melatonin supplementation partially rescued EHDPP-induced mouse oocyte maturation impairment. Results of single-cell RNA sequencing (scRNA-seq) analysis elucidated potential mechanisms underlying these protective effects. According to the results of scRNA-seq, we conducted further tests and found that EHDPP primarily disrupts mitochondrial distribution and function, kinetochore-microtubule (K-MT) attachment, DNA damage, apoptosis, and histone modification, which were rescued upon the supplementation of melatonin. This study reveals the mechanisms of EHDPP on female reproduction and indicates the efficacy of melatonin as a therapeutic intervention for EHDPP-induced defects in mouse oocytes.


Subject(s)
Flame Retardants , Melatonin , Mitochondria , Oocytes , Animals , Melatonin/pharmacology , Mice , Oocytes/drug effects , Mitochondria/drug effects , Female , Flame Retardants/toxicity , Reactive Oxygen Species/metabolism , Organophosphates/toxicity , DNA Damage/drug effects , Apoptosis/drug effects , Organophosphorus Compounds/toxicity
6.
Ecotoxicol Environ Saf ; 280: 116577, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38870736

ABSTRACT

Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.


Subject(s)
3T3-L1 Cells , Adipogenesis , Flame Retardants , Lipid Metabolism , Polybrominated Biphenyls , Polybrominated Biphenyls/toxicity , Lipid Metabolism/drug effects , Animals , Mice , Adipogenesis/drug effects , Humans , Flame Retardants/toxicity , Hep G2 Cells , Cell Differentiation/drug effects , Mesenchymal Stem Cells/drug effects , Endocrine Disruptors/toxicity , Adipocytes/drug effects , Adipocytes/metabolism
7.
Ecotoxicol Environ Saf ; 281: 116625, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908056

ABSTRACT

Humans are extensively exposed to organophosphate flame retardants (OPFRs), an emerging group of organic contaminants with potential nephrotoxicity. Nevertheless, the estimated daily intake (EDI) and prognostic impacts of OPFRs have not been assessed in individuals with chronic kidney disease (CKD). In this 2-year longitudinal study of 169 patients with CKD, we calculated the EDIs of five OPFR triesters from urinary biomonitoring data of their degradation products and analyzed the effects of OPFR exposure on adverse renal outcomes and renal function deterioration. Our analysis demonstrated universal OPFR exposure in the CKD population, with a median EDIΣOPFR of 360.45 ng/kg body weight/day (interquartile range, 198.35-775.94). Additionally, our study revealed that high tris(2-chloroethyl) phosphate (TCEP) exposure independently correlated with composite adverse events and composite renal events (hazard ratio [95 % confidence interval; CI]: 4.616 [1.060-20.096], p = 0.042; 3.053 [1.075-8.674], p = 0.036) and served as an independent predictor for renal function deterioration throughout the study period, with a decline in estimated glomerular filtration rate of 4.127 mL/min/1.73 m2 (95 % CI, -8.127--0.126; p = 0.043) per log ng/kg body weight/day of EDITCEP. Furthermore, the EDITCEP and EDIΣOPFR were positively associated with elevations in urinary 8-hydroxy-2'-deoxyguanosine and kidney injury molecule-1 during the study period, indicating the roles of oxidative damage and renal tubular injury in the nephrotoxicity of OPFR exposure. To conclude, our findings highlight the widespread OPFR exposure and its possible nephrotoxicity in the CKD population.


Subject(s)
Flame Retardants , Organophosphates , Renal Insufficiency, Chronic , Humans , Flame Retardants/toxicity , Longitudinal Studies , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/urine , Male , Female , Middle Aged , Organophosphates/toxicity , Organophosphates/urine , Aged , Adult , Kidney/drug effects , Environmental Exposure/statistics & numerical data , Organophosphorus Compounds/urine , Organophosphorus Compounds/toxicity , Environmental Monitoring , Environmental Pollutants/toxicity , Environmental Pollutants/urine
8.
Environ Sci Pollut Res Int ; 31(29): 41939-41952, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38856849

