Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.862
Filter
1.
Sci Adv ; 10(27): eadl1888, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959313

ABSTRACT

We present structures of three immature tick-borne encephalitis virus (TBEV) isolates. Our atomic models of the major viral components, the E and prM proteins, indicate that the pr domains of prM have a critical role in holding the heterohexameric prM3E3 spikes in a metastable conformation. Destabilization of the prM furin-sensitive loop at acidic pH facilitates its processing. The prM topology and domain assignment in TBEV is similar to the mosquito-borne Binjari virus, but is in contrast to other immature flavivirus models. These results support that prM cleavage, the collapse of E protein ectodomains onto the virion surface, the large movement of the membrane domains of both E and M, and the release of the pr fragment from the particle render the virus mature and infectious. Our work favors the collapse model of flavivirus maturation warranting further studies of immature flaviviruses to determine the sequence of events and mechanistic details driving flavivirus maturation.


Subject(s)
Encephalitis Viruses, Tick-Borne , Viral Envelope Proteins , Encephalitis Viruses, Tick-Borne/physiology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , Models, Molecular , Flavivirus/physiology , Animals , Virion , Encephalitis, Tick-Borne/virology , Humans
2.
Virologie (Montrouge) ; 28(3): 187-197, 2024 Jun 01.
Article in French | MEDLINE | ID: mdl-38970340

ABSTRACT

Orthoflaviviruses are enveloped positive-sense RNA viruses comprising numerous human pathogens transmitted by hematophagous arthropods. This includes viruses such as dengue virus, Zika virus, and yellow fever virus. The viral nonstructural protein NS1 plays a central role in the pathogenesis and cycle of these viruses by acting in two different forms: associated with the plasma membrane (NS1m) or secreted outside the cell (NS1s). The versatility of NS1 is evident in its ability to modulate various aspects of the infectious process, from immune evasion to pathogenesis. As an intracellular protein, it disrupts many processes, interfering with signaling pathways and facilitating viral replication in concert with other viral proteins. As a secreted protein, NS1 actively participates in immune evasion, interfering with the host immune system, inhibiting the complement system, facilitating viral dissemination, and disrupting the integrity of endothelial barriers. This review primarily aims to address the role of NS1 in viral pathogenesis associated with orthoflaviviruses.


Subject(s)
Viral Nonstructural Proteins , Virus Replication , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/physiology , Humans , Animals , Flavivirus Infections/virology , Immune Evasion , Flavivirus/physiology , Flavivirus/pathogenicity , Zika Virus/physiology , Zika Virus/pathogenicity , Dengue Virus/physiology
3.
Parasit Vectors ; 17(1): 285, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956650

ABSTRACT

Usutu virus is an emerging pathogen transmitted by mosquitoes. Culex modestus mosquitoes are widespread in Europe, but their role in disease transmission is poorly understood. Recent data from a single infectious mosquito suggested that Culex modestus could be an unrecognized vector for Usutu virus. In this study, our aim was to corroborate this finding using a larger sample size. We collected immature Culex modestus from a reedbed pond in Flemish Brabant, Belgium, and reared them in the laboratory until the third generation. Adult females were then experimentally infected with Usutu virus in a blood meal and incubated at 25 °C for 14 days. The presence of Usutu virus in the saliva, head and body of each female was determined by plaque assay and quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The transmission efficiency was 54% (n = 15/28), confirming that Belgian Culex modestus can experimentally transmit Usutu virus.


Subject(s)
Culex , Flavivirus Infections , Flavivirus , Mosquito Vectors , Animals , Culex/virology , Female , Mosquito Vectors/virology , Flavivirus/genetics , Flavivirus/physiology , Belgium , Flavivirus Infections/transmission , Flavivirus Infections/virology , Saliva/virology
4.
J Biomed Sci ; 31(1): 60, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849802

ABSTRACT

BACKGROUND: Flavivirus is a challenge all over the world. The replication of flavivirus takes place within membranous replication compartments (RCs) derived from endoplasmic reticulum (ER). Flavivirus NS1 proteins have been proven essential for the formation of viral RCs by remodeling the ER. The glycosylation of flavivirus NS1 proteins is important for viral replication, yet the underlying mechanism remains unclear. METHODS: HeLa cells were used to visualize the ER remodeling effects induced by NS1 expression. ZIKV replicon luciferase assay was performed with BHK-21 cells. rZIKV was generated from BHK-21 cells and the plaque assay was done with Vero Cells. Liposome co-floating assay was performed with purified NS1 proteins from 293T cells. RESULTS: We found that the glycosylation of flavivirus NS1 contributes to its ER remodeling activity. Glycosylation deficiency of NS1, either through N-glycosylation sites mutations or tunicamycin treatment, compromises its ER remodeling activity and interferes with viral RCs formation. Disruption of NS1 glycosylation results in abnormal aggregation of NS1, rather than reducing its membrane-binding activity. Consequently, deficiency in NS1 glycosylation impairs virus replication. CONCLUSIONS: In summary, our results highlight the significance of NS1 glycosylation in flavivirus replication and elucidate the underlying mechanism. This provides a new strategy for combating flavivirus infections.


