Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.328
Filter
1.
Biomater Sci ; 12(13): 3458-3470, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38836321

ABSTRACT

Current treatment strategies for infection of chronic wounds often result in compromised healing and necrosis due to antibiotic toxicity, and underlying biomarkers affected by treatments are not fully known. Here, a multifunctional dressing was developed leveraging the unique wound-healing properties of chitosan, a natural polysaccharide known for its numerous benefits in wound care. The dressing consists of an oxygenating perfluorocarbon functionalized methacrylic chitosan (MACF) hydrogel incorporated with antibacterial polyhexamethylene biguanide (PHMB). A non-healing diabetic infected wound model with emerging metabolomics tools was used to explore the anti-infective and wound healing properties of the resultant multifunctional dressing. Direct bacterial bioburden assessment demonstrated superior antibacterial properties of hydrogels over a commercial dressing. However, wound tissue quality analyses confirmed that sustained PHMB for 21 days resulted in tissue necrosis and disturbed healing. Therefore, a follow-up comparative study investigated the best treatment course for antiseptic application ranging from 7 to 21 days, followed by the oxygenating chitosan-based MACF treatment for the remainder of the 21 days. Bacterial counts, tissue assessments, and lipidomics studies showed that 14 days of application of MACF-PHMB dressings followed by 7 days of MACF dressings provides a promising treatment for managing infected non-healing diabetic skin ulcers.


Subject(s)
Anti-Bacterial Agents , Bandages , Chitosan , Hydrogels , Wound Healing , Chitosan/chemistry , Chitosan/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Wound Healing/drug effects , Animals , Biguanides/chemistry , Biguanides/pharmacology , Biguanides/administration & dosage , Wound Infection/drug therapy , Wound Infection/microbiology , Male , Oxygen/chemistry , Chronic Disease , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Fluorocarbons/administration & dosage
2.
Nanoscale ; 16(24): 11669-11678, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38855849

ABSTRACT

Implant infections are severe complications in clinical treatment, which often accompany the formation of bacterial biofilms with high antibiotic resistance. Sonodynamic therapy (SDT) is an antibiotic-free method that can generate reactive oxygen species (ROS) to kill bacteria under ultrasound (US) treatment. However, the extracellular polymeric substances (EPS) barrier of bacterial biofilms and the hypoxic microenvironment significantly limit the antibiofilm activity of SDT. In this study, lipid-shelled perfluoropentane (PFP) nanodroplets loaded with gallium protoporphyrin IX (GaPPIX) and oxygen (O2) (LPGO NDs) were developed for the treatment of implant infections. Under US stimulation, LPGO NDs undergo the cavitation effect and disrupt the biofilm structure like bombs due to liquid-gas phase transition. Meanwhile, the LPGO NDs release O2 and GaPPIX upon US stimulation. The released O2 can alleviate the hypoxic microenvironment in the biofilm and enhance the ROS formation by GaPPIX for enhanced bacterial killing. In vivo experimental results demonstrate that the LPGO NDs can efficiently treat implant infections of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse model by disrupting the biofilm structure, alleviating hypoxia, and enhancing bacterial killing by SDT. Therefore, this work provides a new multifunctional sonosensitizer to overcome the limitations of SDT for treating implant infections.


Subject(s)
Biofilms , Fluorocarbons , Gallium , Methicillin-Resistant Staphylococcus aureus , Oxygen , Protoporphyrins , Staphylococcal Infections , Ultrasonic Therapy , Animals , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Mice , Gallium/chemistry , Gallium/pharmacology , Protoporphyrins/chemistry , Protoporphyrins/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Biofilms/drug effects , Oxygen/chemistry , Staphylococcal Infections/drug therapy , Reactive Oxygen Species/metabolism , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice, Inbred BALB C , Female , Pentanes
3.
Cells ; 13(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38891072