ABSTRACT

The widespread application of organophosphate flame retardants has led to pervasive exposure to organophosphate esters (OPEs), prompting considerable concerns regarding their potential health risk to humans. Despite hints from previous research about OPEs' association with breast cancer, their specific effects and underlying mechanisms of triple-negative breast cancer (TNBC) remain unclear. In this study, we investigated the effects of four representative OPEs on cell proliferation, cell cycle regulation, migration, and the expression of genes and proteins associated with the epidermal growth factor receptor (EGFR) and Hippo signaling pathways in TNBC (MDA-MB-231) cells. Our findings revealed that treatment with 1-25 µM triphenyl phosphate (TPHP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) induced TNBC cell proliferation and accelerated cell cycle progression, with upregulation in MYC, CCND1, and BRCA1 mRNA. Moreover, exposure to 1-25 µM TPHP, 10-25 µM TDCIPP, and 1-10 µM tris (2-chloroethyl) phosphate (TCEP) induced MMP2/9 mRNA expression and enhanced migratory capacity, except for 2-ethylhexyl diphenyl phosphate (EHDPP). Mechanistically, four OPEs treatments activated the EGFR-ERK1/2 and EGFR-PI3K/AKT signaling pathways by increasing the transcript of EGFR, ERK1/2, PI3K, and AKT mRNA. OPEs treatment also suppressed the Hippo signaling pathway by inhibiting the expression of MST1 mRNA and phosphorylation of LATS1, leading to the overactivation of YAP1 protein, thereby promoting TNBC cell proliferation and migration. In summary, our study elucidated that activation of the EGFR signaling pathway and suppression of the Hippo signaling pathway contributed to the proliferation, cell cycle dysregulation, and migration of TNBC cells following exposure to OPEs.


Subject(s)
Cell Movement , Cell Proliferation , ErbB Receptors , Hippo Signaling Pathway , Signal Transduction , Triple Negative Breast Neoplasms , Humans , ErbB Receptors/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Signal Transduction/drug effects , Cell Line, Tumor , Hippo Signaling Pathway/drug effects , Organophosphates/pharmacology , Esters , Female , Protein Serine-Threonine Kinases/metabolism , Flame Retardants/toxicity
9.
Chem Biol Interact ; 398: 111095, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38844256

ABSTRACT

It is established that organophosphorus pesticide (OPP) toxicity results from modification of amino acids in active sites of target proteins. OPPs can also modify unrelated target proteins such as histones and such covalent histone modifications can alter DNA-binding properties and lead to aberrant gene expression. In the present study, we report on non-enzymatic covalent modifications of calf thymus histones adducted to selected OPPs and organophosphate flame retardants (OPFRs) in vitro using a bottom-up proteomics method approach. Histones were not found to form detectable adducts with the two tested OPFRs but were avidly modified by a few of the seven OPPs that were tested in vitro. Dimethyl phosphate (or diethyl phosphate) adducts were identified on Tyr, Lys and Ser residues. Most of the dialkyl phosphate adducts were identified on Tyr residues. Methyl and ethyl modified histones were also detected. Eleven amino residues in histones showed non-enzymatic covalent methylation by exposure of dichlorvos and malathion. Our bottom-up proteomics approach showing histone-OPP adduct formation warrants future studies on the underlying mechanism of chronic illness from exposure to OPPs.


Subject(s)
Histones , Organophosphorus Compounds , Pesticides , Histones/metabolism , Histones/chemistry , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/metabolism , Organophosphorus Compounds/toxicity , Animals , Pesticides/chemistry , Pesticides/metabolism , Pesticides/toxicity , Cattle , Methylation , Malathion/chemistry , Malathion/metabolism , Malathion/toxicity , Proteomics , Flame Retardants/toxicity , Flame Retardants/metabolism , Amino Acid Sequence , Dichlorvos/chemistry , Dichlorvos/toxicity
10.
Aquat Toxicol ; 272: 106979, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823072

ABSTRACT

Tris(2-chloroethyl) phosphate (TCEP) and tris(1­chloro-2-propyl) phosphate (TCPP) are widely used as chlorinated organophosphate flame retardants (OPFRs) due to their fire-resistance capabilities. However, their extensive use has led to their permeation and pollution in aquatic environments. Using amphibians, which are non-model organisms, to test the toxic effects of OPFRs is relatively uncommon. This study examined the acute and chronic toxicity differences between TCEP and TCPP on Polypedates megacephalus tadpoles and evaluated the potential ecological risks to tadpoles in different aquatic environments using the risk quotient (RQ). In acute toxicity assay, the tadpole survival rates decreased with increased exposure time and concentrations, with TCEP exhibiting higher LC50 values than TCPP, at 305.5 mg/L and 70 mg/L, respectively. In the chronic assay, prolonged exposure to 300 µg/L of both substances resulted in similar adverse effects on tadpole growth, metamorphosis, and hepatic antioxidant function. Based on RQ values, most aquatic environments did not pose an ecological risk to tadpoles. However, the analysis showed that wastewater presented higher risks than rivers and drinking water, and TCPP posed a higher potential risk than TCEP in all examined aquatic environments. These findings provide empirical evidence to comprehend the toxicological effects of OPFRs on aquatic organisms and to assess the safety of aquatic environments.


