Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.345
Filter
1.
Front Endocrinol (Lausanne) ; 15: 1428147, 2024.
Article in English | MEDLINE | ID: mdl-38957445

ABSTRACT

Background: Amphiregulin (AR) is a growth factor that resembles the epidermal growth factor (EGF) and serves various functions in different cells. However, no systematic studies or reports on the role of AR in human oocytes have currently been performed or reported. This study aimed to explore the role of AR in human immature oocytes during in vitro maturation (IVM) and in vitro fertilization (IVF) in achieving better embryonic development and to provide a basis for the development of a pre-insemination culture medium specific for cumulus oocyte complexes (COCs). Methods: First, we examined the concentration of AR in the follicular fluid (FF) of patients who underwent routine IVF and explored the correlation between AR levels and oocyte maturation and subsequent embryonic development. Second, AR was added to the IVM medium to culture immature oocytes and investigate whether AR could improve the effects of IVM. Finally, we pioneered the use of a fertilization medium supplemented with AR for the pre-insemination culture of COCs to explore whether the involvement of AR can promote the maturation and fertilization of IVF oocytes, as well as subsequent embryonic development. Results: A total of 609 FF samples were examined, and a positive correlation between AR levels and blastocyst formation was observed. In our IVM study, the development potential and IVM rate of immature oocytes, as well as the fertilization rate of IVM oocytes in the AR-added groups, were ameliorated significantly compared to the control group (All P < 0.05). Only the IVM-50 group had a significantly higher blastocyst formation rate than the control group (P < 0.05). In the final IVF study, the maturation, fertilization, high-quality embryo, blastocyst formation, and high-quality blastocyst rates of the AR-added group were significantly higher than those of the control group (All P < 0.05). Conclusion: AR levels in the FF positively correlated with blastocyst formation, and AR involvement in pre-insemination cultures of COCs can effectively improve laboratory outcomes in IVF. Furthermore, AR can directly promote the in vitro maturation and developmental potential of human immature oocytes at an optimal concentration of 50 ng/ml.


Subject(s)
Amphiregulin , Cumulus Cells , Fertilization in Vitro , In Vitro Oocyte Maturation Techniques , Oocytes , Humans , Amphiregulin/metabolism , Fertilization in Vitro/methods , Female , Oocytes/drug effects , Oocytes/metabolism , In Vitro Oocyte Maturation Techniques/methods , Adult , Cumulus Cells/metabolism , Cumulus Cells/drug effects , Cumulus Cells/cytology , Follicular Fluid/metabolism , Embryonic Development/drug effects , Embryonic Development/physiology , Pregnancy , Culture Media/chemistry , Embryo Culture Techniques/methods , Blastocyst/metabolism , Blastocyst/drug effects
2.
J Obstet Gynaecol ; 44(1): 2346228, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38973654

ABSTRACT

Background: Prolidase is a manganese (Mn)-dependent cytosolic exopeptidase that degrades imidodipeptides with C-terminal proline or hydroxyproline. Prolidase recycling from imidodipeptides plays a critical role in collagen resynthesis and extracellular matrix (ECM) remodelling. Following an increase in gonadotropins, ovarian and follicular collagen undergo substantial degradation. Abnormal ovarian ECM composition is associated with polycystic ovary syndrome (PCOS). This study aimed to examine prolidase activity in the serum and follicular fluid (FF) of women undergoing in vitro fertilisation/intracytoplasmic sperm injection (IVF/ICSI) treatment, comparing those with PCOS to those with normal ovarian function.Methods: This prospective study enrolled 50 participants, of whom 44 were included. PCOS diagnosis followed the Rotterdam consensus criteria, with 20 patients constituting the study group. The control group comprised 24 individuals with mild-to-moderate male infertility. Prolidase enzyme activity in serum and FF was measured using the Chinard reagent via spectrophotometric analysis and compared between the groups.Results: Serum and FF prolidase levels were significantly lower in patients with PCOS (p < 0.05). A direct correlation was observed between serum and FF prolidase levels (p < 0.05). Although blastocyst quality scoring (BQS) significantly decreased in PCOS patients, no statistical difference was observed in the clinical pregnancy rate between the groups (p < 0.05) (p > 0.05). A negative correlation existed between serum prolidase levels and total antral follicle (AF) count (p < 0.05). Conversely, both serum and FF prolidase levels positively correlated with BQS (r = 0.574)(p < 0.05) (r = 0.650)(p < 0.05).Conclusions: Patients with PCOS showed lower serum and FF prolidase levels, indicating abnormal degradation of ovarian and follicular collagen, potentially causing anovulation.


Polycystic ovary syndrome (PCOS), the most prevalent endocrinopathy among reproductive-aged women, affects approximately 3­15% of this demographic. Long-term disorders such as cardiovascular disease, type 2 diabetes mellitus, obesity, and infertility are commonly associated with PCOS, with approximately 70% of affected women experiencing infertility. Although the aetiology of PCOS remains unclear, complex multigenic disorders and environmental factors such as abnormal ovarian extracellular matrix composition, disruption of the inflammatory pathway, and lifestyle factors have been found to be related.This study addresses the aetiology of PCOS, focusing on the close association between abnormal ovarian extracellular matrix composition and the syndrome, as seen in previous reports. Prolidase is a manganese-dependent cytosolic exopeptidase that degrades imidodipeptides using the C-terminal proline or hydroxyproline. Proline recycling from imidodipeptides by prolidase plays a critical role in the resynthesis of collagen and remodelling of the extracellular matrix. Our aim was to evaluate prolidase activity in the serum and follicular fluid of women diagnosed with PCOS. Our findings revealed a direct correlation between serum and follicular fluid prolidase levels, both of which were diminished in women with PCOS. Furthermore, a negative correlation was observed between serum prolidase levels and total antral follicle count indicating a potential link between prolidase activity and ovarian follicle development. In contrast, both serum and follicular fluid prolidase levels were positively correlated with blastocyst quality. In conclusion, PCOS patients showed lower serum and follicular fluid prolidase levels, indicating abnormal degradation of ovarian and follicular collagen, and potentially causing anovulation. Future studies measuring manganese levels in larger numbers of participants are required.


