Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.503
Filter
1.
J Hazard Mater ; 477: 135152, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047554

ABSTRACT

Raphidiopsis raciborskii (R. raciborskii) forms harmful cyanobacterial blooms globally, and poses a great threat to the safety of drinking water and public health. There is a great need to develop eco-friendly biological alternative measures to mitigate mass blooms of R. raciborskii. However, previous rare studies on algicidal microorganisms against R. raciborskii restricted this aim. Recently, an algicidal bacterium Streptomyces sp. HY (designated HY) was identified with flavones producing ability, and could remove up to 98.73 % of R. raciborskii biomass within 48 h by directly attacking the cyanobacterium and release of algicidal substances (i.e., flavonoids) with a inoculum ratio of 5 %. Algicidal rate of HY was enhanced by 88.05 %, 89.33 % under dark and light, and full-light conditions respectively, when compared with the dark condition. Its algicidal substances were stable in a broad range of temperature (-80-55 °C) and pH (3-11) conditions, and all treated groups exhibited ≈ 100 % algicidal rate at day 3. HY treatment disrupted the photosynthesis system and triggered serious oxidative stress resulting in severe morphological injury. Thereby, HY treatment significantly affected expression levels of several essential genes (i.e., psbA, psaB, rbcL, ftsZ, recA, grpE), and simultaneously inhibited the biosynthesis and release of cylindrospermopsin. Yet, HY treatment didn't show any toxicity to zebrafish test embryos. Such results indicate that HY is a promising algicidal candidate strain to control global R. raciborskii blooms, and holds great promises for an effective biological measure to sustain water safety.


Subject(s)
Harmful Algal Bloom , Streptomyces , Zebrafish , Streptomyces/metabolism , Harmful Algal Bloom/drug effects , Animals , Flocculation , Flavonoids/toxicity , Embryo, Nonmammalian/drug effects , Flavones/toxicity , Flavones/pharmacology , Flavones/chemistry , Cyanobacteria
2.
Phytochemistry ; 227: 114228, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39074762

ABSTRACT

Tilianin and linarin, two rare glycosylated flavonoids in the aromatic endangered medicinal plant Nardostachys jatamansi (D.on)DC., play an important role in the fields of medicine, cosmetics, food and dye industries. However, there remains a lack of comprehensive understanding regarding their biosynthetic pathway. In this study, the phytochemical investigation of N. jatamansi resulted in the isolation of linarin. With help of AlphaFold2 to cluster the entire glycosyltransferase family based on predicted structure similarities, we successfully identified a flavonoid glycosyltransferase NjUGT73B1, which could efficiently catalyze the glucosylation of acacetin at 7-OH to produce tilianin, also the key precursor in the biosynthesis of linarin. Additionally, NjUGT73B1 displayed a high degree of substrate promiscuity, enabling glucosylation at 7-OH of many flavonoids. Molecular modeling and site-directed mutagenesis revealed that H19, H21, H370, F126, and F127 play the crucial roles in the glycosylation ability of NjUGT73B1. Notably, comparation with the wild NjUGT73B1, mutant H19K led to a 50% increase in the activity of producing tilianin from acacetin.


Subject(s)
Flavonoids , Glycosyltransferases , Glycosyltransferases/metabolism , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Flavonoids/chemistry , Flavonoids/metabolism , Glycosylation , Molecular Structure , Glycosides/chemistry , Glycosides/metabolism , Models, Molecular , Flavones/chemistry , Flavones/metabolism , Ranunculaceae/chemistry , Ranunculaceae/enzymology , Ranunculaceae/metabolism , Himalayas
3.
Anal Chem ; 96(26): 10835-10840, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38889097

ABSTRACT

G-quadruplex (G4) DNA is considered as a prospective therapeutic target due to its potential biological significance. To understand G4 biological roles and function, a G4-specific fluorescent probe is necessary. However, it is difficult for versatile G4 to precisely recognize without perturbing their folding dynamics. Herein, we reported that flavone P0 can be a fluorescent probe for G4 DNA-specific recognition and have developed a highly selective detection of K+ ion by dimeric G4/P0 system. When comparing various nucleic acid structures, including G4, i-motif, ss/ds-DNA, and triplex, an apparent fluorescence enhancement is observed in the presence of G4 DNA for 85-fold, but only 8-fold for non-G4 DNA. Furthermore, based on fluorescent probe of flavone P0 for G4 DNA screening, the noncovalent dimeric G4/P0 system is exploited as a K+ sensor, that selectively responds to K+ with a 513-fold fluorescence enhancement and a detection range for K+ ion concentration from 0 to 500 mM. This K+ sensor also has a remarkably anti-interference ability for other metal cations, especially for a high concentration of Na+. These results have demonstrated that flavone P0 is an efficient tool for monitoring G-quadruplex DNA and endows flavone P0 with bioanalytical and medicinal applications.