Subject(s)
Anura , Flame Retardants , Larva , Organophosphates , Organophosphorus Compounds , Water Pollutants, Chemical , Animals , Flame Retardants/toxicity , Larva/drug effects , Larva/growth & development , Water Pollutants, Chemical/toxicity , Organophosphorus Compounds/toxicity , Risk Assessment , Organophosphates/toxicity , Anura/growth & development , Metamorphosis, Biological/drug effects , Toxicity Tests, Acute , Lethal Dose 50
11.
Chem Biol Interact ; 397: 111088, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38823534

ABSTRACT

Tris(2-butoxyethyl) phosphate (TBOEP) is an organophosphorus flame retardant ubiquitously present in the environment and even the human body. TBOEP is toxic in multiple tissues, which forms dealkylated and hydroxylated metabolites under incubation with human hepatic microsomes; however, the impact of TBOEP metabolism on its toxicity, particularly mutagenicity (typically requiring metabolic activation), is left unidentified. In this study, the mutagenicity of TBOEP in human hepatoma cell lines (HepG2 and C3A) and the role of specific CYPs were studied. Through molecular docking, TBOEP bound to human CYP1A1, 1B1, 2B6 and 3A4 with energies and conformations favorable for catalyzing reactions, while the conformations of its binding with human CYP1A2 and 2E1 appeared unfavorable. In C3A cells (endogenous CYPs being substantial), TBOEP exposing for 72 h (2-cell cycle) at low micromolar levels induced micronucleus, which was abolished by 1-aminobenzotriazole (inhibitor of CYPs); in HepG2 cells (CYPs being insufficient) TBOEP did not induce micronucleus, whose effect was however potentiated by pretreating the cells with PCB126 (CYP1A1 inducer) or rifampicin (CYP3A4 inducer). TBOEP induced micronucleus in Chinese hamster V79-derived cell lines genetically engineered for stably expressing human CYP1A1 and 3A4, but not in cells expressing the other CYPs. In C3A cells, TBOEP selectively induced centromere protein B-free micronucleus (visualized by immunofluorescence) and PIG-A gene mutations, and elevated γ-H2AX rather than p-H3 (by Western blot) which indicated specific double-strand DNA breaks. Therefore, this study suggests that TBOEP may induce DNA/chromosome breaks and gene mutations in human cells, which requires metabolic activation by CYPs, primarily CYP1A1 and 3A4.


Subject(s)
Cytochrome P-450 Enzyme System , Flame Retardants , Molecular Docking Simulation , Animals , Humans , Flame Retardants/toxicity , Cricetinae , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Mutagens/toxicity , Organophosphorus Compounds/toxicity , Cricetulus , Organophosphates/toxicity , Hep G2 Cells , Micronucleus Tests
12.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895814

ABSTRACT

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Subject(s)
Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anaerobiosis , Wastewater/chemistry , Biota , Flame Retardants/toxicity , Flame Retardants/metabolism , Waste Disposal, Fluid/methods , Chironomidae/drug effects , Chironomidae/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism
13.
Islets ; 16(1): 2361996, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38833523

ABSTRACT

Epidemiological studies consistently link environmental toxicant exposure with increased Type 2 diabetes risk. Our study investigated the diabetogenic effects of a widely used flame retardant, Dechlorane Plus (DP), on pancreatic ß-cells using rodent and human model systems. We first examined pancreas tissues from male mice exposed daily to oral gavage of either vehicle (corn oil) or DP (10, 100, or 1000 µg/kg per day) and fed chow or high fat diet for 28-days in vivo. DP exposure did not affect islet size or endocrine cell composition in either diet group. Next, we assessed the effect of 48-hour exposure to vehicle (DMSO) or DP (1, 10, or 100 nM) in vitro using immortalized rat ß-cells (INS-1 832/3), primary mouse and human islets, and human stem-cell derived islet-like cells (SC-islets). In INS-1 832/3 cells, DP did not impact glucose-stimulated insulin secretion (GSIS) but significantly decreased intracellular insulin content. DP had no effect on GSIS in mouse islets or SC-islets but had variable effects on GSIS in human islets depending on the donor. DP alone did not affect insulin content in mouse islets, human islets, or SC-islets, but mouse islets co-exposed to DP and glucolipotoxic (GLT) stress conditions (28.7 mM glucose + 0.5 mM palmitate) had reduced insulin content compared to control conditions. Co-exposure of mouse islets to DP + GLT amplified the upregulation of Slc30a8 compared to GLT alone. Our study highlights the importance and challenges of using different in vitro models for studying chemical toxicity.