Subject(s)
Dipeptidases , Follicular Fluid , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/enzymology , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/complications , Polycystic Ovary Syndrome/metabolism , Female , Adult , Dipeptidases/blood , Dipeptidases/metabolism , Prospective Studies , Follicular Fluid/metabolism , Infertility, Female/etiology , Infertility, Female/blood , Fertilization in Vitro , Pregnancy , Sperm Injections, Intracytoplasmic , Case-Control Studies
3.
Niger J Clin Pract ; 27(6): 739-747, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38943298

ABSTRACT

BACKGROUND: Unexplained infertility is defined as the absence of any pathology in the basic evaluation performed in couples who cannot achieve pregnancy after 1 year of unprotected sexual intercourse. The results of tests examining the causes of infertility show no identifiable cause in almost 15% of couples. AIM: The aim of this study was to investigate the effects of reactive oxygen species (ROS) on pregnancy and embryos. METHODS: This study included 200 patients, aged between 20-44 years, with unexplained infertility, who had recurrent intrauterine inseminations failures and hence started in vitro fertilization (IVF)/intracytoplasmic sperm injection treatment. Some amounts of waste follicular fluid samples were collected by embryologists from the oocytes of these patients during the ovum pick-up procedure. Next, total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values were calculated in the biochemistry laboratory. RESULTS: In terms of pregnancy status, both follicular TOS and OSI values were not significantly different in patients with biochemical and clinical pregnancy, whereas TAS values were significantly higher in patients with pregnancy (P < 0.05). In terms of embryo quality, no significant difference was observed in TAS, TOS, and OSI values between grade 1 and 2 embryos, whereas pregnancy rates were significantly higher in patients who received grade 1 embryo transfer (P < 0.05). However, the follicular fluid TAS levels were significantly lower in smoking patients than in those who did not smoke; TOS and OSI levels were significantly higher. CONCLUSION: This study showed that exposure to oxidative stress might be a causative factor for infertility. In addition, ROS decreased the level of TAS by increasing OSI in the follicular fluid; thus, antioxidant supplementation might be a necessity.


Subject(s)
Antioxidants , Fertilization in Vitro , Follicular Fluid , Oxidants , Oxidative Stress , Humans , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Female , Adult , Antioxidants/metabolism , Antioxidants/analysis , Pregnancy , Oxidants/metabolism , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Young Adult , Pregnancy Rate , Infertility, Female/metabolism , Sperm Injections, Intracytoplasmic , Infertility/therapy , Infertility/metabolism
4.
BMC Vet Res ; 20(1): 272, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918770

ABSTRACT

BACKGROUND: In vitro embryo production is a highly demanded reproductive technology in horses, which requires the recovery (in vivo or post-mortem) and in vitro maturation (IVM) of oocytes. Oocytes subjected to IVM exhibit poor developmental competence compared to their in vivo counterparts, being this related to a suboptimal composition of commercial maturation media. The objective of this work was to study the effect of different concentrations of secretome obtained from equine preovulatory follicular fluid (FF) on cumulus-oocyte complexes (COCs) during IVM. COCs retrieved in vivo by ovum pick up (OPU) or post-mortem from a slaughterhouse (SLA) were subjected to IVM in the presence or absence of secretome (Control: 0 µg/ml, S20: 20 µg/ml or S40: 40 µg/ml). After IVM, the metabolome of the medium used for oocyte maturation prior (Pre-IVM) and after IVM (Post-IVM), COCs mRNA expression, and oocyte meiotic competence were analysed. RESULTS: IVM leads to lactic acid production and an acetic acid consumption in COCs obtained from OPU and SLA. However, glucose consumption after IVM was higher in COCs from OPU when S40 was added (Control Pre-IVM vs. S40 Post-IVM: 117.24 ± 7.72 vs. 82.69 ± 4.24; Mean µM ± SEM; p < 0.05), while this was not observed in COCs from SLA. Likewise, secretome enhanced uptake of threonine (Control Pre-IVM vs. S20 Post-IVM vs. S40 Post-IVM: 4.93 ± 0.33 vs. 3.04 ± 0.25 vs. 2.84 ± 0.27; Mean µM ± SEM; p < 0.05) in COCs recovered by OPU. Regarding the relative mRNA expression of candidate genes related to metabolism, Lactate dehydrogenase A (LDHA) expression was significantly downregulated when secretome was added during IVM at 20-40 µg/ml in OPU-derived COCs (Control vs. S20 vs. S40: 1.77 ± 0.14 vs. 1 ± 0.25 vs. 1.23 ± 0.14; fold change ± SEM; p < 0.05), but not in SLA COCs. CONCLUSIONS: The addition of secretome during in vitro maturation (IVM) affects the gene expression of LDHA, glucose metabolism, and amino acid turnover in equine cumulus-oocyte complexes (COCs), with diverging outcomes observed between COCs retrieved using ovum pick up (OPU) and slaughterhouse-derived COCs (SLA).