Subject(s)
DNA , Flavones , Fluorescent Dyes , G-Quadruplexes , Potassium , Flavones/chemistry , Fluorescent Dyes/chemistry , Potassium/chemistry , Potassium/analysis , DNA/chemistry , Spectrometry, Fluorescence
4.
J Agric Food Chem ; 72(26): 14678-14683, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38910321

ABSTRACT

Matrix metalloproteinase 9 (MMP9), an MMP isozyme, plays a crucial role in tumor progression by degrading basement membranes. It has therefore been proposed that the pharmacological inhibition of MMP9 expression or activity could inhibit tumor metastasis. We previously isolated two novel methoxylated flavones, casedulones A and B, from the leaves and/or roots of Casimiroa edulis La Llave and determined that these casedulones have antitumor activity that acts via the reduction of MMP9. Here, we examined how these casedulones suppress lipopolysaccharide (LPS)-induced MMP9 expression in human monocytic THP-1 cells. The casedulones suppressed the LPS-induced signal transducer and activator of transcription 3 (STAT3) pathway, which participates in MMP9 induction. In addition, AG490 and S3I-201, inhibitors of Janus kinase (JAK) and STAT3, suppressed LPS-mediated MMP9 induction, suggesting that the casedulones suppressed MMP9 induction through the inhibition of JAK/STAT3 pathways. Based on the findings that cycloheximide, an inhibitor of de novo protein synthesis, completely inhibited LPS-mediated MMP9 induction, the role of de novo proteins in MMP9 induction was further investigated. We found that the casedulones inhibited the induction of interleukin-6 (IL-6), a key inflammatory cytokine that participates in STAT3 activation. Moreover, tumor necrosis factor-α (TNFα)-mediated MMP9 induction was significantly suppressed in the presence of the casedulones. Taken together, these findings suggest that casedulones inhibit the IL-6/STAT3 and TNFα pathways, which all involve LPS-mediated MMP9 induction.


Subject(s)
Flavones , Janus Kinases , Matrix Metalloproteinase 9 , Plant Extracts , STAT3 Transcription Factor , Signal Transduction , Tumor Necrosis Factor-alpha , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Flavones/pharmacology , Flavones/chemistry , Janus Kinases/metabolism , Janus Kinases/genetics , Signal Transduction/drug effects
5.
Molecules ; 29(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38893369

ABSTRACT

Spinach (Spinacia oleracea) is one of the most famous vegetables worldwide, rich in essential metabolites for various health benefits. It is a valuable plant source that has the potential to be a nutraceutical. This study aimed to evaluate the single characteristic marker compound to establish the validation of HPLC-DAD methods applied to the development of a nutraceutical using spinach samples. Six metabolites (1-6) were identified from the spinach samples such as freeze-dried spinach (FDS) and spinach extract concentrate (SEC) by LC-Q-TOF/MS analysis. Among the six metabolites, 3',4',5-trihydroxy-3-methoxy-6,7-methylenedioxyflavone 4'-glucuronide (TMG) was selected as a marker compound due to its highest abundance and high selectivity. The specificity, accuracy, linearity, precision, repeatability, limit of detection (LOD), and limit of quantification (LOQ) of TMG in the spinach samples (FDS and SEC) were validated according to AOAC international guideline. The specificity was confirmed by monitoring the well separation of the marker compound from other compounds of spinach samples in the base peak intensity (BPI) and ultraviolet (UV) chromatogram. The calibration curve of TMG (15.625~500 µg/mL) had reasonable linearity (R2 = 0.999) considered with LOD and LOQ values, respectively. Recovery rate of TMG was 93-101% for FDS and 90-95% for SEC. The precision was less than 3 and 6% in the intraday and interday. As a result, the HPLC-DAD validation method of TMG in the spinach samples (FDS and SEC) was first established with AOAC and KFDA regulations for approving functional ingredients in functional foods.


Subject(s)
Spinacia oleracea , Spinacia oleracea/chemistry , Chromatography, High Pressure Liquid/methods , Glucuronides/analysis , Glucuronides/chemistry , Limit of Detection , Reproducibility of Results , Flavonoids/analysis , Flavonoids/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Flavones/analysis , Flavones/chemistry , Reference Standards
6.
Elife ; 132024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856179

ABSTRACT

Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal 5'-phosphate phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5'-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small-molecule screening, protein crystallography, and biolayer interferometry, we discover, visualize, and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.