Subject(s)
Viral Nonstructural Proteins , Virus Replication , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Glycosylation , Humans , Animals , Viral Replication Compartments/metabolism , HeLa Cells , Chlorocebus aethiops , Flavivirus/physiology , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Vero Cells
5.
Nat Commun ; 15(1): 5179, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898037

ABSTRACT

Viral genetic diversity presents significant challenges in developing antivirals with broad-spectrum activity and high barriers to resistance. Here we report development of proteolysis targeting chimeras (PROTACs) targeting the dengue virus envelope (E) protein through coupling of known E fusion inhibitors to ligands of the CRL4CRBN E3 ubiquitin ligase. The resulting small molecules block viral entry through inhibition of E-mediated membrane fusion and interfere with viral particle production by depleting intracellular E in infected Huh 7.5 cells. This activity is retained in the presence of point mutations previously shown to confer partial resistance to the parental inhibitors due to decreased inhibitor-binding. The E PROTACs also exhibit broadened spectrum of activity compared to the parental E inhibitors against a panel of mosquito-borne flaviviruses. These findings encourage further exploration of targeted protein degradation as a differentiated and potentially advantageous modality for development of broad-spectrum direct-acting antivirals.


Subject(s)
Antiviral Agents , Dengue Virus , Flavivirus , Proteolysis , Virus Internalization , Humans , Proteolysis/drug effects , Animals , Antiviral Agents/pharmacology , Flavivirus/drug effects , Flavivirus/genetics , Flavivirus/metabolism , Virus Internalization/drug effects , Dengue Virus/drug effects , Dengue Virus/physiology , Dengue Virus/genetics , Culicidae/virology , Ubiquitin-Protein Ligases/metabolism , Viral Envelope Proteins/metabolism , Cell Line
6.
An Acad Bras Cienc ; 96(2): e20230452, 2024.
Article in English | MEDLINE | ID: mdl-38922274

ABSTRACT

The genus Flavivirus comprises approximately 80 different viruses. Phylogenetic relationships among its members indicate a clear ecological separation between those viruses transmitted by mosquitoes, ticks, with no known vector, and insect-specific Flaviviruses. The diversity and phylogenetic relationships among insect-specific flaviviruses circulating in the central and northern regions of Argentina were studied by performing molecular detection and characterization of the NS5 protein gene in mosquitoes collected in Córdoba, Chaco and Tucumán provinces. Overall, 68 out of 1776 pools were positive. CxFV, KRV and CFAV circulate in the 3 studied provinces. Several mosquito species (Aedes aegypti, Culex bidens, Cx. dolosus, Cx. interfor, Cx. quinquefasciatus, Cx. saltanensis, Haemagogus spegazzini) were found infected. A wide circulation of CxFV was observed in the central-northern region of Argentina. CxFV strains detected in our study clustered with strains circulating in Santa Fe and Buenos Aires provinces (Argentina), and other countries such as Indonesia, Mexico, Uganda and Taiwan. The presence of these viruses in mosquitoes could play an important role from the public health perspective, because it has been shown that previous CxFV infection can increase or block the infection of the mosquito by other pathogenic flaviviruses.


Subject(s)
Culicidae , Flavivirus , Mosquito Vectors , Phylogeny , Animals , Argentina , Flavivirus/classification , Flavivirus/genetics , Flavivirus/isolation & purification , Culicidae/virology , Culicidae/classification , Mosquito Vectors/virology , Mosquito Vectors/classification
7.
Nat Commun ; 15(1): 5426, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926343

ABSTRACT

Zika and dengue virus nonstructural protein 5 antagonism of STAT2, a critical interferon signaling transcription factor, to suppress the host interferon response is required for viremia and pathogenesis in a vertebrate host. This affects viral species tropism, as mouse STAT2 resistance renders only immunocompromised or humanized STAT2 mice infectable. Here, we explore how STAT2 evolution impacts antagonism. By measuring the susceptibility of 38 diverse STAT2 proteins, we demonstrate that resistance arose numerous times in mammalian evolution. In four species, resistance requires distinct sets of multiple amino acid changes that often individually disrupt STAT2 signaling. This reflects an evolutionary ridge where progressive resistance is balanced by the need to maintain STAT2 function. Furthermore, resistance may come with a fitness cost, as resistance that arose early in lemur evolution was subsequently lost in some lemur lineages. These findings underscore that while it is possible to evolve resistance to antagonism, complex evolutionary trajectories are required to avoid detrimental host fitness consequences.