Subject(s)
Culture Media , Cumulus Cells , Follicular Fluid , In Vitro Oocyte Maturation Techniques , Oocytes , Animals , Horses , Oocytes/drug effects , Oocytes/metabolism , Follicular Fluid/metabolism , Follicular Fluid/chemistry , In Vitro Oocyte Maturation Techniques/veterinary , Cumulus Cells/metabolism , Cumulus Cells/drug effects , Female , Culture Media/pharmacology , Secretome/metabolism
5.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892059

ABSTRACT

Global methylation levels differ in in vitro- and in vivo-developed embryos. Follicular fluid (FF) contains extracellular vesicles (EVs) containing miRNAs that affect embryonic development. Here, we examined our hypothesis that components in FF affect global DNA methylation and embryonic development. Oocytes and FF were collected from bovine ovaries. Treatment of zygotes with a low concentration of FF induced global DNA demethylation, improved embryonic development, and reduced DNMT1/3A levels. We show that embryos take up EVs containing labeled miRNA secreted from granulosa cells and the treatment of zygotes with EVs derived from FF reduces global DNA methylation in embryos. Furthermore, the methylation levels of in vitro-developed blastocysts were higher than those of in their vivo counterparts. Based on small RNA-sequencing and in silico analysis, we predicted miR-29b, -199a-3p, and -148a to target DNMTs and to induce DNA demethylation, thereby improving embryonic development. Moreover, among FF from 30 cows, FF with a high content of these miRNAs demethylated more DNA in the embryos than FF with a lower miRNA content. Thus, miRNAs in FF play a role in early embryonic development.


Subject(s)
Embryonic Development , Extracellular Vesicles , Follicular Fluid , MicroRNAs , Animals , Female , MicroRNAs/genetics , MicroRNAs/metabolism , Cattle , Follicular Fluid/metabolism , Extracellular Vesicles/metabolism , Embryonic Development/genetics , DNA Methylation , DNA Demethylation , Oocytes/metabolism , Blastocyst/metabolism , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental , Zygote/metabolism
6.
Front Endocrinol (Lausanne) ; 15: 1414289, 2024.
Article in English | MEDLINE | ID: mdl-38904043

ABSTRACT

Background: Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods: A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results: The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions: This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).


Subject(s)
Fertilization in Vitro , Follicular Fluid , Insulin Resistance , Lipidomics , Oocytes , Plasmalogens , Polycystic Ovary Syndrome , Humans , Female , Polycystic Ovary Syndrome/metabolism , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Oocytes/metabolism , Adult , Lipidomics/methods , Plasmalogens/metabolism , Plasmalogens/analysis , Fertilization in Vitro/methods , Lipids/analysis , Infertility, Female/metabolism , Lipid Metabolism/physiology , Embryo Transfer , Case-Control Studies
7.
Int J Mol Sci ; 25(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38791596

ABSTRACT

Ovarian follicular fluid (FF) has a direct impact on oocyte quality, playing key roles in fertilization, implantation, and early embryo development. In our recent study, we found FF thromboxane (TX) to be a novel factor inversely correlated with oocyte maturation and identified thrombin, transforming growth factor ß (TGFß), TNF-α, and follicular granulosa cells (GCs) as possible contributors to FF TX production. Therefore, this study sought to investigate the role of TGFß3 in regulating TX generation in human ovarian follicular GCs. TGFß3 was differentially and significantly present in the FF of large and small follicles obtained from IVF patients with average concentrations of 68.58 ± 12.38 and 112.55 ± 14.82 pg/mL, respectively, and its levels were correlated with oocyte maturity. In an in vitro study, TGFß3 induced TX generation/secretion and the converting enzyme-COX-2 protein/mRNA expression both in human HO23 and primary cultured ovarian follicular GCs. While TGFßRI and Smad2/3 signaling was mainly required for COX-2 induction, ERK1/2 appeared to regulate TX secretion. The participation of Smad2/3 and COX-2 in TGFß3-induced TX generation/secretion could be further supported by the observations that Smad2/3 phosphorylation and nuclear translocation and siRNA knockdown of COX-2 expression compromised TX secretion in GCs challenged with TGFß3. Taken together, the results presented here first demonstrated that FF TGFß3 levels differ significantly in IVF patients' large preovulatory and small mid-antral follicles and are positively associated with oocyte maturation. TGFß3 can provoke TX generation by induction of COX-2 mRNA/protein via a TGFßR-related canonical Smad2/3 signaling pathway, and TX secretion possibly by ERK1/2. These imply that TGFß3 is one of the inducers for yielding FF TX in vivo, which may play a role in folliculogenesis and oocyte maturation.


Subject(s)
Cyclooxygenase 2 , Follicular Fluid , Granulosa Cells , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta3 , Humans , Female , Cyclooxygenase 2/metabolism , Cyclooxygenase 2/genetics , Granulosa Cells/metabolism , Smad2 Protein/metabolism , Smad2 Protein/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Follicular Fluid/metabolism , Transforming Growth Factor beta3/metabolism , Transforming Growth Factor beta3/genetics , Adult , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Ovarian Follicle/metabolism , Oocytes/metabolism , Cells, Cultured
8.
Theriogenology ; 225: 107-118, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38805993

ABSTRACT

In this study, we aimed to investigate cytoplasmic maturation and miRNA expression of mature oocytes cultured in porcine follicular fluid exosomes. We also examined the effect of miR-339-5p on oocyte maturation. Twenty eight differentially expressed miRNAs were detected using miRNA-seq. We then transfected cumulus oocyte complexes with miR-339-5p mimics and inhibitor during culture. The results showed that exosomes increased endoplasmic reticulum levels and the amount of lipid droplets, and decreased ROS levels, lipid droplet size, and percentage of oocytes with abnormal cortical granule distribution. Overexpressing miR-339-5p significantly decreased cumulus expansion genes, oocyte maturation-related genes, target gene proline/glutamine-rich splicing factor (SFPQ), ERK1/2 phosphorylation levels, oocyte maturation rate, blastocyst rate, and lipid droplet number, but increased lipid droplet size and the ratio of oocytes with abnormal cortical granule distribution. Inhibiting miR-339-5p reversed the decrease observed during overexpression. Mitochondrial membrane potential and ROS levels did not differ significantly between groups. In summary, exosomes promote oocyte cytoplasmic maturation and miR-339-5p regulating ERK1/2 activity through SFPQ expression, thereby elevating oocyte maturation and blastocyst formation rate in vitro.