Vitamin B6 is an important nutrient for optimal brain function, with deficiencies linked to impaired memory, learning and mood in various mental disorders. In older people, vitamin B6 deficiency is also associated with declining memory and dementia. Although this has been known for years, the precise role of vitamin B6 in these disorders and whether supplements can be used to treat or prevent them remained unclear. This is partly because vitamin B6 is actually an umbrella term for a small number of very similar and interchangeable molecules. Only one of these is 'bioactive', meaning it has a biological role in cells. However, therapeutic strategies aimed at increasing only the bioactive form of vitamin B6 are lacking. Previous work showed that disrupting the gene for an enzyme called pyridoxal phosphatase, which breaks down vitamin B6, improves memory and learning in mice. To investigate whether these effects could be mimicked by drug-like compounds, Brenner, Zink, Witzinger et al. used several biochemical and structural biology approaches to search for molecules that bind to and inhibit pyridoxal phosphatase. The experiments showed that a molecule called 7,8-dihydroxyflavone ­ which was previously found to improve memory and learning in laboratory animals with brain disorders ­ binds to pyridoxal phosphatase and inhibits its activity. This led to increased bioactive vitamin B6 levels in mouse brain cells involved in memory and learning. The findings of Brenner et al. suggest that inhibiting pyridoxal phosphatase to increase vitamin B6 levels in the brain could be used together with supplements. The identification of 7,8-dihydroxyflavone as a promising candidate drug is a first step in the discovery of more efficient pyridoxal phosphatase inhibitors. These will be useful experimental tools to directly study whether increasing the levels of bioactive vitamin B6 in the brain may help those with mental health conditions associated with impaired memory, learning and mood.


Subject(s)
Enzyme Inhibitors , Phosphoric Monoester Hydrolases , Animals , Mice , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Hippocampus/metabolism , Hippocampus/drug effects , Neurons/drug effects , Neurons/metabolism , Pyridoxal Phosphate/metabolism , Flavones/pharmacology , Flavones/metabolism , Flavones/chemistry , Mice, Inbred C57BL
7.
J Ethnopharmacol ; 333: 118472, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38901681

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Ficus erecta, a traditional Chinese She Ethnomedicine, has been historically utilized to treat various inflammatory conditions such as arthritis, nephritis, and osteoporosis. However, the underlying mechanisms accounting for its anti-inflammatory activity, as well as its active components, largely remain elusive. AIM OF THE STUDY: The purpose of this research was to investigate the chemical constituents of F. erecta that contribute to its anti-inflammatory effects. MATERIALS AND METHODS: Coumarins and flavones were obtained from the 95% EtOH extract of F. erecta using virous column chromatography and reversed-phase semipreparative HPLC. The structures of the new compounds were elucidated by extensive analysis of spectroscopic methods, including HRESIMS, 1D and 2D NMR spectra, and CD experiments. Cultured macrophage RAW264.7 cells were utilized for the anti-inflammatory experiments. MTT cell viability assay, Griess reagent method, ELISA, and Western blot experiments were employed to evaluate the anti-inflammatory activity and investigate the related mechanism. RESULTS: Four new (1-4) and eleven previously identified (5-16) coumarins, together with one new (17) and six known flavones (18-23) were isolated from the whole plant of F. erecta. Compounds 7 and 17 significantly reduced nitric oxide (NO) and prostaglandin E2 (PGE2) production without cytotoxic effects. Furthermore, compounds 7 and 17 reduced the production of proinflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 in a concentration-dependent manner. Western blot analysis indicated that compounds 7 and 17 suppressed the expression of iNOS, COX-2, and p-IκBα in LPS-stimulated RAW264.7 macrophage cells. CONCLUSION: The current phytochemical investigations revealed that coumarins and flavones represent the primary chemical constituents of F. erecta. Compounds 7 and 17 exhibit potent anti-inflammatory properties, linked with the inhibition of NF-κB activation by preventing the degradation of IκBα phosphorylation. These compounds may serve as promising candidates for treating or preventing certain inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents , Coumarins , Ficus , Flavones , Plant Extracts , Animals , Ficus/chemistry , Flavones/pharmacology , Flavones/isolation & purification , Flavones/chemistry , Coumarins/pharmacology , Coumarins/isolation & purification , Coumarins/chemistry , RAW 264.7 Cells , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Plant Extracts/pharmacology , Plant Extracts/chemistry , Nitric Oxide/metabolism , NF-kappa B/metabolism , Cell Survival/drug effects , Macrophages/drug effects , Macrophages/metabolism
8.
Eur J Pharm Biopharm ; 200: 114316, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754525