ABSTRACT

This study explores the impact of environmental pollutants on nuclear receptors (CAR, PXR, PPARα, PPARγ, FXR, and LXR) and their heterodimerization partner, the Retinoid X Receptor (RXR). Such interaction may contribute to the onset of non-alcoholic fatty liver disease (NAFLD), which is initially characterized by steatosis and potentially progresses to steatohepatitis and fibrosis. Epidemiological studies have linked NAFLD occurrence to the exposure to environmental contaminants like PFAS. This study aims to assess the simultaneous activation of nuclear receptors via perfluorooctanoic acid (PFOA) and RXR coactivation via Tributyltin (TBT), examining their combined effects on steatogenic mechanisms. Mice were exposed to PFOA (10 mg/kg/day), TBT (5 mg/kg/day) or a combination of them for three days. Mechanisms underlying hepatic steatosis were explored by measuring nuclear receptor target gene and lipid metabolism key gene expressions, by quantifying plasma lipids and hepatic damage markers. This study elucidated the involvement of the Liver X Receptor (LXR) in the combined effect on steatosis and highlighted the permissive nature of the LXR/RXR heterodimer. Antagonistic effects of TBT on the PFOA-induced activation of the Pregnane X Receptor (PXR) and Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) were also observed. Overall, this study revealed complex interactions between PFOA and TBT, shedding light on their combined impact on liver health.


Subject(s)
Caprylates , Fluorocarbons , Trialkyltin Compounds , Animals , Trialkyltin Compounds/pharmacology , Caprylates/pharmacology , Mice , Fluorocarbons/toxicity , Fluorocarbons/pharmacology , Male , Mice, Inbred C57BL , Liver X Receptors/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Retinoid X Receptors/metabolism , Fatty Liver/metabolism , Fatty Liver/chemically induced , Fatty Liver/pathology , Receptors, Cytoplasmic and Nuclear/metabolism , Lipid Metabolism/drug effects , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/chemically induced
4.
J Nanobiotechnology ; 22(1): 358, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907270

ABSTRACT

BACKGROUND: Hypoxia-activated prodrug (HAP) is a promising candidate for highly tumor-specific chemotherapy. However, the oxygenation heterogeneity and dense extracellular matrix (ECM) of tumor, as well as the potential resistance to chemotherapy, have severely impeded the resulting overall efficacy of HAP. RESULTS: A HAP potentiating strategy is proposed based on ultrasound responsive nanodroplets (PTP@PLGA), which is composed of protoporphyrin (PpIX), perfluoropropane (PFP) and a typical HAP, tirapazamine (TPZ). The intense vaporization of PFP upon ultrasound irradiation can magnify the sonomechanical effect, which loosens the ECM to promote the penetration of TPZ into the deep hypoxic region. Meanwhile, the PpIX enabled sonodynamic effect can further reduce the oxygen level, thus activating the TPZ in the relatively normoxic region as well. Surprisingly, abovementioned ultrasound effect also results in the downregulation of the stemness of cancer cells, which is highly associated with drug-refractoriness. CONCLUSIONS: This work manifests an ideal example of ultrasound-based nanotechnology for potentiating HAP and also reveals the potential acoustic effect of intervening cancer stem-like cells.


Subject(s)
Fluorocarbons , Nanoparticles , Prodrugs , Protoporphyrins , Tirapazamine , Humans , Tirapazamine/pharmacology , Tirapazamine/chemistry , Protoporphyrins/pharmacology , Protoporphyrins/chemistry , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Prodrugs/pharmacology , Prodrugs/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ultrasonic Waves , Animals , Extracellular Matrix/metabolism , Mice , Neoplasms/drug therapy
5.
J Mater Chem B ; 12(24): 5884-5897, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38775254

ABSTRACT

Pancreatic cancer is an aggressive and highly fatal malignant tumor. Recent studies have shown that cancer stem cells (CSCs) play an important role in resisting current therapeutic modalities. Furthermore, CD133 is highly expressed in CSCs. High-intensity focused ultrasound (HIFU) is a promising non-invasive therapeutic strategy for unresectable pancreatic cancers. In our study, we synthesized targeted CD133 organosilane nanomicelles by encapsulating perfluorohexane (PFH). The CD133 antibody on the surface could specifically bind to CD133-positive pancreatic cancer cells and selectively concentrate in pancreatic cancer tumor tissues. PFH was introduced to improve the ablation effect of HIFU due to its liquid-gas phase transition properties. By combining with the dorsal skinfold window chamber model (DSWC) of pancreatic cancer in nude mice, multiphoton fluorescence microscopy was used to evaluate the targeting effect of nanomicelles on pancreatic cancer tumor tissue. These multifunctional nanomicelles synergistically affected HIFU treatment of pancreatic cancer, providing an integrated research platform for diagnosing and treating pancreatic cancer with HIFU.