Subject(s)
Evolution, Molecular , STAT2 Transcription Factor , Viral Nonstructural Proteins , STAT2 Transcription Factor/metabolism , STAT2 Transcription Factor/genetics , Animals , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Humans , Mice , Dengue Virus/genetics , Dengue Virus/physiology , Zika Virus/genetics , Flavivirus/genetics , Flavivirus/physiology , Phylogeny , Host-Pathogen Interactions/genetics
8.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932129

ABSTRACT

The complete lack of yellow fever virus (YFV) in Asia, and the lack of urban YFV transmission in South America, despite the abundance of the peridomestic mosquito vector Aedes (Stegomyia.) aegypti is an enigma. An immunologically naïve population of over 2 billion resides in Asia, with most regions infested with the urban YF vector. One hypothesis for the lack of Asian YF, and absence of urban YF in the Americas for over 80 years, is that prior immunity to related flaviviruses like dengue (DENV) or Zika virus (ZIKV) modulates YFV infection and transmission dynamics. Here we utilized an interferon α/ß receptor knock-out mouse model to determine the role of pre-existing dengue-2 (DENV-2) and Zika virus (ZIKV) immunity in YF virus infection, and to determine mechanisms of cross-protection. We utilized African and Brazilian YF strains and found that DENV-2 and ZIKV immunity significantly suppresses YFV viremia in mice, but may or may not protect relative to disease outcomes. Cross-protection appears to be mediated mainly by humoral immune responses. These studies underscore the importance of re-assessing the risks associated with YF outbreak while accounting for prior immunity from flaviviruses that are endemic.


Subject(s)
Cross Protection , Dengue Virus , Disease Models, Animal , Mice, Knockout , Receptor, Interferon alpha-beta , Yellow Fever , Yellow fever virus , Zika Virus Infection , Zika Virus , Animals , Yellow Fever/immunology , Yellow Fever/prevention & control , Yellow Fever/virology , Mice , Cross Protection/immunology , Yellow fever virus/immunology , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology , Dengue Virus/immunology , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/deficiency , Antibodies, Viral/immunology , Antibodies, Viral/blood , Flavivirus/immunology , Aedes/virology , Aedes/immunology , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Female , Viremia/immunology , Mosquito Vectors/virology , Mosquito Vectors/immunology , Flavivirus Infections/immunology , Flavivirus Infections/prevention & control , Flavivirus Infections/virology , Mice, Inbred C57BL
9.
Viruses ; 16(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38932175

ABSTRACT

Newly emerging viruses, primarily zoonotic or vector-borne, pose a persistent threat to public health and have led to outbreaks of global concern [...].


Subject(s)
Alphavirus Infections , Alphavirus , Flavivirus Infections , Flavivirus , Alphavirus/physiology , Alphavirus/genetics , Humans , Animals , Flavivirus/genetics , Flavivirus/physiology , Alphavirus Infections/virology , Alphavirus Infections/epidemiology , Flavivirus Infections/virology , Flavivirus Infections/epidemiology
10.
Viruses ; 16(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932252

ABSTRACT

Brazil has earned the moniker "arbovirus hotspot", providing an ideal breeding ground for a multitude of arboviruses thriving in various zoonotic and urban cycles. As the planet warms and vectors expand their habitat range, a nuanced understanding of lesser-known arboviruses and the factors that could drive their emergence becomes imperative. Among these viruses is the Iguape virus (IGUV), a member of the Orthoflavivirus aroaense species, which was first isolated in 1979 from a sentinel mouse in the municipality of Iguape, within the Vale do Ribeira region of São Paulo State. While evidence suggests that IGUV circulates among birds, wild rodents, marsupials, bats, and domestic birds, there is no information available on its pathogenesis in both humans and animals. The existing literature on IGUV spans decades, is outdated, and is often challenging to access. In this review, we have curated information from the known literature, clarifying its elusive nature and investigating the factors that may influence its emergence. As an orthoflavivirus, IGUV poses a potential threat, which demands our attention and vigilance, considering the serious outbreaks that the Zika virus, another neglected orthoflavivirus, has unleashed in the recent past.