ABSTRACT

We previously reported that α-glycosylated naringin (naringin-G), synthesized by enzyme-catalyzed transglycosylation, can enhance the solubility of poorly water-soluble compounds without surface-active property. However, the solubilization mechanism has not been fully elucidated. In this study, the solubilization mechanism of naringin-G was investigated using nuclear magnetic resonance (NMR) spectroscopy, and its application in skin formulations was further investigated. 1H NMR and dynamic light scattering measurements at various concentrations confirmed the self-assembled nanostructures of naringin-G above a critical aggregation concentration of approximately 2.2 mg/mL. Two-dimensional 1H-1H nuclear Overhauser effect spectroscopy and solubility tests revealed that flavone with poor water solubility, could be solubilized in its self-assembled structure with a stoichiometric relationship with naringin-G. When naringin-G was included in the skin formulation, the permeated amount and permeability coefficient (Papp) of flavones improved up to four times with increasing amounts of naringin-G. However, flavone solubilization by adding an excessive amount of naringin-G resulted in a decreased permeated amount and Papp of flavones, indicating the interplay between the apparent solubility and skin permeability of flavones. Naringin-G, which forms a nanoaggregate structure without exhibiting surface-active properties, has the potential to enhance the solubility and skin permeation of poorly water-soluble compounds.


Subject(s)
Flavanones , Nanostructures , Skin , Solubility , Flavanones/chemistry , Glycosylation , Nanostructures/chemistry , Animals , Skin/metabolism , Skin Absorption/drug effects , Administration, Cutaneous , Flavones/chemistry , Permeability , Magnetic Resonance Spectroscopy/methods
9.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2262-2272, 2024 Apr.
Article in Chinese | MEDLINE | ID: mdl-38812240

ABSTRACT

To investigate the effect of epimedium total flavone capsules on post-stroke cognitive impairment(PSCI) in rats. The transient middle cerebral artery occlusion(tMCAO) model was constructed on selected rats, and rats with impaired neurological function were randomly divided into the model group, low, middle, and high dose groups of epimedium total flavone capsules, and nimodipine tablet group. The cognitive function of rats was measured after administration. Pathological changes in brain tissue were observed after hematoxylin-eosin staining(HE). Neuronal nuclei(NeuN) and glial fibrillary acidic protein(GFAP) distribution in brain tissue were tested by immunofluorescent staining. The level of amyloid beta 1-42(Aß_(1-42)), neuron specific enolase(NSE), acetylcholine(ACH), dopamine(DA), 5-hydroxytryptamine(5-HT), norepinephrine(NE), interleukin-1ß(IL-1ß), tumor necrosis factor-α(TNF-α), and hypersensitive C-reactive protein(hs-CRP) in rat serum was tested. Moreover, Western blot was utilized to test the expression of nuclear factor-kappaB(NF-κB), p-NF-κB, alpha inhibitor of NF-κB(IκBα) protein, and p-IκBα protein in the hippocampus. The experimental results showed that epimedium total flavone capsules can improve the cognitive function of model rats, and the mechanism may be related to the regulation of the expression of p-IκBα and p-NF-κB proteins, so as to inhibit inflammatory response induced by ischemia-reperfusion.


Subject(s)
Capsules , Cognitive Dysfunction , Drugs, Chinese Herbal , Epimedium , Flavones , Rats, Sprague-Dawley , Stroke , Animals , Rats , Epimedium/chemistry , Male , Flavones/administration & dosage , Flavones/pharmacology , Flavones/chemistry , Drugs, Chinese Herbal/administration & dosage , Drugs, Chinese Herbal/pharmacology , Stroke/drug therapy , Stroke/complications , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Humans , Amyloid beta-Peptides/metabolism , NF-kappa B/metabolism , NF-kappa B/genetics , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Cognition/drug effects
10.
J Agric Food Chem ; 72(23): 13054-13068, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38809142