Subject(s)
Exosomes , Follicular Fluid , In Vitro Oocyte Maturation Techniques , MAP Kinase Signaling System , MicroRNAs , Oocytes , Animals , Swine , MicroRNAs/metabolism , MicroRNAs/genetics , Oocytes/metabolism , Oocytes/physiology , In Vitro Oocyte Maturation Techniques/veterinary , Exosomes/metabolism , Female , Follicular Fluid/metabolism , PTB-Associated Splicing Factor/metabolism , PTB-Associated Splicing Factor/genetics , Gene Expression Regulation
9.
Anim Reprod Sci ; 266: 107492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749391

ABSTRACT

The relationship between Leptospira infection and reproductive failures, as well as the mechanisms that lead to it, has not yet been fully established. It has been hypothesized that the presence of Leptospira spp. in the follicular fluid (FF) could impair the oocyte developmental competence. Thus, the impact of the presence of Leptospira spp. in the FF on in vitro embryo production (IVEP) outcomes was assessed. Dairy cows (n=244) from different farms were subjected to ovum pick-up for cumulus-oocyte complexes (COCs) collection. After PCR analysis of the FF, cows were retrospectively allocated into either: positive (POS-FF) or negative (NEG-FF) group. Statistical modeling was conducted using the farm, PCR result, and laboratory in which the IVEP was performed as effects. Noteworthy, 26.6% of the animals were positive for Leptospira spp., and 70% of farms had at least one POS-FF cow in the herd. POS-FF cows had a lower number of COCs recovered (22.6 ± 1.2 vs 15.0 ± 2.8, P=0.036), rate of viable COCs (85.6 ± 0.9% vs 78.1 ± 2.8%, P=0.015), number of good-quality COCs (16.0 ± 0.9 vs 9.8 ± 2.1, P=0.026), cleaved embryos (11.9 ± 0.7 vs 7.5 ± 1.5, P=0.032), and blastocysts (7.3 ± 0.4 vs 2.3 ± 0.7, P=0.044) yielded per cow. In conclusion, the presence of Leptospira spp. in the FF of naturally infected cows impaired the amount of COCs recovered, decreasing the overall IVEP efficiency.


Subject(s)
Cattle Diseases , Fertilization in Vitro , Follicular Fluid , Leptospira , Leptospirosis , Animals , Cattle , Follicular Fluid/microbiology , Female , Leptospira/isolation & purification , Leptospirosis/veterinary , Leptospirosis/microbiology , Cattle Diseases/microbiology , Fertilization in Vitro/veterinary , Retrospective Studies , Embryo Culture Techniques/veterinary
10.
Mol Cell Endocrinol ; 591: 112274, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38777211

ABSTRACT

It has been reported that immune factors are associated with the occurrence of polycystic ovary syndrome (PCOS). Interleukin-1 (IL-1) is a member of the interleukin family that widely participates in the regulation of the inflammatory response in the immune system. In addition, it has been reported that aberrant IL-1 accumulation in serum is associated with the occurrence of PCOS. However, little is known about how IL-1 participates in the pathogenesis of PCOS. In the present study, we demonstrated that the immune microenvironment was altered in follicular fluid from PCOS patients and that the expression levels of two IL-1 cytokines, IL-1α and IL-1ß were increased. Transcriptome analysis revealed that IL-1α and IL-1ß treatment induced primary human granulosa-lutein (hGL) cell inflammatory response and increased the expression of serpin family E member 1 (SERPINE1). Mechanistically, we demonstrated that IL-1α and IL-1ß upregulated SERPINE1 expression through IL-1R1-mediated activation of downstream P50 and P52 signaling pathways in human granulosa cells. Our study highlighted the role of immune state changes in the occurrence of PCOS and provided new insight into the treatment of patients with IL-1-induced ovarian function disorders.


Subject(s)
Granulosa Cells , Interleukin-1 , Luteal Cells , Plasminogen Activator Inhibitor 1 , Polycystic Ovary Syndrome , Signal Transduction , Humans , Female , Plasminogen Activator Inhibitor 1/genetics , Plasminogen Activator Inhibitor 1/metabolism , Luteal Cells/metabolism , Luteal Cells/drug effects , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/genetics , Interleukin-1/metabolism , Interleukin-1/genetics , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Interleukin-1beta/metabolism , Adult , Follicular Fluid/metabolism , Interleukin-1alpha/metabolism , Interleukin-1alpha/genetics , Gene Expression Regulation/drug effects , Receptors, Interleukin-1 Type I/genetics , Receptors, Interleukin-1 Type I/metabolism , Cells, Cultured
11.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38744343