Subject(s)
AC133 Antigen , High-Intensity Focused Ultrasound Ablation , Mice, Nude , Micelles , Pancreatic Neoplasms , Animals , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , AC133 Antigen/metabolism , Mice , Humans , Cell Line, Tumor , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Mice, Inbred BALB C , Nanoparticles/chemistry
6.
Biomater Sci ; 12(12): 3163-3174, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38726643

ABSTRACT

The current treatment for venous thrombosis during pregnancy is ineffective, primarily, due to the unique physiology of pregnant women. Most clinical medications have fetal side effects when they circulate in the body. We first synthesized nanomaterials (Cur-PFP@PC) using poly lactic-co-glycolic acid (PLGA) as the base material, with curcumin (Cur) and perfluoropentane (PFP) as core components. Subsequently, we encapsulated Cur-PFP@PC into the platelet membrane to synthesize P-Cur-PFP@PC. Under ultrasound guidance, in combination with low-intensity focused ultrasound (LIFU), PFP underwent a phase change, resulting in thrombolysis. The generated microbubbles enhanced the signal impact of ultrasound, and P-Cur-PFP@PC showed better performance than Cur-PFP@PC. P-Cur-PFP@PC can target thrombosis treatment, achieve visually and precisely controlled drug release, and repair damaged blood vessels, thus avoiding the adverse effects associated with traditional long-term drug administration.


Subject(s)
Blood Platelets , Curcumin , Curcumin/administration & dosage , Curcumin/pharmacology , Curcumin/chemistry , Female , Pregnancy , Humans , Blood Platelets/drug effects , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Thrombolytic Therapy , Animals , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Nanostructures/chemistry , Nanostructures/administration & dosage , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Fluorocarbons/administration & dosage , Thrombosis/drug therapy , Drug Liberation
7.
Colloids Surf B Biointerfaces ; 239: 113961, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749169

ABSTRACT

Breast cancer, the predominant malignancy afflicting women, continues to pose formidable challenges despite advancements in therapeutic interventions. This study elucidates the potential of phototherapy, comprising both photothermal and photodynamic therapy (PTT/PDT), as a novel and promising modality. To achieve this goal, we devised liposomes coated with macrophage cell membranes including macrophage-associated membrane proteins, which have demonstrated promise in biomimetic delivery systems for targeting tumors while preserving their inherent tumor-homing capabilities. This integrated biomimetic delivery system comprised IR780, NONOate, and perfluorocarbon. This strategic encapsulation aims to achieve a synergistic combination of photodynamic therapy (PDT) and reactive nitrogen species (RNS) therapy. Under near-infrared laser irradiation at 808 nm, IR780 demonstrates its ability to prolifically generate reactive oxygen species (ROS), including superoxide anion (O2•-), singlet oxygen, and hydroxyl radical (·OH). Simultaneously, NONOate releases nitric oxide (NO) gas upon the same laser irradiation, thereby engaging with IR780-induced ROS to facilitate the formation of peroxynitrite anion (ONOO-), ultimately inducing programmed cell death in cancer cells. Additionally, the perfluorocarbon component of our delivery system exhibits a notable affinity for oxygen and demonstrates efficient oxygen-carrying capabilities. Our results demonstrate that IR780-NO-PFH-Lip@M significantly enhances breast cancer cell toxicity, reducing proliferation and in vivo tumor growth through simultaneous heat, ROS, and RNS production. This study contributes valuable insights to the ongoing discourse on innovative strategies for advancing cancer therapeutics.