ABSTRACT

Inflammatory bowel disease (IBD) etiology is intricately linked to oxidative stress and inflammasome activation. Natural antioxidant nobiletin (NOB) contains excellent anti-inflammatory properties in alleviating intestinal injury. However, the insufficient water solubility and low bioavailability restrict its oral intervention for IBD. Herein, we constructed a highly efficient NOB-loaded yeast microcapsule (YM, NEFY) exhibiting marked therapeutic efficacy for dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) at a low oral dose of NOB (20 mg/kg). We utilized the metal polyphenol network (MPN) formed by self-assembly of epigallocatechin gallate (EGCG) and FeCl3 as the intermediate carrier to improve the encapsulation efficiency (EE) of NOB by 4.2 times. These microcapsules effectively alleviated the inflammatory reaction and oxidative stress of RAW264.7 macrophages induced by lipopolysaccharide (LPS). In vivo, NEFY with biocompatibility enabled the intestinal enrichment of NOB through controlled gastrointestinal release and macrophage targeting. In addition, NEFY could inhibit NLRP3 inflammasome and balance the macrophage polarization, which favors the complete intestinal mucosal barrier and recovery of colitis. Based on the oral targeted delivery platform of YM, this work proposes a novel strategy for developing and utilizing the natural flavone NOB to intervene in intestinal inflammation-related diseases.


Subject(s)
Colitis, Ulcerative , Flavones , Inflammasomes , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Animals , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/immunology , Mice , Oxidative Stress/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Inflammasomes/immunology , Inflammasomes/metabolism , Inflammasomes/drug effects , Flavones/administration & dosage , Flavones/chemistry , Flavones/pharmacology , RAW 264.7 Cells , Humans , Male , Saccharomyces cerevisiae/chemistry , Capsules/chemistry , Macrophages/drug effects , Macrophages/immunology , Polyphenols/chemistry , Polyphenols/administration & dosage , Polyphenols/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology
11.
Biomed Pharmacother ; 175: 116723, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723514

ABSTRACT

The growth of antibiotic resistance to antifungal drugs contributes to the search for new ways to enhance their effectiveness and reduce toxicity. The undeniable advantage of polyene macrolide antibiotic amphotericin B (AmB) which ensures low pathogen resistance is its mechanism of action related to the formation of transmembrane pores in target lipid membranes. Here, we investigated the effects of plant flavones, chrysin, wogonin, baicalein, apigenin, scutellarein, luteolin, morin and fisetin on the pore-forming activity of AmB in the sterol-enriched membranes by electrophysiological assays. Сhrysin, wogonin, baicalein, apigenin, scutellarein, and luteolin were shown to decrease the AmB pore-forming activity in the bilayers composed of palmitoyloleylphosphocholine independently of their sterol composition. Morin and fisetin led to the increase and decrease in the AmB pore-forming activity in the ergosterol- and cholesterol-containing bilayers respectively. Differential scanning microcalorimetry of the gel-to-liquid crystalline phase transition of membrane forming lipids, molecular dynamics simulations, and absorbance spectroscopy revealed the possibility of direct interactions between AmB and some flavones in the water and/or in the lipid bilayer. The influence of these interactions on the antibiotic partitioning between aqueous solution and membrane and/or its transition between different states in the bilayer was discussed.


Subject(s)
Amphotericin B , Flavones , Lipid Bilayers , Molecular Dynamics Simulation , Amphotericin B/pharmacology , Amphotericin B/chemistry , Flavones/pharmacology , Flavones/chemistry , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Phase Transition
12.
Sci Rep ; 14(1): 12349, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38811791

ABSTRACT

Breast cancer presents a significant challenge due to its high rates of illness and mortality, necessitating more effective treatment approaches. While traditional treatments offer some benefits, they often lack precision in targeting cancer cells and can inadvertently harm healthy tissues. This study aims to investigate the cytotoxic effects and molecular mechanism of 5,4'-dihydroxy-6,8-dimethoxy-7-O-rhamnosyl flavone (DDR), extracted from Indigofera aspalathoides Vahl, on breast cancer cells (MDA-MB-231). Through various in vitro assays including wound healing, invasion, Western blotting, and immunofluorescence, the impact of DDR on epithelial-mesenchymal transition (EMT) and metastasis was evaluated. Treatment of MDA-MB-231 cells with different DDR concentrations (0-10 µg/mL) resulted in a significant decrease in invasion and migration, accompanied by the downregulation of metastasis-related proteins including VEGF, uPAR, uPA, and MMP-9. DDR treatment also hindered EMT by upregulating E-cadherin and downregulating N-cadherin, Slug, Twist, and Vimentin. Additionally, inhibition of the PI3K/AKT signaling pathway and downregulation of the NF-кB pathway were observed. These findings highlight the potential of DDR as a valuable source of natural compounds with promising anticancer properties, offering opportunities for the development of novel cancer therapies.