ABSTRACT

Follicular ovarian cysts (FOCs) are characterized by follicles in the ovaries that are >20 mm in diameter and persist for >10 days without the corpus luteum, leading to anovulation, dysregulation of folliculogenesis and subfertility in humans and livestock species. Despite their clinical significance, the precise impact of FOCs on oocyte reserve, maturation, and quality still needs to be explored. While FOCs are observed in both human and livestock populations, they are notably prevalent in livestock species. Consequently, livestock species serve as valuable models for investigating the molecular intricacies of FOCs. Thus, in this study, using goat FOCs, we performed integrated proteomic, metabolomic and functional analyses to demonstrate that oocyte maturation is hampered due to increased reactive oxygen species (ROS) in FOCs follicular fluid (FF) via downregulation of glutathione peroxidase (GPX1), a critical antioxidant seleno enzyme required to negate oxidative stress. Notably, GPX1 reduction was positively correlated with the FF's decline of free selenium and selenocysteine metabolic enzymes, O-phosphoryl-tRNA (Sec) selenium transferase (SEPSECS) and selenocysteine lyase (SCLY) levels. Adding GPX1, selenocysteine, or selenium to the culture media rescued the oocyte maturation abnormalities caused by FOCs FF by down-regulating the ROS. Additionally, we demonstrate that substituting GPX1 regulator, Insulin-like growth factor-I (IGF-1) in the in vitro maturation media improved the oocyte maturation in the cystic FF by down-regulating the ROS activity via suppressing Non-sense-mediated decay (NMD) of GPX1. In contrast, inhibition of IGF-1R and the target of rapamycin complex 1 (mTORC1) hampered the oocyte maturation via NMD up-regulation. These findings imply that the GPX1 regulation via selenocysteine metabolism and the IGF-1-mediated NMD may be critical for the redox homeostasis of FF. We propose that GPX1 enhancers hold promise as therapeutics for enhancing the competence of FOCs oocytes. However, further in vivo studies are necessary to validate these findings observed in vitro.


Subject(s)
Follicular Fluid , Glutathione Peroxidase GPX1 , Homeostasis , Insulin-Like Growth Factor I , Ovarian Cysts , Oxidation-Reduction , Selenocysteine , Female , Follicular Fluid/metabolism , Insulin-Like Growth Factor I/metabolism , Animals , Ovarian Cysts/metabolism , Ovarian Cysts/pathology , Selenocysteine/metabolism , Reactive Oxygen Species/metabolism , Goats , Oxidative Stress , Glutathione Peroxidase/metabolism , Glutathione Peroxidase/genetics , Oocytes/metabolism , Humans , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Proteomics/methods
12.
Bull Exp Biol Med ; 176(5): 658-665, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38727955

ABSTRACT

We studied the influence of extracellular vesicles from the follicular fluid of a young donor on gene expression (MKI67, MYBL2, CCNB1, CCND1, CCNE1, CALM2, BAX, NDRG1, TP53I3, VEGF, VCAN, HAS2, CTSL2, PIBF1, RPL37, PFKP, GPX3, and AQP3) in embryos of women of different ages. According to nanoparticle tracking analysis data, the concentration of extracellular vesicles was 3.75±0.47×1011 particles/ml and the mean particle size was 138.78±9.90 nm. During co-culturing of the follicular fluid extracellular vesicles with blastocysts of young women, we observed significantly increased expression of mRNA for genes CTSL2, CCND1, CCNE1, VEGF and reduced expression of BAX gene mRNA in comparison with embryos in women of late reproductive age. We hypothesized that addition of extracellular vesicles of the oocyte follicular fluid from a young donor to the culture medium of embryos could slow down apoptosis process typical of blastocyst cells in women above 36 years.


Subject(s)
Apoptosis , Blastocyst , Extracellular Vesicles , Follicular Fluid , Humans , Female , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Apoptosis/genetics , Adult , Follicular Fluid/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Gene Expression Regulation, Developmental , Cell Proliferation , Oocytes/metabolism , Age Factors , Embryonic Development/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
13.
Am J Reprod Immunol ; 91(5): e13854, 2024 May.
Article in English | MEDLINE | ID: mdl-38716832

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine-metabolic disorder characterized by oligo-anovulation, hyperandrogenism, and polycystic ovaries, with hyperandrogenism being the most prominent feature of PCOS patients. However, whether excessive androgens also exist in the ovarian microenvironment of patients with PCOS, and their modulatory role on ovarian immune homeostasis and ovarian function, is not clear. METHODS: Follicular fluid samples from patients participating in their first in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) treatment were collected. Androgen concentration of follicular fluid was assayed by chemiluminescence, and the macrophage M1:M2 ratio was detected by flow cytometry. In an in vitro model, we examined the regulatory effects of different concentrations of androgen on macrophage differentiation and glucose metabolism levels using qRT-PCR, Simple Western and multi-factor flow cytometry assay. In a co-culture model, we assessed the effect of a hyperandrogenic environment in the presence or absence of macrophages on the function of granulosa cells using qRT-PCR, Simple Western, EdU assay, cell cycle assay, and multi-factor flow cytometry assay. RESULTS: The results showed that a significantly higher androgen level and M1:M2 ratio in the follicular fluid of PCOS patients with hyperandrogenism. The hyperandrogenic environment promoted the expression of pro-inflammatory and glycolysis-related molecules and inhibited the expression of anti-inflammatory and oxidative phosphorylation-related molecules in macrophages. In the presence of macrophages, a hyperandrogenic environment significantly downregulated the function of granulosa cells. CONCLUSION: There is a hyperandrogenic microenvironment in the ovary of PCOS patients with hyperandrogenism. Hyperandrogenic microenvironment can promote the activation of ovarian macrophages to M1, which may be associated with the reprogramming of macrophage glucose metabolism. The increased secretion of pro-inflammatory cytokines by macrophages in the hyperandrogenic microenvironment would impair the normal function of granulosa cells and interfere with normal ovarian follicle growth and development.