Subject(s)
Breast Neoplasms , Liposomes , Macrophages , Photochemotherapy , Reactive Nitrogen Species , Liposomes/chemistry , Female , Animals , Reactive Nitrogen Species/metabolism , Mice , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Humans , Macrophages/metabolism , Macrophages/drug effects , Reactive Oxygen Species/metabolism , Cell Membrane/metabolism , Cell Membrane/chemistry , Cell Proliferation/drug effects , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Indoles/chemistry , Indoles/pharmacology , Cell Survival/drug effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Mice, Inbred BALB C , Phototherapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor , Surface Properties , RAW 264.7 Cells , Particle Size
8.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article in English | MEDLINE | ID: mdl-38736655

ABSTRACT

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Subject(s)
Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
9.
Exp Biol Med (Maywood) ; 249: 10104, 2024.
Article in English | MEDLINE | ID: mdl-38708425

ABSTRACT

Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1ß (IL-1ß), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.


Subject(s)
Acute Lung Injury , Fluorocarbons , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Fluorocarbons/pharmacology , Dogs , Acute Lung Injury/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/pathology , Inflammasomes/metabolism , Inflammasomes/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Seawater , Male , Drowning/metabolism , Disease Models, Animal , Lung/pathology , Lung/metabolism , Lung/drug effects
10.
Cell Biochem Funct ; 42(4): e4060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816947

ABSTRACT

Perfluorooctane sulfonate (PFOS) is a pervasive organic toxicant that damages body organs, including heart. Isosakuranetin (ISN) is a plant-based flavonoid that exhibits a broad range of pharmacological potentials. The current investigation was conducted to evaluate the potential role of ISN to counteract PFOS-induced cardiac damage in rats. Twenty-four albino rats (Rattus norvegicus) were distributed into four groups, including control, PFOS (10 mg/kg) intoxicated, PFOS + ISN (10 mg/kg + 20 mg/kg) treated, and ISN (20 mg/kg) alone supplemented group. It was revealed that PFOS intoxication reduced the expressions of Nrf-2 and its antioxidant genes while escalating the expression of Keap-1. Furthermore, PFOS exposure reduced the activities of glutathione reductase (GSR), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), Heme oxygenase-1 (HO-1) and glutathione (GSH) contents while upregulating the levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Besides, PFOS administration upregulated the levels of creatine kinase-MB (CK-MB), troponin I, creatine phosphokinase (CPK), and lactate dehydrogenase (LDH). Moreover, the levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß) were increased after PFOS intoxication. Additionally, PFOS exposure downregulated the expression of Bcl-2 while upregulating the expressions of Bax and Caspase-3. Furthermore, PFOS administration disrupted the normal architecture of cardiac tissues. Nonetheless, ISN treatment remarkably protected the cardiac tissues via regulating aforementioned dysregulations owing to its antioxidative, anti-inflammatory, and antiapoptotic properties.


Subject(s)
Alkanesulfonic Acids , Apoptosis , Fluorocarbons , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Animals , Rats , Alkanesulfonic Acids/pharmacology , Alkanesulfonic Acids/toxicity , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Fluorocarbons/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Male , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/chemically induced , Inflammation/pathology , Flavones/pharmacology
11.
ACS Nano ; 18(21): 13683-13695, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38749906

ABSTRACT

Tumor metastases and reoccurrence are considered the leading causes of cancer-associated deaths. As an emerging therapeutic method, increasing research efforts have been devoted to immunogenic cell death (ICD)-inducing compounds to solve the challenge. The clinically approved chemotherapeutic Pt complexes are not or are only poorly able to trigger ICD. Herein, the axial functionalization of the Pt(II) complex cisplatin with perfluorocarbon chains into ICD-inducing Pt(IV) prodrugs is reported. Strikingly, while the Pt(II) complex as well as the perfluorocarbon ligands did not induce ICD, the Pt(IV) prodrug demonstrated unexpectantly the induction of ICD through accumulation in the endoplasmic reticulum and generation of reactive oxygen species in this organelle. To enhance the pharmacological properties, the compound was encapsulated with human serum albumin into nanoparticles. While selectively accumulating in the tumorous tissue, the nanoparticles demonstrated a strong tumor growth inhibitory effect against osteosarcoma inside a mouse model. In vivo tumor vaccine analysis also demonstrated the ability of Pt(IV) to be an ideal ICD inducer. Overall, this study reports on axially perfluorocarbon chain-modified Pt(IV) complexes for ICD induction and chemoimmunotherapy in osteosarcoma.