Subject(s)
Breast Neoplasms , Cell Movement , Epithelial-Mesenchymal Transition , Flavones , Indigofera , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Epithelial-Mesenchymal Transition/drug effects , Female , Cell Line, Tumor , Flavones/pharmacology , Flavones/chemistry , Flavones/isolation & purification , Indigofera/chemistry , Cell Movement/drug effects , Signal Transduction/drug effects , Neoplasm Metastasis , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry
13.
Chem Biol Interact ; 396: 111027, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38735452

ABSTRACT

Antibiotic resistance poses a significant challenge in modern medicine, urging the exploration of innovative approaches to combat bacterial infections. Biofilms, complex bacterial communities encased in a protective matrix, contribute to resistance by impeding antibiotic efficacy and promoting genetic exchange. Understanding biofilm dynamics is crucial for developing effective antimicrobial therapies against antibiotic resistance. This study explores the potential of flavone to combat biofilm-induced antibiotic resistance by employing in-vitro biochemical, cell biology, and Insilico (MD simulation), approaches. Flavone exhibited potent antibacterial effects with a low minimum inhibitory concentration by inducing intracellular reactive oxygen species. Flavones further inhibited the formation of biofilms by 50-60 % and disrupted the pre-formed biofilms by reducing the extracellular polysaccharide substance protective layer formed on the biofilm by 80 %. Quorum sensing (QS) plays a crucial role in bacterial pathogenicity and flavone significantly attenuated the production of QS-induced virulence factors like urease, protease, lipase, hemolysin and prodigiosin pigment in a dose-dependent manner. Further Insilico molecular docking studies along with molecular dynamic simulations run for 100 ns proved the stable binding affinity of flavone with QS-specific proteins which are crucial for biofilm formation. This study demonstrates the therapeutic potential of flavone to target QS-signaling pathway to combat S.marcescens biofilms.


Subject(s)
Anti-Bacterial Agents , Biofilms , Flavones , Microbial Sensitivity Tests , Molecular Docking Simulation , Quorum Sensing , Biofilms/drug effects , Quorum Sensing/drug effects , Flavones/pharmacology , Flavones/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Molecular Dynamics Simulation , Reactive Oxygen Species/metabolism , Drug Resistance, Microbial/drug effects , Virulence Factors/metabolism , Bacterial Proteins/metabolism
14.
Int J Biol Macromol ; 269(Pt 1): 131966, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38697422

ABSTRACT

JAK2/STAT3/MYC axis is dysregulated in nearly 70 % of human cancers, but targeting this pathway therapeutically remains a big challenge in cancer therapy. In this study, genes associated with JAK2, STAT3, and MYC were analyzed, and potential target genes were selected. Leucine-rich PPR motif-containing protein (LRPPRC) whose function and regulation are not fully understood, emerged as one of top 3 genes in terms of RNA epigenetic modification. Here, we demonstrate LRPPRC may be an independent prognostic indicator besides JAK2, STAT3, and MYC. Mechanistically, LRPPRC impairs N6-methyladenosine (m6A) modification of JAK2, STAT3, and MYC to facilitate nuclear mRNA export and expression. Meanwhile, excess LRPPRC act as a scaffold protein binding to JAK2 and STAT3 to enhance stability of JAK2-STAT3 complex, thereby facilitating JAK2/STAT3/MYC axis activation to promote esophageal squamous cell carcinoma (ESCC) progression. Furthermore, 5,7,4'-trimethoxyflavone was verified to bind to LRPPRC, STAT3, and CDK1, dissociating LRPPRC-JAK2-STAT3 and JAK2-STAT3-CDK1 interaction, leading to impaired tumorigenesis in 4-Nitroquinoline N-oxide induced ESCC mouse models and suppressed tumor growth in ESCC patient derived xenograft mouse models. In summary, this study suggests regulation of m6A modification by LRPPRC, and identifies a novel triplex target compound, suggesting that targeting LRPPRC-mediated JAK2/STAT3/MYC axis may overcome JAK2/STAT3/MYC dependent tumor therapeutic dilemma.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Janus Kinase 2 , STAT3 Transcription Factor , Humans , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , STAT3 Transcription Factor/metabolism , Animals , Janus Kinase 2/metabolism , Mice , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , Disease Progression , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine/metabolism , Adenosine/chemistry , Flavones/pharmacology , Flavones/chemistry , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Female , Male , Flavonoids/pharmacology , Flavonoids/chemistry , Xenograft Model Antitumor Assays , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics
15.
Colloids Surf B Biointerfaces ; 240: 113976, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38795585

ABSTRACT

In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.