Subject(s)
Androgens , Follicular Fluid , Granulosa Cells , Hyperandrogenism , Macrophages , Polycystic Ovary Syndrome , Humans , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/immunology , Female , Granulosa Cells/metabolism , Macrophages/immunology , Macrophages/metabolism , Hyperandrogenism/metabolism , Adult , Follicular Fluid/metabolism , Androgens/metabolism , Cells, Cultured , Macrophage Activation , Cellular Microenvironment , Coculture Techniques , Cell Differentiation
14.
Front Endocrinol (Lausanne) ; 15: 1353068, 2024.
Article in English | MEDLINE | ID: mdl-38726341

ABSTRACT

Introduction: Despite the global prevalence of coronavirus disease 2019 (COVID-19), limited research has been conducted on the effects of SARS-CoV-2 infection on human reproduction. The aims of this study were to investigate the impact of SARS-CoV-2 infection during controlled ovarian stimulation (COS) on the outcomes of assisted reproductive treatment (ART) and the cytokine status of patients. Methods: This retrospective cohort study included 202 couples who received ART treatment, 101 couples infected with SARS-CoV-2 during COS and 101 matched uninfected couples. The parameters of ovarian stimulation and pregnancy outcomes were compared between the two groups. The All-Human Inflammation Array Q3 kit was utilized to measure cytokine levels in both blood and follicular fluid. Results: No difference was found in the number of good-quality embryos (3.3 ± 3.1 vs. 3.0 ± 2.2, P = 0.553) between the infected and uninfected groups. Among couples who received fresh embryo transfers, no difference was observed in clinical pregnancy rate (53.3% vs. 51.5%, P = 0.907). The rates of fertilization, implantation, miscarriage, ectopic pregnancy and live birth were also comparable between the two groups. After adjustments were made for confounders, regression models indicated that the quality of embryos (B = 0.16, P = 0.605) and clinical pregnancy rate (P = 0.206) remained unaffected by SARS-CoV-2 infection. The serum levels of MCP-1, TIMP-1, I-309, TNF-RI and TNF-RII were increased, while that of eotaxin-2 was decreased in COVID-19 patients. No significant difference was found in the levels of cytokines in follicular fluid between the two groups. Conclusion: Asymptomatic or mild COVID-19 during COS had no adverse effects on ART outcomes. Although mild inflammation was present in the serum, it was not detected in the follicular fluid of these patients. The subsequent immune response needs further investigation.


Subject(s)
COVID-19 , Ovulation Induction , Pregnancy Outcome , Reproductive Techniques, Assisted , Humans , COVID-19/immunology , COVID-19/therapy , Female , Pregnancy , Ovulation Induction/methods , Adult , Retrospective Studies , Male , SARS-CoV-2 , Pregnancy Rate , Follicular Fluid/metabolism , Cytokines/blood , Cytokines/metabolism , Inflammation , Embryo Transfer , Treatment Outcome
15.
J Ovarian Res ; 17(1): 108, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762521

ABSTRACT

BACKGROUND: Imbalances in alkali elements (AEs) and alkaline earth elements (AEEs) cause reproductive disorders. However, it remains unclear whether AEs/AEEs in follicular fluid have a relationship with the serious reproductive disorder known as diminished ovarian reserve (DOR). METHODS: A nested case‒control study was carried out in China. Follicular fluid samples from 154 DOR patients and 154 controls were collected and assessed for nine AEs/AEE levels. Both the mixed and single effects of the elements on DOR were estimated with a Bayesian kernel machine (BKMR) and logistic regressions. RESULTS: The DOR group had higher median concentrations of Li, Na, and K in follicular fluid (all P values < 0.05). The logistic regression showed that compared with their lowest tertile, the high tertiles of K [OR:2.45 (1.67-4.43)], Li [OR: 1.89 (1.06-3.42)], and Cs [OR: 1.97 (1.10-3.54)] were significantly associated with the odds of DOR. The BKMR model reported that the DOR likelihood increased linearly across the 25th through 75th percentiles of the nine-AE/AEE mixture, while the AE group contributed more to the overall effect. CONCLUSION: This study revealed an association in which the likelihood of DOR increased with higher overall concentrations of AE/AEEs in follicular fluid. Among the nine detected elements, K, Li, and Cs exhibited significant individual associations with DOR. We provide new clues for the environmental factors on female fertility decline. TRIAL REGISTRATION: Retrospectively registered.


Subject(s)
Follicular Fluid , Ovarian Reserve , Humans , Female , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Case-Control Studies , Adult , Ovarian Reserve/physiology , Metals, Alkaline Earth/analysis , Alkalies , Infertility, Female/metabolism , Young Adult
16.
Reprod Biol Endocrinol ; 22(1): 60, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778396

ABSTRACT

BACKGROUND: Reproduction in women is at risk due to exposure to chemicals that can disrupt the endocrine system during different windows of sensitivity throughout life. Steroid hormone levels are fundamental for the normal development and function of the human reproductive system, including the ovary. This study aims to elucidate steroidogenesis at different life-stages in human ovaries. METHODS: We have developed a sensitive and specific LC-MS/MS method for 21 important steroid hormones and measured them at different life stages: in media from cultures of human fetal ovaries collected from elective terminations of normally progressing pregnancy and in media from adult ovaries from Caesarean section patients, and follicular fluid from women undergoing infertility treatment. Statistically significant differences in steroid hormone levels and their ratios were calculated with parametric tests. Principal component analysis (PCA) was applied to explore clustering of the ovarian-derived steroidogenic profiles. RESULTS: Comparison of the 21 steroid hormones revealed clear differences between the various ovarian-derived steroid profiles. Interestingly, we found biosynthesis of both canonical and "backdoor" pathway steroid hormones and corticosteroids in first and second trimester fetal and adult ovarian tissue cultures. 17α-estradiol, a less potent naturally occurring isomer of 17ß-estradiol, was detected only in follicular fluid. PCA of the ovarian-derived profiles revealed clusters from: adult ovarian tissue cultures with relatively high levels of androgens; first trimester and second trimester fetal ovarian tissue cultures with relatively low estrogen levels; follicular fluid with the lowest androgens, but highest corticosteroid, progestogen and estradiol levels. Furthermore, ratios of specific steroid hormones showed higher estradiol/ testosterone and estrone/androstenedione (indicating higher CYP19A1 activity, p < 0.01) and higher 17-hydroxyprogesterone/progesterone and dehydroepiandrosterone /androstenedione (indicating higher CYP17A1 activity, p < 0.01) in fetal compared to adult ovarian tissue cultures. CONCLUSIONS: Human ovaries demonstrate de novo synthesis of non-canonical and "backdoor" pathway steroid hormones and corticosteroids. Elucidating the steroid profiles in human ovaries improves our understanding of physiological, life-stage dependent, steroidogenic capacity of ovaries and will inform mechanistic studies to identify endocrine disrupting chemicals that affect female reproduction.