Subject(s)
Flavivirus , Animals , Brazil/epidemiology , Flavivirus/physiology , Humans , Flavivirus Infections/virology , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Phylogeny , Mice , Birds/virology
11.
RNA Biol ; 21(1): 14-30, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38797925

ABSTRACT

As positive-sense RNA viruses, the genomes of flaviviruses serve as the template for all stages of the viral life cycle, including translation, replication, and infectious particle production. Yet, they encode just 10 proteins, suggesting that the structure and dynamics of the viral RNA itself helps shepherd the viral genome through these stages. Herein, we highlight advances in our understanding of flavivirus RNA structural elements through the lens of their impact on the viral life cycle. We highlight how RNA structures impact translation, the switch from translation to replication, negative- and positive-strand RNA synthesis, and virion assembly. Consequently, we describe three major themes regarding the roles of RNA structure in flavivirus infections: 1) providing a layer of specificity; 2) increasing the functional capacity; and 3) providing a mechanism to support genome compaction. While the interactions described herein are specific to flaviviruses, these themes appear to extend more broadly across RNA viruses.


Subject(s)
Flavivirus , Genome, Viral , Nucleic Acid Conformation , RNA, Viral , Virus Replication , Flavivirus/genetics , Flavivirus/physiology , RNA, Viral/metabolism , RNA, Viral/chemistry , RNA, Viral/genetics , Humans , Flavivirus Infections/virology , Virus Assembly , Animals , Protein Biosynthesis
12.
J Gen Virol ; 105(5)2024 May.
Article in English | MEDLINE | ID: mdl-38809251

ABSTRACT

Tick-borne orthoflaviviruses (TBFs) are classified into three conventional groups based on genetics and ecology: mammalian, seabird and probable-TBF group. Recently, a fourth basal group has been identified in Rhipicephalus ticks from Africa: Mpulungu flavivirus (MPFV) in Zambia and Ngoye virus (NGOV) in Senegal. Despite attempts, isolating these viruses in vertebrate and invertebrate cell lines or intracerebral injection of newborn mice with virus-containing homogenates has remained unsuccessful. In this study, we report the discovery of Xinyang flavivirus (XiFV) in Haemaphysalis flava ticks from Xìnyáng, Henan Province, China. Phylogenetic analysis shows that XiFV was most closely related to MPFV and NGOV, marking the first identification of this tick orthoflavivirus group in Asia. We developed a reverse transcriptase quantitative PCR assay to screen wild-collected ticks and egg clutches, with absolute infection rates of 20.75 % in adult females and 15.19 % in egg clutches, suggesting that XiFV could be potentially spread through transovarial transmission. To examine potential host range, dinucleotide composition analyses revealed that XiFV, MPFV and NGOV share a closer composition to classical insect-specific orthoflaviviruses than to vertebrate-infecting TBFs, suggesting that XiFV could be a tick-only orthoflavivirus. Additionally, both XiFV and MPFV lack a furin cleavage site in the prM protein, unlike other TBFs, suggesting these viruses might exist towards a biased immature particle state. To examine this, chimeric Binjari virus with XIFV-prME (bXiFV) was generated, purified and analysed by SDS-PAGE and negative-stain transmission electron microscopy, suggesting prototypical orthoflavivirus size (~50 nm) and bias towards uncleaved prM. In silico structural analyses of the 3'-untranslated regions show that XiFV forms up to five pseudo-knot-containing stem-loops and a prototypical orthoflavivirus dumbbell element, suggesting the potential for multiple exoribonuclease-resistant RNA structures.


Subject(s)
Flavivirus , Ixodidae , Phylogeny , Animals , Flavivirus/genetics , Flavivirus/classification , Flavivirus/isolation & purification , China , Ixodidae/virology , Female
14.
Antiviral Res ; 227: 105915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777094