Subject(s)
Flavones , Solubility , Surface-Active Agents , Surface-Active Agents/chemistry , Flavones/chemistry , Flavones/metabolism , Hydrogen-Ion Concentration , Cetrimonium/chemistry , Thermodynamics , Ions/chemistry , Chalcone/chemistry , Chalcones/chemistry , Chalcones/metabolism , Sodium Dodecyl Sulfate/chemistry , Static Electricity
16.
J Pharm Biomed Anal ; 245: 116186, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692216

ABSTRACT

The inflorescences of the Mexican gordolobo are used as a folk medicine to treat various respiratory diseases. Currently, the botanical species that bear the name Mexican gordolobo belong to the genera Gnaphalium and Pseudognaphalium. Despite a long history of traditional use, most Mexican gordolobo species have never been fully chemically characterized, and the range of constituents in the species has not been comprehensively reported. To establish a quality control and chemical characterization method, a total of 49 samples belonging to 18 species of Pseudognaphalium and four species of Gnaphalium were studied. Nine flavones were quantified using a UPLC-PDA method. The method was validated in terms of linearity (R2 > 0.99), precision (intra- and inter-day: 0.1-3.9%), accuracy (96-103%), detection limit (10 ng/mL), limit of quantification (25 ng/mL) and robustness. 3-Methylquercetin, luteolin, quercetin, 3,5-dihydroxy-6,7,8-trimethoxyflavone, apigenin and gnaphaliin A were present at relatively high levels in most of the samples analyzed. The samples of P. oxyphyllum and P. liebmannii showed the highest content of the 9 compounds analyzed. Whereas the samples of the 5 species of Gnaphalium showed the lowest levels, including non-detectable, of the 9 compounds quantified. This marks an important difference with Pseudognaphalium species. Furthermore, using UHPLC-ESI-QToF data with targeted and non-targeted approaches, 57 compounds, were identified in Mexican gordolobo samples. Flavonoids were the main group of compounds found in Mexican gordolobo.


Subject(s)
Flavones , Gnaphalium , Plant Extracts , Chromatography, High Pressure Liquid/methods , Flavones/analysis , Flavones/chemistry , Gnaphalium/chemistry , Plant Extracts/chemistry , Plant Extracts/analysis , Limit of Detection , Reproducibility of Results , Mexico , Quality Control , Medicine, Traditional/methods , Tandem Mass Spectrometry/methods , Mass Spectrometry/methods
17.
Phytother Res ; 38(7): 3444-3458, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38685750

ABSTRACT

The escalating incidence of nonalcoholic fatty liver disease (NAFLD) is closely associated with a high-fat diet, leading to a decline in quality of life and significant health impairment. 7-Hydroxyflavone (7-HY) is a flavonoid known for its anti-inflammatory, anticarcinogenic, and antioxidant effects. This study aims to assess the ameliorative effects of 7-HY on NAFLD induced by a high-fat diet and elucidate underlying mechanisms. Oleic acid/palmitic acid-induced HepG2 cells and C57BL/6 mice on a high-fat diet were utilized as in vitro and in vivo models. In animal experiments, 7-HY was utilized as a dietary supplement. The 15-week in vivo experiment monitored body weight, body fat percentage, glucose tolerance, insulin tolerance, and metabolic indexes. Commercial kits assessed triglyceride (TG) and total cholesterol levels in cells, liver tissue, and blood. Discovery Studio identified potential targets of 7-HY, compared with NAFLD-associated targets in the GeneCards database. Results indicated 7-HY mitigated fat accumulation, hepatic steatosis, and oxidative stress induced by a high-fat diet. Furthermore, 7-HY showed potential efficacy in ameliorating abnormal glucose metabolism and promoting energy metabolism. Reverse target finding and molecular docking demonstrated a robust interaction between 7-HY and serine/threonine kinase 24 (STK24). Subsequent experimental results confirmed 7-HY's ability to inhibit TG deposition in HepG2 cells through interaction with STK24. In conclusion, 7-HY demonstrated the capacity to alleviate high-fat diet-induced NAFLD, presenting a novel strategy for the prevention and treatment of NAFLD.