Subject(s)
Fetus , Ovary , Humans , Female , Ovary/metabolism , Adult , Pregnancy , Fetus/metabolism , Gonadal Steroid Hormones/biosynthesis , Gonadal Steroid Hormones/metabolism , Gonadal Steroid Hormones/analysis , Tandem Mass Spectrometry , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Estradiol/metabolism , Chromatography, Liquid
17.
Front Endocrinol (Lausanne) ; 15: 1331282, 2024.
Article in English | MEDLINE | ID: mdl-38774232

ABSTRACT

Introduction: Polycystic ovary syndrome (PCOS) is a common multifactorial and polygenic disorder of the endocrine system, affecting up to 20% of women in reproductive age with a still unknown etiology. Follicular fluid (FF) represents an environment for the normal development of follicles rich in metabolites, hormones and neurotransmitters, but in some instances of PCOS the composition can be different. Vasoactive intestinal peptide (VIP) is an endogenous autonomic neuropeptide involved in follicular atresia, granulosa cell physiology and steroidogenesis. Methods: ELISA assays were performed to measure VIP and estradiol levels in human follicular fluids, while AMH, FSH, LH, estradiol and progesterone in the plasma were quantified by chemiluminescence. UHPLC/QTOF was used to perform the untargeted metabolomic analysis. Results: Our ELISA and metabolomic results show: i) an increased concentration of VIP in follicular fluid of PCOS patients (n=9) of about 30% with respect to control group (n=10) (132 ± 28 pg/ml versus 103 ± 26 pg/ml, p=0,03) in women undergoing in vitro fertilization (IVF), ii) a linear positive correlation (p=0.05, r=0.45) between VIP concentration and serum Anti-Müllerian Hormone (AMH) concentration and iii) a linear negative correlation between VIP and noradrenaline metabolism. No correlation between VIP and estradiol (E2) concentration in follicular fluid was found. A negative correlation was found between VIP and noradrenaline metabolite 3,4-dihydroxyphenylglycolaldehyde (DOPGAL) in follicular fluids. Conclusion: VIP concentration in follicular fluids was increased in PCOS patients and a correlation was found with noradrenaline metabolism indicating a possible dysregulation of the sympathetic reflex in the ovarian follicles. The functional role of VIP as noradrenergic modulator in ovarian physiology and PCOS pathophysiology was discussed.


Subject(s)
Fertilization in Vitro , Follicular Fluid , Polycystic Ovary Syndrome , Vasoactive Intestinal Peptide , Humans , Female , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/blood , Vasoactive Intestinal Peptide/metabolism , Vasoactive Intestinal Peptide/blood , Follicular Fluid/metabolism , Adult , Estradiol/blood , Estradiol/metabolism , Anti-Mullerian Hormone/blood , Anti-Mullerian Hormone/metabolism , Case-Control Studies
18.
Toxicol Sci ; 200(1): 57-69, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38603627

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that are resistant to biodegradation and are environmentally persistent. PFAS are found in many consumer products and are a major source of water and soil contamination. This study investigated the effects of an environmentally relevant PFAS mixture (perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], perfluorohexanesulfonic acid [PFHxS]) on the transcriptome and function of human granulosa cells (hGCs). Primary hGCs were harvested from follicular aspirates of healthy, reproductive-age women who were undergoing oocyte retrieval for in vitro fertilization. Liquid Chromatography with tandem mass spectrometry (LC/MS-MS) was performed to identify PFAS compounds in pure follicular fluid. Cells were cultured with vehicle control or a PFAS mixture (2 nM PFHxS, 7 nM PFOA, 10 nM PFOS) for 96 h. Analyses of cell proliferation/apoptosis, steroidogenesis, and gene expression were measured via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays/immunofluorescence, ELISA/western blotting, and RNA sequencing/bioinformatics, respectively. PFOA, PFOS, and PFHxS were detected in 100% of follicle fluid samples. Increased cell proliferation was observed in hGCs treated with the PFAS mixture with no impacts on cellular apoptosis. The PFAS mixture also altered steroid hormone synthesis, increasing both follicle-stimulating hormone-stimulated and basal progesterone secretion and concomitant upregulation of STAR protein. RNA sequencing revealed inherent differences in transcriptomic profiles in hGCs after PFAS exposure. This study demonstrates functional and transcriptomic changes in hGCs after exposure to a PFAS mixture, improving our knowledge about the impacts of PFAS exposures and female reproductive health. These findings suggest that PFAS compounds can disrupt normal granulosa cell function with possible long-term consequences on overall reproductive health.