ABSTRACT

The genus of flavivirus includes many mosquito-borne human pathogens, such as Zika (ZIKV) and the four serotypes of dengue (DENV1-4) viruses, that affect billions of people as evidenced by epidemics and endemicity in many countries and regions in the world. Among the 10 viral proteins encoded by the viral genome, the nonstructural protein 1 (NS1) is the only secreted protein and has been used as a diagnostic biomarker. NS1 has also been an attractive target for its biotherapeutic potential as a vaccine antigen. This review focuses on the recent advances in the structural landscape of the secreted NS1 (sNS1) and its complex with monoclonal antibodies (mAbs). NS1 forms an obligatory dimer, and upon secretion, it has been reported to be hexametric (trimeric dimers) that could dissociate and bind to the epithelial cell membrane. However, high-resolution structural information has been missing about the high-order oligomeric states of sNS1. Several cryoEM studies have since shown that DENV and ZIKV recombinant sNS1 (rsNS1) are in dynamic equilibrium of dimer-tetramer-hexamer states, with tetramer being the predominant form. It was recently revealed that infection-derived sNS1 (isNS1) forms a complex of the NS1 dimer partially embedded in a High-Density Lipoprotein (HDL) particle. Structures of NS1 in complexes with mAbs have also been reported which shed light on their protective roles during infection. The biological significance of the diversity of NS1 oligomeric states remains to be further studied, to inform future research on flaviviral pathogenesis and the development of therapeutics and vaccines. Given the polymorphism of flavivirus NS1 across sample types with variations in antigenicity, we propose a nomenclature to accurately define NS1 based on the localization and origin.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Flavivirus , Viral Nonstructural Proteins , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/genetics , Humans , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Viral/immunology , Flavivirus/immunology , Flavivirus/chemistry , Flavivirus/genetics , Animals , Zika Virus/immunology , Zika Virus/genetics , Zika Virus/chemistry , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/chemistry , Protein Multimerization , Protein Conformation
15.
Virology ; 595: 110084, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692132

ABSTRACT

Duck Tembusu virus (DTMUV) belongs to the Flaviviridae family and mainly infects ducks. The genome of DTMUV is translated into a polyprotein, which is further cleaved into several protein by viral NS2B3 protease and host proteases. Crucially, the cleavage of the NS2A/2B precursor during this process is essential for the formation of replication complexes and viral packaging. Previous research has demonstrated that alanine mutations in NS2A/2B (P1P1' (AA)) result in an attenuated strain (rDTMUV-NS2A/2B-P1P1' (AA)) by disrupting NS2A/2B cleavage. In this study, we investigate the effects of the P1P1' (AA) mutation on the viral life cycle and explore compensatory mutations in rDTMUV-NS2A/2B-P1P1' (AA). Infected ducklings exhibit similar body weight gain and viral tissue loads to DTMUV-WT. Compensatory mutations E-M349E and P1(T) emerge, restoring proliferation levels to those of rDTMUV-WT. Specifically, E-M349E enhances viral packaging, while P1(T) reinstates NS2A/2B proteolysis in vitro. Thus, our findings reveal novel compensatory sites capable of restoring the attenuated DTMUV during polyprotein cleavage and packaging.


Subject(s)
Ducks , Flavivirus , Poultry Diseases , Viral Nonstructural Proteins , Virus Assembly , Virus Replication , Animals , Ducks/virology , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism , Flavivirus/genetics , Flavivirus/physiology , Poultry Diseases/virology , Flavivirus Infections/virology , Mutation
16.
Sci Adv ; 10(18): eadm8275, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38691607

ABSTRACT

Flaviviruses encode a conserved, membrane-associated nonstructural protein 1 (NS1) with replication and immune evasion functions. The current knowledge of secreted NS1 (sNS1) oligomers is based on several low-resolution structures, thus hindering the development of drugs and vaccines against flaviviruses. Here, we revealed that recombinant sNS1 from flaviviruses exists in a dynamic equilibrium of dimer-tetramer-hexamer states. Two DENV4 hexameric NS1 structures and several tetrameric NS1 structures from multiple flaviviruses were solved at atomic resolution by cryo-EM. The stacking of the tetrameric NS1 and hexameric NS1 is facilitated by the hydrophobic ß-roll and connector domains. Additionally, a triacylglycerol molecule located within the central cavity may play a role in stabilizing the hexamer. Based on differentiated interactions between the dimeric NS1, two distinct hexamer models (head-to-head and side-to-side hexamer) and the step-by-step assembly mechanisms of NS1 dimer into hexamer were proposed. We believe that our study sheds light on the understanding of the NS1 oligomerization and contributes to NS1-based therapies.