Subject(s)
Antineoplastic Agents , Fluorocarbons , Immunotherapy , Serum Albumin, Human , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Serum Albumin, Human/chemistry , Cisplatin/pharmacology , Cisplatin/chemistry , Cell Line, Tumor , Nanoparticles/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Cell Proliferation/drug effects , Platinum/chemistry , Platinum/pharmacology , Mice, Inbred BALB C , Immunogenic Cell Death/drug effects
12.
ACS Appl Bio Mater ; 7(5): 3306-3315, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38634490

ABSTRACT

Photodynamic therapy (PDT) and ferroptosis show significant potential in tumor treatment. However, their therapeutic efficacy is often hindered by the oxygen-deficient tumor microenvironment and the challenges associated with efficient intracellular drug delivery into tumor cells. Toward this end, this work synthesized perfluorocarbon (PFC)-modified Pluronic F127 (PFC-F127), and then exploits it as a carrier for codelivery of photosensitizer Chlorin e6 (Ce6) and the ferroptosis promoter sorafenib (Sor), yielding an oxygen self-supplying nanoplatform denoted as Ce6-Sor@PFC-F127. The PFCs on the surface of the micelle play a crucial role in efficiently solubilizing and delivering oxygen as well as increasing the hydrophobicity of the micelle surface, giving rise to enhanced endocytosis by cancer cells. The incorporation of an oxygen-carrying moiety into the micelles enhances the therapeutic impact of PDT and ferroptosis, leading to amplified endocytosis and cytotoxicity of tumor cells. Hypotonic saline technology was developed to enhance the cargo encapsulation efficiency. Notably, in a murine tumor model, Ce6-Sor@PFC-F127 effectively inhibited tumor growth through the combined use of oxygen-enhanced PDT and ferroptosis. Taken together, this work underscores the promising potential of Ce6-Sor@PFC-F127 as a multifunctional therapeutic nanoplatform for the codelivery of multiple cargos such as oxygen, photosensitizers, and ferroptosis inducers.


Subject(s)
Antineoplastic Agents , Chlorophyllides , Drug Screening Assays, Antitumor , Ferroptosis , Fluorocarbons , Micelles , Oxygen , Photochemotherapy , Photosensitizing Agents , Ferroptosis/drug effects , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Animals , Mice , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Humans , Oxygen/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Materials Testing , Particle Size , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemical synthesis , Porphyrins/chemistry , Porphyrins/pharmacology , Cell Survival/drug effects , Cell Proliferation/drug effects , Mice, Inbred BALB C , Sorafenib/chemistry , Sorafenib/pharmacology , Sorafenib/administration & dosage , Poloxamer/chemistry , Cell Line, Tumor , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Molecular Structure
13.
ACS Appl Mater Interfaces ; 16(17): 21582-21594, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38634578

ABSTRACT

Excessive blood loss and infections are the prominent risks accounting for mortality and disability associated with acute wounds. Consequently, wound dressings should encompass adequate adhesive, hemostatic, and bactericidal attributes, yet their development remains challenging. This investigation presented the benefits of incorporating a perfluorocarbon nanoemulsion (PPP NE) into a silk-fibroin (SF)-based hydrogel. By stimulating the ß-sheet conformation of the SF chains, PPP NEs drastically shortened the gelation time while augmenting the elasticity, mechanical stability, and viscosity of the hydrogel. Furthermore, the integration of PPP NEs improved hemostatic competence by boosting the affinity between cells and biomacromolecules. It also endowed the hydrogel with ultrasound-controlled bactericidal ability through the inducement of inner cavitation by perfluorocarbon and reactive oxygen species (ROS) generated by the sonosensitizer protoporphyrin. Ultimately, we employed a laparotomy bleeding model and a Staphylococcus aureus-infected trauma wound to demonstrate the first-aid efficacy. Thus, our research suggested an emulsion-incorporating strategy for managing emergency wounds.