Subject(s)
Alkanesulfonic Acids , Caprylates , Cell Proliferation , Fluorocarbons , Granulosa Cells , Humans , Female , Fluorocarbons/toxicity , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Cell Proliferation/drug effects , Alkanesulfonic Acids/toxicity , Caprylates/toxicity , Cells, Cultured , Environmental Pollutants/toxicity , Transcription, Genetic/drug effects , Transcriptome/drug effects , Sulfonic Acids/toxicity , Follicular Fluid/metabolism , Adult , Gonadal Steroid Hormones/biosynthesis , Gonadal Steroid Hormones/metabolism
19.
J Assist Reprod Genet ; 41(6): 1637-1642, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38557803

ABSTRACT

PURPOSE: To determine correlations between chemicals in follicular fluid (FF) and follicular reproductive hormone levels. METHODS: The analysis was part of a larger cohort study to determine associations between exposure to EDCs and in vitro fertilization (IVF) outcomes. FF was aspirated from a single leading follicle per participant. Demographics and data on exposure to EDCs were self-reported by the participants using a questionnaire. The concentrations of estradiol (E2), progesterone (PG), anti-Mullerian hormone (AMH), and inhibin B, as well as that of 12 phthalate metabolites and 12 phenolic chemicals were measured in each FF sample. Multivariate linear regression model was used to identify the drivers of hormone levels based on participant's age, BMI, smoking status, and chemical exposure for the monitored chemicals detected in more than 50% of the samples. Benjamini-Hochberg false discovery rate (FDR) correction was applied on the resulting p values (q value). RESULTS: FF samples were obtained from 72 women (mean age 30.9 years). Most of the phthalates and phenolic substances monitored (21/24, 88%) were identified in FF. Ten compounds (7 phthalate metabolites, 3 phenols) were found in more than 50% of samples. In addition, there were positive associations between E2 levels and mono-n-butyl phthalate (MnBP) (beta = 0.01) and mono-isobutyl phthalate (MiBP) (beta = 0.03) levels (q value < 0.05). CONCLUSION: Higher concentrations of several phthalate metabolites, present among others in personal care products, were associated with increased E2 levels in FF. The results emphasize the need to further investigate the mechanisms of action of such EDCs on hormonal cyclicity and fertility in women.


Subject(s)
Anti-Mullerian Hormone , Endocrine Disruptors , Estradiol , Fertilization in Vitro , Follicular Fluid , Phthalic Acids , Progesterone , Humans , Follicular Fluid/metabolism , Follicular Fluid/chemistry , Female , Adult , Endocrine Disruptors/analysis , Phthalic Acids/metabolism , Phthalic Acids/analysis , Estradiol/analysis , Estradiol/metabolism , Progesterone/analysis , Progesterone/metabolism , Anti-Mullerian Hormone/metabolism , Inhibins/metabolism , Phenols/analysis
20.
J Assist Reprod Genet ; 41(5): 1387-1401, 2024 May.
Article in English | MEDLINE | ID: mdl-38656738

ABSTRACT

OBJECTIVE: Women who are of reproductive age can suffer from polycystic ovary syndrome (PCOS), an endocrine disorder. Anovulatory infertility is mostly caused by aberrant follicular development, which is seen in PCOS patients. Due to the dysfunction of reproductive and endocrine function in PCOS patients, assisted reproduction treatment is one of the main means to obtain clinical pregnancy for PCOS patients. Long non-coding RNA (lncRNA) as a group of functional RNA molecules have been found to participate in the regulation of oocyte function, hormone metabolism, and proliferation and apoptosis of granulosa cells. In this study, we investigated the role of lncRNAs in follicular fluid-derived exosomes and the underlying mechanism of lncRNA LIPE-AS1. METHODS: We used RNA sequencing to analyze the lncRNA profiles of follicular fluid-derived exosomes in PCOS patients and controls. RT-qPCR was performed to detect the expression levels of these lncRNAs in control (n = 30) and PCOS (n = 30) FF exosome samples. Furthermore, we validated the performance of lncRNA LIPE-AS1 in oocyte maturation by in vitro maturation (IVM) experiments in mouse and steroid metabolism in granulosa cells. RESULTS: We found 501 lncRNAs were exclusively expressed in the control group and another 273 lncRNAs were found to be specifically expressed in the PCOS group. LncRNA LIPE-AS1, highly expressed in PCOS exosomes, was related to a poor oocyte maturation and embryo development in PCOS patients. Reduced number of MII oocytes were observed in the LIPE-AS1 group by in vitro maturation (IVM) experiments in mouse. LIPE-AS1 was also shown to modulate steroid metabolism and granulosa cell proliferation and apoptosis by LIPE-AS1/miR-4306/LHCGR axis. CONCLUSION: These findings suggested that the increased expression of LIPE-AS1, facilitated by follicular fluid exosomes, had a significant impact on both oocyte maturation and embryo development. We demonstrated the ceRNA mechanism involving LIPE-AS1, miR-4306, and LHCGR as a regulator of hormone production and metabolism. These findings indicate that LIPE-AS1 is essential in PCOS oocyte maturation and revealed a ceRNA network of LIPE-AS1 and provided new information on abnormal steroid metabolism and oocyte development in PCOS.


Subject(s)
Exosomes , Follicular Fluid , Granulosa Cells , Oocytes , Polycystic Ovary Syndrome , RNA, Long Noncoding , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/pathology , Polycystic Ovary Syndrome/metabolism , Female , Follicular Fluid/metabolism , RNA, Long Noncoding/genetics , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Exosomes/genetics , Exosomes/metabolism , Oocytes/metabolism , Oocytes/growth & development , Mice , Animals , In Vitro Oocyte Maturation Techniques , Adult , Steroids/metabolism , Oogenesis/genetics , Apoptosis/genetics , Cell Proliferation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...