Subject(s)
Cryoelectron Microscopy , Flavivirus , Models, Molecular , Protein Multimerization , Viral Nonstructural Proteins , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Flavivirus/metabolism , Flavivirus/chemistry , Protein Conformation
17.
Euro Surveill ; 29(20)2024 05.
Article in English | MEDLINE | ID: mdl-38757289

ABSTRACT

Aedes albopictus collected in 2023 in the greater Paris area (Île-de-France) were experimentally able to transmit five arboviruses: West Nile virus from 3 days post-infection (dpi), chikungunya virus and Usutu virus from 7 dpi, dengue virus and Zika virus from 21 dpi. Given the growing number of imported dengue cases reported in early 2024 in France, surveillance of Ae. albopictus should be reinforced during the Paris Olympic Games in July, when many international visitors including from endemic countries are expected.


Subject(s)
Aedes , Chikungunya virus , Dengue Virus , Zika Virus , Animals , Aedes/virology , Humans , Zika Virus/isolation & purification , Dengue Virus/isolation & purification , Chikungunya virus/isolation & purification , Paris , Mosquito Vectors/virology , West Nile virus/isolation & purification , Arboviruses/isolation & purification , Arbovirus Infections/transmission , Flavivirus/isolation & purification , France , Dengue/transmission , Dengue/epidemiology , Zika Virus Infection/transmission
18.
Viruses ; 16(5)2024 05 20.
Article in English | MEDLINE | ID: mdl-38793692

ABSTRACT

Duck Tembusu Virus (DTMUV) is a pathogen of the Flaviviridae family that causes infections in poultry, leading to significant economic losses in the duck farming industry in recent years. Ducks infected with this virus exhibit clinical symptoms such as decreased egg production and neurological disorders, along with serious consequences such as ovarian hemorrhage, organ enlargement, and necrosis. Variations in morbidity and mortality rates exist across different age groups of ducks. It is worth noting that DTMUV is not limited to ducks alone; it can also spread to other poultry such as chickens and geese, and antibodies related to DTMUV have even been found in duck farm workers, suggesting a potential risk of zoonotic transmission. This article provides a detailed overview of DTMUV research, delving into its genomic characteristics, vaccines, and the interplay with host immune responses. These in-depth research findings contribute to a more comprehensive understanding of the virus's transmission mechanism and pathogenic process, offering crucial scientific support for epidemic prevention and control.


Subject(s)
Ducks , Flavivirus Infections , Flavivirus , Poultry Diseases , Animals , Ducks/virology , Flavivirus/pathogenicity , Flavivirus/immunology , Flavivirus/genetics , Flavivirus Infections/veterinary , Flavivirus Infections/virology , Flavivirus Infections/transmission , Genome, Viral , Poultry Diseases/virology , Poultry Diseases/transmission , Viral Vaccines/immunology , Farmers , Antibodies, Viral/blood , Humans
19.
J Biosci ; 492024.
Article in English | MEDLINE | ID: mdl-38783793

ABSTRACT

A high level of disorder in many viral proteins is a direct consequence of their small genomes, which makes interaction with multiple binding partners a necessity for infection and pathogenicity. A segment of the flaviviral capsid protein (C), also known as the molecular recognition feature (MoRF), undergoes a disorder-toorder transition upon binding to several protein partners. To understand their role in pathogenesis, MoRFs were identified and their occurrence across different flaviviral capsids were studied. Despite lack of sequence similarities, docking studies of Cs with the host proteins indicate conserved interactions involving MoRFs across members of phylogenetic subclades. Additionally, it was observed from the protein-protein networks that some MoRFs preferentially bind proteins that are involved in specialized functions such as ribosome biogenesis. The findings point to the importance of MoRFs in the flaviviral life cycle, with important consequences for disease progression and suppression of the host immune system. Potentially, they might have impacted the way flaviviruses evolved to infect varied hosts using multiple vectors.


Subject(s)
Capsid Proteins , Flavivirus , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/chemistry , Flavivirus/pathogenicity , Flavivirus/genetics , Flavivirus/physiology , Flavivirus/metabolism , Phylogeny , Humans , Protein Binding , Capsid/metabolism , Capsid/chemistry , Flavivirus Infections/virology , Flavivirus Infections/metabolism , Molecular Docking Simulation , Amino Acid Sequence
20.
Cell Rep ; 43(6): 114298, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38819991

ABSTRACT

Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.


Subject(s)
Antibodies, Neutralizing , Humans , Brazil , Antibodies, Neutralizing/immunology , Mexico , Antibodies, Viral/immunology , Animals , Encephalitis Viruses, Tick-Borne/immunology , Flavivirus/immunology , Epitopes/immunology , Antibodies, Monoclonal/immunology , Ticks/virology , Ticks/immunology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...