Subject(s)
Diet, High-Fat , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease , Protein Serine-Threonine Kinases , Non-alcoholic Fatty Liver Disease/drug therapy , Animals , Humans , Hep G2 Cells , Mice , Diet, High-Fat/adverse effects , Male , Protein Serine-Threonine Kinases/metabolism , Oxidative Stress/drug effects , Flavones/pharmacology , Flavones/chemistry , Liver/drug effects , Liver/metabolism , Molecular Docking Simulation , Triglycerides/blood , Flavonoids/pharmacology
18.
J Nat Med ; 78(3): 599-607, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38662302

ABSTRACT

In this study, the effects of 3,5,7,3',4'-pentamethoxyflavone (KP1), a major bioactive ingredient isolated from the Kaempferia parviflora rhizomes, on a neurite outgrowth in Neuro2a cells and its mechanism have been investigated. KP1 increased concentration-dependently the percentage of neurite-bearing cells. KP1 showed a remarkable capability to elicit neurite outgrowth in Neuro2a cells, as evidenced by morphological alterations and immunostaining using anti-class III ß-tubulin and anti-NeuN antibodies. KP1 also displayed a higher neurogenic activity than retinoic acid (RA), a promoter of neurite outgrowth in Neuro2a cells. KP1 treatment caused significant elevation in phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (p38 MAPK) and glycogen synthase kinase-3ß (GSK-3ß). However, KP1-triggered neurite outgrowth was markedly inhibited by treatment with the ERK inhibitor U0126, whereas p38 MAPK inhibitor SB203580 and GSK-3ß inhibitor SB216763 did not influence KP1-induced neurite outgrowth. These results demonstrate that KP1 elicits neurite outgrowth and triggers cell differentiation of Neuro2a cells through ERK signal pathway.


Subject(s)
MAP Kinase Signaling System , Neuronal Outgrowth , Animals , Neuronal Outgrowth/drug effects , Mice , MAP Kinase Signaling System/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism , Neurites/drug effects , Cell Differentiation/drug effects , Phosphorylation/drug effects , Flavonoids/pharmacology , Flavones/pharmacology , Flavones/chemistry , Cell Line, Tumor , Glycogen Synthase Kinase 3 beta/metabolism , Cell Line
19.
Ultrason Sonochem ; 105: 106865, 2024 May.
Article in English | MEDLINE | ID: mdl-38564909

ABSTRACT

To further enhance the application of nobiletin (an important active ingredient in Citrus fruits), we used ultrasonic homogenization-assisted antisolvent precipitation to create ultrafine particles of nobiletin (UPN). DMSO was used as the solvent, and deionized water was used as the antisolvent. When ultrasonication (670 W) and homogenization (16000 r/min) were synergistic, the solution concentration was 57 mg/mL, and the minimum particle size of UPN was 521.02 nm. The UPN samples outperformed the RN samples in terms of the inhibition of porcine pancreatic lipase, which was inhibited (by 500 mg/mL) by 68.41 % in the raw sample, 90.34 % in the ultrafine sample, and 83.59 % in the positive control, according to the data. Fourier transform infrared spectroscopy analysis revealed no chemical changes in the samples before or after preparation. However, the crystallinity of the processed ultrafine nobiletin particles decreased. Thus, this work offers significant relevance for applications in the realm of food chemistry and indirectly illustrates the expanded application potential of nobiletin.


Subject(s)
Flavones , Lipase , Particle Size , Solvents , Lipase/metabolism , Lipase/antagonists & inhibitors , Animals , Flavones/chemistry , Flavones/pharmacology , Swine , Solvents/chemistry , Pancreas/enzymology , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolase Inhibitors/chemistry , Sonication , alpha-Glucosidases/metabolism , Chemical Precipitation , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry
20.
J Agric Food Chem ; 72(18): 10304-10313, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38657164

ABSTRACT

Neuropeptides are involved in many biological processes in insects. However, it is unclear what role neuropeptides play in Spodoptera litura adaptation to phytochemical flavone. In this study, 63 neuropeptide precursors from 48 gene families were identified in S. litura, including two neuropeptide F genes (NPFs). NPFs played a positive role in feeding regulation in S. litura because knockdown of NPFs decreased larval diet intake. S. litura larvae reduced flavone intake by downregulating NPFs. Conversely, the flavone intake was increased if the larvae were treated with NPF mature peptides. The NPF receptor (NPFR) was susceptible to the fluctuation of NPFs. NPFR mediated NPF signaling by interacting with NPFs to regulate the larval diet intake. In conclusion, this study suggested that NPF signaling regulated diet intake to promote S. litura adaptation to flavone, which contributed to understanding insect adaptation mechanisms to host plants and provide more potential pesticidal targets for pest control.


Subject(s)
Insect Proteins , Larva , Neuropeptides , Spodoptera , Animals , Spodoptera/physiology , Spodoptera/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Neuropeptides/chemistry , Larva/growth & development , Larva/metabolism , Larva/chemistry , Insect Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/chemistry , Flavones/metabolism , Flavones/chemistry , Feeding Behavior , Amino Acid Sequence
SELECTION OF CITATIONS
SEARCH DETAIL