Subject(s)
Hydrocarbons, Chlorinated , Insulin-Secreting Cells , Polycyclic Compounds , Animals , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Humans , Mice , Male , Polycyclic Compounds/pharmacology , Hydrocarbons, Chlorinated/toxicity , Rats , Insulin/metabolism , Flame Retardants/toxicity , Insulin Secretion/drug effects , Mice, Inbred C57BL , Cells, Cultured
14.
Sci Total Environ ; 940: 173575, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-38823712

ABSTRACT

Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1ß, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.


Subject(s)
Bromobenzenes , Carps , Ferroptosis , Hepatocytes , Oxidative Stress , Polystyrenes , Water Pollutants, Chemical , Animals , Oxidative Stress/drug effects , Ferroptosis/drug effects , Carps/physiology , Water Pollutants, Chemical/toxicity , Hepatocytes/drug effects , Polystyrenes/toxicity , Bromobenzenes/toxicity , Inflammation/chemically induced , Flame Retardants/toxicity
15.
Ecotoxicol Environ Saf ; 281: 116640, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38941656

ABSTRACT

2-Ethylhexyl diphenyl phosphate (EHDPP) is a frequently utilized organophosphorus flame retardant (OPFR) and has been extensively detected in environmental media. Prolonged daily exposure to EHDPP has been linked to potential retinal damage, yet the adverse impacts on the retina are still generally underexplored. In this research, we explored oxidative stress, inflammation, and the activating mechanisms initiated by EHDPP in mouse retinal photoreceptor (661 W) cells following a 24 h exposure period. Our research demonstrated that EHDPP led to a decline in cell viability that was directly proportional to its concentration, with the median lethal concentration (LC50) being 88 µM. Furthermore, EHDPP was found to elevate intracellular and mitochondrial levels of reactive oxygen species (ROS), trigger apoptosis, induce cell cycle arrest at the G1 phase, and modulate the expression of both antioxidant enzymes (Nrf2, HO-1, and CAT) and pro-inflammatory mediators (TNF-α, IL-1ß, and IL-6) within 661 W cells. These findings indicate that retinal damage triggered by EHDPP exposure could be mediated via the Nrf2/HO-1 signaling pathway in these cells. Collectively, our investigation revealed that oxidative stress induced by EHDPP is likely a critical factor in the cytotoxic response of 661 W cells, potentially leading to damage in retinal photoreceptor cells.


Subject(s)
Apoptosis , Cell Survival , Flame Retardants , Oxidative Stress , Reactive Oxygen Species , Animals , Oxidative Stress/drug effects , Flame Retardants/toxicity , Mice , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Cell Survival/drug effects , Organophosphorus Compounds/toxicity , Inflammation/chemically induced , Organophosphates/toxicity , NF-E2-Related Factor 2/metabolism , Cell Line , Photoreceptor Cells/drug effects , Retina/drug effects
16.
Ecotoxicol Environ Saf ; 281: 116618, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944011

ABSTRACT

BACKGROUND: Gastric cancer is a leading cause of cancer-related deaths influenced by both genetic and environmental factors. Triphenyl phosphate (TPP) is a prevalent flame retardant, but its health implications remain to be thoroughly understood. OBJECTIVE: To explore the link between TPP exposure and gastric cancer by examining gene expression patterns and developing a predictive model. METHODS: Gene expression data were sourced from The Cancer Genome Atlas (TCGA) and the Comparative Toxicogenomics Database (CTD). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were employed for analysis. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to obtain phosphate flame retardant-related scores. A predictive model was constructed through differential analysis, univariate COX regression, and LASSO regression. Molecular docking was performed to assess protein interactions with TPP. RESULTS: ssGSEA identified scores related to phosphate flame retardants in gastric cancer, which had a strong association with immune-related traits. Several genes associated with TPP were identified and used to develop a prognostic model that has clinical significance. Molecular docking showed a high binding affinity of TPP with MTTP, a gene related to lipid metabolism. Pathway analysis indicated that TPP exposure contributes to gastric cancer through lipid metabolic processes. CONCLUSION: The study establishes a potential correlation between TPP exposure and gastric cancer onset, pinpointing key genes and pathways involved. This underscores the significance of environmental factors in gastric cancer research and presents a potential diagnostic tool for clinical application.