Subject(s)
Anti-Bacterial Agents , Emulsions , Fibroins , Fluorocarbons , Hydrogels , Staphylococcus aureus , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Animals , Emulsions/chemistry , Emulsions/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Fibroins/chemistry , Fibroins/pharmacology , Mice , Hemostatics/chemistry , Hemostatics/pharmacology , Nanoparticles/chemistry , Staphylococcal Infections/drug therapy , Ultrasonic Waves , Male , Rats , Humans
14.
ACS Appl Mater Interfaces ; 16(17): 21557-21570, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38648555

ABSTRACT

We report the synthesis of biocompatible perfluorinated micelles designed to improve radiotherapeutic efficacy in a radioresistant tumor environment. In vitro and in vivo behaviors of perfluorinated micelles were assessed at both cellular and tissular levels. The micellar platform offers key advantages as theranostic tool: (i) small size, allowing deep tissue penetration; (ii) oxygen transport to hypoxic tissues; (iii) negligible toxicity in the absence of ionizing radiation; (iv) internalization into cancer cells; (v) potent radiosensitizing effect; and (vi) excellent tumor-targeting properties, as monitored by positron emission tomography. We have demonstrated strong in vitro radiosensitizing effects of the micelle and in vivo tumor targeting, making this nanometric carrier a promising tool for the potentiation of focused radiotherapy.


Subject(s)
Micelles , Positron-Emission Tomography , Radiation-Sensitizing Agents , Theranostic Nanomedicine , Animals , Humans , Radiation-Sensitizing Agents/chemistry , Radiation-Sensitizing Agents/pharmacology , Radiation-Sensitizing Agents/chemical synthesis , Mice , Cell Line, Tumor , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology
15.
Chem Biol Interact ; 394: 110987, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574835

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are widely used synthetic chemicals that persist in the environment and bioaccumulate in animals and humans. There is growing evidence that PFAS exposure adversely impacts neurodevelopment and neurological health. Steroid 5α-reductase 1 (SRD5A1) plays a key role in neurosteroidogenesis by catalyzing the conversion of testosterone or pregnenolone to neuroactive steroids, which influence neural development, cognition, mood, and behavior. This study investigated the inhibitory strength and binding interactions of 18 PFAS on human and rat SRD5A1 activity using enzyme assays, molecular docking, and structure-activity relationship analysis. Results revealed that C9-C14 PFAS carboxylic acid at 100 µM significantly inhibited human SRD5A1, with IC50 values ranged from 10.99 µM (C11) to 105.01 µM (C14), and only one PFAS sulfonic acid (C8S) significantly inhibited human SRD5A1 activity, with IC50 value of 8.15 µM. For rat SRD5A1, C9-C14 PFAS inhibited rat SRD5A1, showing the similar trend, depending on carbon number of the carbon chain. PFAS inhibit human and rat SRD5A1 in a carbon chain length-dependent manner, with optimal inhibition around C11. Kinetic studies indicated PFAS acted through mixed inhibition. Molecular docking revealed PFAS bind to the domain between NADPH and testosterone binding site of both SRD5A1 enzymes. Inhibitory potency correlated with physicochemical properties like carbon number of the carbon chain. These findings suggest PFAS may disrupt neurosteroid synthesis and provide insight into structure-based inhibition of SRD5A1.


Subject(s)
3-Oxo-5-alpha-Steroid 4-Dehydrogenase , Molecular Docking Simulation , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/metabolism , 3-Oxo-5-alpha-Steroid 4-Dehydrogenase/chemistry , Animals , Humans , Rats , Structure-Activity Relationship , Membrane Proteins/metabolism , Fluorocarbons/chemistry , Fluorocarbons/metabolism , Fluorocarbons/pharmacology , Protein Binding , Carbon/chemistry , Carbon/metabolism , Binding Sites
16.
J Control Release ; 369: 39-52, 2024 May.
Article in English | MEDLINE | ID: mdl-38508523

ABSTRACT

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.


Subject(s)
Anti-Bacterial Agents , Betaine , Biofilms , Ciprofloxacin , Lipase , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Lipase/metabolism , Hydrogen-Ion Concentration , Animals , Betaine/chemistry , Betaine/administration & dosage , Betaine/analogs & derivatives , Staphylococcal Infections/drug therapy , Ciprofloxacin/pharmacology , Ciprofloxacin/administration & dosage , Ciprofloxacin/chemistry , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Micelles , Drug Liberation , Polymers/chemistry , Humans , Polymethacrylic Acids/chemistry
17.
Drugs ; 84(4): 441-448, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554243

ABSTRACT

Perfluorohexyloctane ophthalmic solution (Miebo®) is a single-entity, water-, steroid- and preservative-free, first-in-class semifluorinated alkane that is approved in the USA for the treatment of the signs and symptoms of dry eye disease (DED). DED is often linked with meibomian gland dysfunction (MGD), which causes an excessive evaporation of tears. Perfluorohexyloctane ophthalmic solution stabilizes the lipid layer of the tear film and inhibits tear evaporation by forming a monolayer at the air-liquid interface. In the phase III GOBI and MOJAVE trials in adults with DED associated with MGD, one drop of perfluorohexyloctane ophthalmic solution instilled in each eye four times daily over 8 weeks resulted in statistically significant and clinically meaningful improvements in the signs and symptoms of DED compared with hypotonic saline (0.6%). The agent was generally well tolerated, with most ocular adverse events being mild or moderate in severity. The efficacy and tolerability of perfluorohexyloctane ophthalmic solution was sustained for up to 52 weeks in an extension study (KALAHARI). As the first and currently the only prescription treatment approved in the USA directly addressing the pathophysiology of excessive tear evaporation, perfluorohexyloctane ophthalmic solution is a valuable emerging option for the management of DED.


Dry eye disease (DED) is a common eye disorder caused by many factors. In most cases, DED is linked with meibomian gland dysfunction (MGD), which causes an excessive evaporation of tears. Perfluorohexyloctane ophthalmic solution (Miebo®), a single-entity, water-, steroid- and preservative-free, first-in-class semifluorinated alkane, is approved in the USA for the treatment of the signs and symptoms of DED. The agent stabilizes the lipid layer of the tear film and prevents the evaporation of tears by forming a layer on the surface of the tear film. In two phase III clinical trials in adults with MGD-associated DED, one drop of perfluorohexyloctane ophthalmic solution instilled in each eye four times daily over 8 weeks led to significant improvements in the signs and symptoms of DED when compared with hypotonic saline (0.6%). Perfluorohexyloctane ophthalmic solution was generally well tolerated, with most ocular adverse events being mild or moderate in severity. Thus, as the first and currently the only prescription treatment approved in the USA directly addressing excessive tear evaporation, perfluorohexyloctane ophthalmic solution is a valuable emerging option for the management of DED.


Subject(s)
Dry Eye Syndromes , Fluorocarbons , Ophthalmic Solutions , Humans , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacology , Fluorocarbons/administration & dosage , Fluorocarbons/pharmacology , Fluorocarbons/therapeutic use , Dry Eye Syndromes/drug therapy
18.
J Mater Chem B ; 12(4): 991-1000, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38193597

ABSTRACT

Hair dermal papilla cells (hDPCs) play a crucial role in hair growth and regeneration, and their function is influenced by nutrient and oxygen supply. A microenvironment with significantly low oxygen (O2) levels, known as anoxic conditions (<0.2%) due to oxygen deficiency, hinders hDPC promotion and retards hair regrowth. Here, a nanoemulsion (NE) based on perfluorooctyl bromide (PFOB), a member of the perfluorocarbon family, is presented to provide a sustainable O2 supply and maintain physical stability in vitro. The PFOB-NE has been shown to continuously release oxygen for 36 h, increasing and maintaining the O2 concentration in the anoxic microenvironment of up to 0.8%. This sustainable O2 supply using PFOB-NE has promoted hDPC growth and also induced a complex cascade of effects. These effects encompass regulation via inhibiting lactate accumulation caused via oxygen deficiency, increasing lactate dehydrogenase activity, and promoting the expression of genes, such as the hypoxia-inducible factor 1 family and NADPH oxidase 4 under anoxic conditions. Sustained O2 supply is shown to enhance human hair organ elongation approximately four times compared to the control under anoxic conditions. In conclusion, the perfluorocarbon-based NE containing oxygen proves to be an important strategic tool for improving hair growth and alleviating hair loss.


Subject(s)
Fluorocarbons , Hydrocarbons, Brominated , Hypoxia , Humans , Oxygen/metabolism , Fluorocarbons/pharmacology , Hair
19.
J Neurosurg ; 140(3): 627-638, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37542436

ABSTRACT

OBJECTIVE: Ventriculoperitoneal shunting, the most common treatment for the neurological disorder hydrocephalus, has a failure rate of up to 98% within 10 years of placement, mainly because of proximal obstruction of the ventricular catheter (VC). The authors developed a new VC design modified with tethered liquid perfluorocarbon (TLP) and tested it in a porcine model of hydrocephalus. In this study, they aimed to determine if their TLP VC design reduced cell surface attachment and consequent shunt obstruction in the pig model. METHODS: TLP VCs were designed to reduce drainage hole obstruction using modified TLP and slightly enlarged draining holes, but their number and placement remained very similar to standard VCs. First, the authors tested the device in nonhydrocephalic rats to assess biocompatibility. After confirming safety, they implanted the VCs in hydrocephalic pigs. Hydrocephalus was induced by intracisternal kaolin injections in 30-day-old domestic juvenile pigs. Surgical implantation of the ventriculoperitoneal shunt (clinical control or TLP) was performed 10-14 days postinduction and maintained up to 30 days posttreatment. MRI was performed to measure ventricular volume before treatment and 10 and 30 days after treatment. Histological and immunohistochemical analyses of brain tissue and explanted VCs, intracranial pressure measurement, and clinical scoring were performed when the animals were euthanized. RESULTS: TLP VCs showed a similar surgical feel, kink resistance, and stiffness to control VCs. In rats (biocompatibility assessment), TLP VCs did not show brain inflammatory reactions after 30 or 60 days of implantation. In pigs, TLP VCs demonstrated increased survival time, improved clinical outcome scores, and significantly reduced total attached cells on the VCs compared with standard clinical control VCs. TLP VCs exhibited similar, but not worse, results related to ventriculomegaly, intracranial pressure, and the local tissue response around the cortical shunt track in pigs. CONCLUSIONS: TLP VCs may be a strong candidate to reduce proximal VC obstruction and improve hydrocephalus treatment.


Subject(s)
Fluorocarbons , Hydrocephalus , Swine , Animals , Rats , Hydrocephalus/surgery , Catheters , Drainage , Fluorocarbons/pharmacology , Fluorocarbons/therapeutic use , Intracranial Pressure
20.
ChemMedChem ; 19(1): e202300312, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37970644

ABSTRACT

Ischemic stroke primarily leads to insufficient oxygen delivery in ischemic area. Prompt reperfusion treatment for restoration of oxygen is clinically suggested but mediates more surging reactive oxygen species (ROS) generation and oxidative damage, known as ischemia-reperfusion injury (IRI). Therefore, the regulation of oxygen content is a critical point to prevent cerebral ischemia induced pathological responses and simultaneously alleviate IRI triggered by the sudden oxygen restoration. In this work, we constructed a perfluorocarbon (PFC)-based artificial oxygen nanocarrier (PFTBA-L@GB), using an ultrasound-assisted emulsification method, alleviates the intracerebral hypoxic state in ischemia stage and IRI after reperfusion. The high oxygen solubility of PFC allows high oxygen efficacy. Furthermore, PFC has the adhesion affinity to platelets and prevents the overactivation of platelet. The encapsulated payload, ginkgolide B (GB) exerts its anti-thrombosis by antagonism on platelet activating factor and antioxidant effect by upregulation of antioxidant molecular pathway. The versatility of the present strategy provides a practical approach to build a simple, safe, and relatively effective oxygen delivery agent to alleviate hypoxia, promote intracerebral oxygenation, anti-inflammatory, reduce intracerebral oxidative stress damage and thrombosis and caused by stroke.


Subject(s)
Fluorocarbons , Nanoparticles , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Fluorocarbons/pharmacology , Fluorocarbons/therapeutic use , Oxidative Stress , Reactive Oxygen Species/metabolism , Oxygen/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...