Subject(s)
Cell Movement , Cell Proliferation , Flame Retardants , Molecular Docking Simulation , Organophosphates , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/chemically induced , Stomach Neoplasms/pathology , Humans , Organophosphates/toxicity , Flame Retardants/toxicity , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects
17.
Folia Neuropathol ; 62(1): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38741432

ABSTRACT

Polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs) are dominant environmental and food contaminants. Tetrabromobisphenol A (TBBPA) is the most widely used BFR in the world to improve the fire safety of laminates in electrical and electronic equipment. Aroclor 1254, one of the PCBs, is widely distributed in the environment due to its extensive use in industrial applications around the world. Both groups of substances are potent toxicants. There is also increasing evidence that they have neurotoxic effects. In this study we tested the pro-inflammatory effects of Aroclor 1254 and TBBPA based on markers of microglial reactivity and levels of pro-inflammatory factors in the brain of immature rats. Aroclor 1254 or TBBPA were administered to the rats by oral gavage for two weeks at a dose of 10 mg/kg b.w. Both light and electron microscopy studies revealed features indicative of microglia activation in brains of exposed rats. Morphological changes were associated with overexpression of pro-inflammatory enzymes such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Analysis of cytokine/chemokine array revealed significant secretion of inflammatory mediators following exposure to both TBBPA and Aroclor 1254, which was stronger in the cerebellum than in the forebrain of exposed immature rats. The results indicate a pro-inflammatory profile of microglia activation as one of the neurotoxic mechanisms of both examined toxicants.


Subject(s)
Microglia , Neurotoxicity Syndromes , Polybrominated Biphenyls , Animals , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Polybrominated Biphenyls/toxicity , Rats , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/etiology , Brain/drug effects , Brain/pathology , Brain/metabolism , Male , Flame Retardants/toxicity , Rats, Wistar
18.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695612

ABSTRACT

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Subject(s)
Reproduction , Zebrafish , Animals , Male , Reproduction/drug effects , Spermatozoa/drug effects , Testis/drug effects , Testis/metabolism , Flame Retardants/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Female
19.
Ecotoxicol Environ Saf ; 278: 116414, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38714086

ABSTRACT

BACKGROUND: Organophosphate esters (OPEs) are used extensively as flame retardants and plasticizers. Laboratory studies have shown that OPEs exhibit osteotoxicity by inhibiting osteoblast differentiation; however, little is known about how OPEs exposure is associated with bone health in humans. OBJECTIVES: We conducted a cross-sectional study to investigate the association between OPEs exposure and bone mineral density (BMD) in adults in the United States using data from the 2011-2018 National Health and Nutrition Examination Survey (NHANES). METHODS: Multivariate linear regression models were used to assess the association between concentrations of individual OPE metabolites and BMDs. We also used the Bayesian kernel machine regression (BKMR) and quantile g-computation (qgcomp) models to estimate joint associations between OPE mixture exposure and BMDs. All the analyses were stratified according to gender. RESULTS: A total of 3546 participants (median age, 40 years [IQR, 30-50 years]; 50.11% male) were included in this study. Five urinary OPE metabolites with a detection rate of > 50% were analyzed. After adjusting for the potential confounders, OPE metabolite concentrations were associated with decreased total-body BMD and lumbar spine BMD in males, although some associations only reached significance for bis(1-chloro-2-propyl) phosphate (BCPP), dibutyl phosphate (DBUP), and bis(2-chloroethyl) phosphate (BCEP) (ß = -0.013, 95% CI: -0.026, -0.001 for BCPP and total-body BMD; ß = -0.022, 95% CI: -0.043, -0.0001 for DBUP and lumbar spine BMD; ß=-0.018, 95% CI: -0.034, -0.002 for BCEP and lumbar spine BMD). OPE mixture exposure was also inversely associated with BMD in males, as demonstrated in the BMKR and qgcomp models. CONCLUSIONS: This study provides preliminary evidence that urinary OPE metabolite concentrations are inversely associated with BMD. The results also suggested that males were more vulnerable than females. However, further studies are required to confirm these findings.


Subject(s)
Bone Density , Nutrition Surveys , Organophosphates , Humans , Adult , Male , Bone Density/drug effects , Female , Middle Aged , United States , Cross-Sectional Studies , Organophosphates/urine , Organophosphates/toxicity , Esters , Flame Retardants/toxicity , Environmental Exposure/statistics & numerical data , Environmental Pollutants/urine
20.
Environ Health Perspect ; 132(5): 54002, 2024 May.
Article in English | MEDLINE | ID: mdl-38758118

ABSTRACT

Regulating chemicals by class based on chemical similarities may help reduce risk of regrettable substitutions while enhancing health protection. A new Commentary summarizes OFR toxicity and exposure research to inform this effort.


Subject(s)
Flame Retardants , Flame Retardants/toxicity , Humans , United States , United States Environmental Protection Agency , Environmental Exposure , Hydrocarbons, Halogenated/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL